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Abstract

The success of many healthcare programs depends
on participants’ adherence. We consider the prob-
lem of scheduling interventions in low resource set-
tings (e.g., placing timely support calls from health
workers) to increase adherence and/or engagement.
Past works have successfully developed several
classes of Restless Multi-armed Bandit (RMAB)
based solutions for this problem. Nevertheless, all
past RMAB approaches assume that the partici-
pants’ behaviour follows the Markov property. We
demonstrate significant deviations from the Markov
assumption on real-world data on a maternal health
awareness program from our partner NGO, ARM-
MAN. Moreover, we extend RMABs to continu-
ous state spaces, a previously understudied area.
To tackle the generalised non-Markovian RMAB
setting we (i) model each participant’s trajectory
as a time-series, (ii) leverage the power of time-
series forecasting models to learn complex patterns
and dynamics to predict future states, and (iii) pro-
pose the Time-series Arm Ranking Index (TARI)
policy, a novel algorithm that selects the RMAB
arms that will benefit the most from an interven-
tion, given our future state predictions. We eval-
uate our approach on both synthetic data, and a
secondary analysis on real data from ARMMAN,
and demonstrate significant increase in engagement
compared to the SOTA, deployed Whittle index so-
lution. This translates to 16.3 hours of additional
content listened, 90.8% more engagement drops
prevented, and reaching more than twice as many
high dropout-risk beneficiaries.

1 Introduction
According to the latest estimates from 2020 [GatesFounda-
tion, 2020], the global Maternal Mortality Ratio (MMR) is
152 deaths per 100,000 live births, more than double the
UN Sustainable Development Goal (SDG) 3.1’s target [UN,
2023]. For context, the MMR in the USA is estimated to
be 35, while in Western Europe is 5. Lack of access to pre-
ventive care information, especially in the global south, is a
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Figure 1: Scheduling healthcare interventions: at each timestep, a
planner selects k out of N arms (healthcare program beneficiaries)
to schedule an intervention (e.g., a healthcare worker will call or
visit). Each bar represents the state (level of engagement) of each
arm at each timestep, which can change even when the arm is not
pulled. Green (red) bars represent beneficiaries with state above
(below) the desired engagement threshold (e.g., for ARMMAN the
threshold is set to listening to 25% of the automated message). In-
tervening on a beneficiary will increase their engagement in expec-
tation (e.g., see beneficiary #4). The planner observes the states and
adjusts its policy to maximize the number of engaging beneficiaries.

major contributing factor for these deaths. For example, In-
dia’s MMR is estimated to be 130 deaths per 100,000 live
births – almost 90% of which are avoidable if women re-
ceive the right kind of intervention [ARMMAN, 2023a]. To
reduce MMR in India, our partner NGO, ARMMAN (arm-
man.org), employs an automated call-based information pro-
gram to disseminate critical healthcare information to preg-
nant women and recent mothers in underserved communi-
ties. Such programs have repeatedly demonstrated signifi-
cant benefits (e.g., see [HelpMum, 2023; ARMMAN, 2023b;
Verma et al., 2023; Mate et al., 2022; Kaur et al., 2020;
Pfammatter et al., 2016]), as they raise awareness regarding
the need for regular care, potential risk factors, and complica-
tions. According to ARMMAN, one of the biggest challenges
these programs face is that of dwindling adherence, as a large
fraction of beneficiaries often drop out. It is thus crucial to
provide timely interventions through support calls, or home
visits from healthworkers so as to minimize disengagement.

In this paper, we study the problem of scheduling health-
care interventions under limited healthcare worker resources.
We model this resource optimization problem as a Restless
Multi-armed Bandit (RMAB) problem [Whittle, 1988], in
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which a planner can act on k out of N arms (beneficiaries) at
each timestep (Figure 1). Contrary to stochastic bandits [Auer
et al., 2002], in RMABs each arm has a state, the reward
depends on said state, and the state changes even when the
arm is not pulled. Past works have developed RMAB-based
solutions for several classes of sequential scheduling prob-
lems with limited resources. Examples include anti-poaching
patrols [Qian et al., 2016], machine maintenance [Glaze-
brook et al., 2006], online advertising [Meshram et al., 2016],
and, healthcare [Wang* et al., 2023]. Notably, all past
RMAB approaches assume that the arms’ behaviour follows
the Markov property, where state transitions are history in-
dependent [Puterman, 2014]. We challenge this assumption,
as human behaviour is likely to contain temporal dependen-
cies, i.e., depend on past states, observations, and actions
[Chierichetti et al., 2012; Early et al., 2022; Meiss et al.,
2010]. Using real-world data on a maternal health awareness
program from our partner NGO, ARMMAN, we demonstrate
significant deviations from the Markov assumption. Specif-
ically, the log-likelihood of observing the historical trajecto-
ries increases (up to 23%), as we increase the order h of the
underlying model (see Section 3).

Even under the Markov assumption, computing an opti-
mal policy for RMABs is PSPACE-hard [Papadimitriou and
Tsitsiklis, 1994]. Instead, state-of-the-art (SOTA) approaches
commonly adopt the Whittle index policy [Whittle, 1988], an
approximate solution that estimates the expected future value
(Whittle index) of acting on an arm, and then proceeds to act
on the top-k arms with the largest value.

If we want to capture non-Markovian1 behaviors using
SOTA Whittle index based approaches, we would run into
computation and data limitations. First, there will be a com-
binatorial explosion of the state space (an h-order Markov
process can be viewed as a first order Markov process on the
expanded state space, where each ‘super’ state consists of h
original states, i.e., s′ = ×h

i=1si). Second, since the Whittle
index policy requires to know the underlying Markov deci-
sion process (MDP) – which grows exponentially in both (i)
the order of the process and (ii) the discretization of the state
– it would need ever larger datasets to calculate the empirical
transition probabilities.

We are the first to cast limited resource optimization prob-
lems into the generalised non-Markovian RMAB setting. In
order to provide a practical, and scalable solution, we take
inspiration from the core idea of the Whittle index – pull arms
with the highest expected gains from pulling – but we drop the
cumbersome MDPs. Instead, we opt to independently model
each participant’s trajectory as a time-series, leveraging the
power of time-series models to learn complex patterns and
dynamics to predict future states. Additionally, we develop
the Time-series Arm Ranking Index (TARI) policy, a novel al-
gorithm that selects the arms that will benefit the most from
an intervention, given our model’s future state predictions.

Finally, as we are no longer limited by the complexity of
the Whittle index, in this work, we extend RMABs to contin-
uous state spaces – a previously understudied area – with-

1By non-Markovian we refer to any Markov process of order 2
or higher. For details please see Section 2.

Figure 2: A beneficiary receiving preventive information (photo
courtesy of ARMMAN).

out the need for the discretization of the state, thus bypassing
approximation losses (e.g., see [Sinha and Mahajan, 2022]).
Combining continuous states and non-Markovian transitions
offers additional expressiveness that can more accurately cap-
ture behavior transitions and patterns, as we showcase in our
results.

Supplementary Material. Please see [Danassis et al.,
2023] for the full version, including the source code.

1.1 Our Contributions
(1) We demonstrate significant deviations from the
Markov assumption in real-world data from a deployed ma-
ternal and child health awareness program by ARMMAN.

(2) We are the first to cast limited resource optimization
problems into the generalised non-Markovian, continuous
state restless multi-armed bandit setting, enabling us to
capture temporal dependencies in human behaviour.

(3) We model each arm as a time-series, and develop
a novel algorithm, the Time-series Arm Ranking Index
(TARI) policy, that acts on arms which will benefit the most
from an intervention, given our model’s future state predic-
tions, resulting in a practical, and scalable solution.

(4) We perform a secondary analysis on real-data (2252
participants, 23 weeks) from a maternal health awareness
program (mHealth), in partnership with an Indian NGO,
ARMMAN. Compared to the SOTA, deployed Whittle index
policy, TARI results in 16.3 hours of additional content lis-
tened, 90.8% more engagement drops prevented, and reach-
ing more than twice as many high dropout-risk beneficiaries.

1.2 Discussion & Related Work
Restless multi-armed bandits (RMABs). Prior work in
RMAB assumes that arms follow the Markov property. Even
in Markovian settings, and when transition dynamics are
fully known, RMABs suffer from the curse of dimensionality.
Planning an optimal policy is PSPACE-hard [Papadimitriou
and Tsitsiklis, 1994]. As such, SOTA approaches usually de-
ploy approximate planning solutions, most notably the Whit-
tle index policy [Whittle, 1988], which solves the Lagrangian
relaxation of the problem. The resulting Lagrange multipli-
ers capture the ‘resource-efficient value for acting’ on an arm
(more accurately, the opportunity cost [Buchanan, 1991] for
not acting). Then the Whittle index policy proceeds to greed-
ily act on the arms with the largest Lagrange multipliers (see
the supplement for a formal definition). The Whittle index
approach has been shown to be asymptotically optimal (i.e.,
when N → ∞ with fixed k

N ) [Weber and Weiss, 1990], and
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Figure 3: Relative (with respect to h = 1) improvement in log like-
lihood. As we increase the order h of the underlying Markov model,
the probability of observing the trajectories in our dataset increases.
This suggests non-Markovian behaviour.

has been shown to perform well empirically in many applica-
tions (e.g., [Qian et al., 2016; Hsu, 2018; Mate et al., 2022;
Kadota et al., 2016]). Nevertheless, the Whittle index re-
mains a heuristic, and asymptotic optimality does not nec-
essarily translate to practically relevant problem sizes and
planning horizons, as was recently demonstrated in [Ghosh
et al., 2023]. Critically, the Whittle index is only optimal un-
der several assumptions (see [Ghosh et al., 2023]), which are
often hard to validate, and part of active research. Finally,
despite being a heuristic, the approach can be prohibitively
slow, thus it often requires a problem-specific fast method for
computing the index. As such, using the traditional Whittle
index on the expanded state space (i.e., s′ = ×h

i=1si) in non-
Markov settings is quite challenging and does not guarantee
high-quality results, even if the problem can be approximated
sufficiently well with low order Markov processes. In this
work, we are the first to generalise RMABs to non-Markovian
settings. We maintain the key idea of the Whittle index policy
(acting on arms that will benefit the most from an interven-
tion), but we use the power of time-series prediction models
to capture complex patterns and dynamics to predict the effect
of an intervention.

Time-series Forecasting. Time series forecasting has been
an active area of research over the past few years, with ap-
plications in diverse areas such as energy consumption, sen-
sor network monitoring, traffic planning, variations in air
pollution, weather forecast, disease propagation, and so on
(e.g., [Matsubara et al., 2014; Wu et al., 2020; Zhou et al.,
2021]). Solutions range from traditional statistical methods
(e.g., [Ariyo et al., 2014]), to deep learning-based models
(e.g., [Lai et al., 2018; Bai et al., 2018; Liu et al., 2021]), and,
more recently, Transformer-based solutions [Wu et al., 2020;
Zhou et al., 2021; Wu et al., 2021; Wen et al., 2022] which
mostly focus on the more challenging long-term forecasting
problem (although their effectiveness has recently come into
question [Zeng et al., 2023]). Our contributions are not in
developing a SOTA time series prediction model. Instead,
we utilise off-the-shelf models in a novel way, to solve non-
Markovian RMAB problems. Importantly, our approach is
model agnostic. In fact, we have evaluated a variety of ar-
chitectures, including LSTM [Hochreiter and Schmidhuber,
1997], BiLSTM [Graves and Schmidhuber, 2005], Trans-
former models [Vaswani et al., 2017], adding time-based vec-
tor representations [Kazemi et al., 2019], attention layers, and
more (see the supplement for the details). Future advance-
ments in the area of time series forecasting can easily trans-

late to better performance for the proposed approach.
From the application perspective, [Nishtala et al., 2020]

and [Nisthala et al., 2021] aim to predict the dropout risk
in a similar maternal health awareness setting. Both works
are about classification to high and low risk of dropout, and
not time-series regression. The former does not optimize
or schedule interventions, while the latter aims to identify
a smaller subset of beneficiaries and the use the traditional
Whittle index in a classic, binary-state Markov setting.

2 Problem Formulation: Non-Markovian
Restless Multi-armed Bandits (NMRMAB)

We consider scheduling problems in which a planner must act
on k out of N independent, continuous state ([0, 1]) arms each
round. The planner fully observes the state of each arm, then
all arms undergo a history-dependent (i.e., non-Markovian)
state transition. The planner’s goal is to maximize the number
of processes in ‘engaging’ state over the time horizon H .

Let si,t ∈ S , and ai,t ∈ A denote the state and action
taken on arm i, respectively, in timestep t. We assume that
states are continuous in [0, 1], and represent the ‘level of en-
gagement’ of a beneficiary, with higher numbers representing
a higher level of engagement. The action set consists of two
actions: active (ai,t = 1), and passive (ai,t = 0). A non-
Markovian Restless Multi-armed Bandit (NMRMAB) prob-
lem instance is a 4-tuple {N , k, (Xi∈N

t )Ht=1, R}, where N is
the set of independent arms, k is the budget constraint such
that

∑
i ai,t = k, ∀t, denoting how many arms can be pulled

at a given time-step, (Xi∈N
t )Ht=1 is an associated transition

process for arm i for time horizon H , and R : (Xt)
H
t=1 → ℜ

is the reward function. In our setting, the reward at timestep
t is given by R(×i<t(si, ai), st) = 1st≥s∗ , where s∗ is a
domain-specific engagement threshold (e.g., ARMMAN con-
siders s∗ = 0.25). The planner’s goal is to maximize the to-
tal reward, i.e.,

∑
t∈[1...H]

∑
i∈N R(·). Finally, we assume

(Xi∈N
t )Ht=1 to be a higher order Markov process. For an h-

order Markov process, the next state depends on the proceed-
ing h states. More formally:
Definition 2.1 (Order h Markov Process). Let x1, . . . , xt be
the elements of the process. A Markov process of order h is
a process (Xt)

∞
t=1, such that ∀t:

Pr[Xt = xt | xt−1, xt−2, . . . , x1] =

Pr[Xt = xt | xt−1, xt−2, . . . , xt−h]

3 Non-Markovian Behaviour in Maternal
mHealth Data

The proposed modeling raises the question as to whether hu-
man activity is indeed non-Markovian in our domain. To an-
swer this question, following related literature [Chierichetti et
al., 2012], we compute the log-likelihood of the participants’
trajectories for a process of order h, based on the data on a
maternal health awareness program from our partner NGO,
ARMMAN. Specifically, we start by computing the empiri-
cal transition probabilities, assuming the underlying process
is of order h. Let h = 1. This is easily achieved by maintain-
ing counters C(st,at)→st+1

. The transition probabilities are
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simply C(st,at)→st+1
/
∑

x C(st,at)→x. For h > 1, an h-order
Markov process can be viewed as a first order Markov process
on the expanded state space s′ = ×h

i=1si. Thus, we can em-
ploy the same approach to calculate empirical probabilities.
Given that we are dealing with continuous states, to maintain
said counters, we first need to discretize them. We opted for
a binary discretization, as in related literature [Verma et al.,
2023], into ‘engaging’ and ‘non-engaging’ states, using s∗
as a threshold (see also Section 5.3). Then, for each trajec-
tory x in our dataset, we compute l(h) ≜ − logL(h | x) ≜
− log Pr(X = x | model of order h). Finally, we average
over all trajectories. Due to the increase in the number of
counters and data required, we model up to seventh order
processes (h = 7). Figure 3 shows the relative improve-
ment −

(
l(h)−l(h=1)

l(h=1)

)
in negative log-likelihood for order h

Markov processes (x-axis). There is a clear improvement for
higher order models, specifically about 10% for h = 2, and
up to 23% for h = 7. This suggests that, under the often-used
binary-discretization model, participants’ behavior across the
duration of the program is indeed not Markovian.

4 Methodology
4.1 RMABs as a Time-series Forecasting Problem
In this work, we are the first to propose a time-series fore-
casting (TSF) based framework for supervised representation
learning of arms’ trajectories in non-Markovian RMABs.

Preliminaries: TSF Problem Formulation
Let X = {X1

t , . . . , X
M
t }ht=1 denote the historical data of an

M -variate series, where h is the look-back window length
and Xi

t is the value of the ith variate at timestep t. Formally,
the TSF task is, given X , to predict the future T values, i.e.,
Ŷ = {Ŷ 1

t , . . . , Ŷ
M
t }h+T

t=h+1. There are two methods for pre-
dicting Ŷ when T > 1: Iterated multi-step (IMS) forecast-
ing [Taieb et al., 2012] where the model learns to predict
a single-step forward, and then is recursively called to ob-
tain multi-step forecasts. Alternatively, with direct multi-step
(DMS) forecasting [Chevillon, 2007], one trains a model that
directly optimizes the multi-step forecasting objective, and
is only called once. Usually IMS forecasts result in smaller
variance than DMS, but the error could accumulate over long
prediction horizons [Zeng et al., 2023]. For simplicity, and
given the relatively short forecasting horizon in our domain,
we opted for the IMS approach (see also Section 4.2).

Labeled Dataset Using a Sliding Window
To produce a labeled dataset for both training (Dtrain), and
evaluation (Dtest), we used a fixed-length sliding window
approach. First, we assume that the planner has access to
an offline historical dataset of beneficiaries’ trajectories, as is
the case for example with our partner NGO, ARMMAN. We
then run a sliding window of length h on each trajectory in
the dataset to get training samples of history (X ), and next
state (Ŷ), as depicted in Figure 4. For the application at hand,
X = {st, at}ht=1, i.e., pairs of state/actions. This intuitively
corresponds to an h-order Markov model approximation. h is
a hyper-parameter that depends on the application and needs

Figure 4: We use a fixed length sliding window, sliding right one
time-step at a time, to generate a supervised learning training dataset
from participants’ time series trajectories.

to be tuned depending on (i) the level of non-Markovian be-
haviour of beneficiaries, and (ii) the achieved error of the
model (larger h does not necessarily translate to lower error).
Finally, Ŷ = {st}t=h+1, i.e., we only predict the next state.
Optionally, depending on the domain, we can enhance the in-
put with auxiliary tokens relevant to the task and the arms’
behavior (e.g., socio-demographic features).

4.2 Proposed Approach: Time-series Arm
Ranking Index (TARI) Policy

The proposed Time-series Arm Ranking Index (TARI) main-
tains the core idea of the traditional Whittle index: estimate
the expected future value of acting on an arm, and then greed-
ily act on arms that will benefit the most from an interven-
tion. However, we adjust the methodology to account for (i)
the additional complexity due to the non-Markovian setting,
and (ii) the scarcity of resources. Specifically for the latter, a
key challenge in real-world applications (and especially ones
related to healthcare), is that they are resource constrained.
For example, despite the scale of ARMMAN’s operation,
with millions of active users, due to limited availability of
healthworkers beneficiaries typically receive at most one in-
tervention (phone call by a health worker) within a period
of 3 months. Taking this into account, TARI estimates the
marginal long-term improvement in engagement if you act
once on a arm (and never act again), compared to never act-
ing.

Specifically, we model each arm independently as a time
series, and train a model to predict the next state (st+1), given
(i) a history of state/actions (×h

i<t(si, ai)) of length h, (ii)
the current state (st), and (iii) the potential action (at, where
at = 1 corresponds to acting, and at = 0 not acting). This is
the offline training part. We use this model online, in an iter-
ated multi-step manner (see Section 4.1), to generate a long
term forecast (st+1, st+2, . . . , st+H ), which then we use to
compute the TARI index for planning as follows.

For each arm n independently, we estimate two quantities
by recursively using our TSF model: (i) The time un until
arm n switches to non-engaging,2 if we act once at timestep
t and never act again (line 4 in Algorithm 1, and green box
in Figure 5), and (ii) the time vn until arm n switches to non-
engaging, if we never act (line 11 in Algorithm 1, and orange
box in Figure 5). Then the TARI index for arm n is simply
given by the ratio of the two numbers (Equation 1). This in-

2Non-engaging means that the continuous state s drops below
an application-specific threshold (s∗). ARMMAN considers s∗ =
0.25.
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Algorithm 1: Time-series Arm Ranking Index
Data: Historical dataset of beneficiaries’ trajectories
Offline: Train TSF model M to predict the next state
Online: Decision timestep t:

1 for arm ∈ N do
2 a = 1, u = 1, s = st, history=×h

i<t(si, ai)
3 s′ = M(history, s, a)
4 while s′ ≥ s∗ and u ≤ H do // While the

state is above the engagement
threshold. Forecast ahead at
most until the time horizon.

5 history.append((s, a))
6 s = s′, a = 0, u = u+ 1
7 s′ = M(history, s, a)
8 .
9 a = 0, v = 1, s = st, history=×h

i<t(si, ai)
10 s′ = M(history, s, a)
11 while s′ ≥ s∗ and v ≤ H do
12 history.append((s, a))
13 s = s′, a = 0, v = v + 1
14 s′ = M(history, s, a)
15 .
16 TARI(arm) = u

v

tuitively gives the ‘value’ of acting. Finally, at each timestep,
just like with the traditional Whittle index, we act on the top-
k arms with the highest TARI value. The proposed approach
is depicted in Figure 5 and Algorithm 1.

TARI(n) =
un

vn
(1)

The TARI policy offers significant advantages. Arms are
modeled independently, which allows for scalability. Further-
more, it is computationally efficient to train and compute in
non-Markovian continuous state settings, contrary to the tra-
ditional Whittle index which requires supporting and comput-
ing over MDPs that grow exponentially in both (i) the order
of the underlying Markov process, and (ii) the discretization
of the state.

5 Simulation Setup
Training data are constructed in the manner described in Sec-
tion 4.1. We use a 64%, 16%, 20% split for the training,
validation, and testing datasets, respectively. All experiments
are averaged over 10 independent runs.

5.1 Baselines
We compare the proposed TARI to four baselines: (i) the
Whittle index policy [Whittle, 1988], (ii) round-robin se-
lection, which often corresponds to the default policy for
many NGOs [Mate et al., 2022] including ARMMAN, (iii)
random, where we act on arms selected uniformly at ran-
dom, and (iv) control, where there are no support calls (no
intervention, i.e., ai,t = 0, ∀i ∈ N , ∀t ∈ H).

We chose to compare to the Whittle index, as it is a popu-
lar, SOTA approach that has been deployed in the real-world

Figure 5: Graphical representation of the calculation of the proposed
TARI. We consider two options for the planner: (i) act once (green
box, at = 1) and then never act (at+j = 0), or (ii) never act (orange
box). We recursively call the TSF model to predict the next state
in the trajectory (feedback loop on the left), until the state switches
from engaging (green bar) to non-engaging (red bar). Let this be at
timestep u (i.e., st+u < s∗) and v (i.e., st+v < s∗) for options (i),
and (ii), respectively. The ratio between the timesteps needed for the
switch if we had acted, compared to not, constitutes the TARI. This
is computed independently for each arm.

(e.g., see [Mate et al., 2022; Verma et al., 2023]). Informally,
the Whittle index of an arm captures the added value from
pulling said arm. Consider a ‘passive subsidy’ – a hypo-
thetical exogenous compensation m rewarded for not pulling
(a = 0) arm i. The Whittle index is defined as the small-
est subsidy necessary to make the planner indifferent be-
tween pulling and not pulling (assuming indexability [Whit-
tle, 1988]), i.e.,

Wi(s) ≜ infm{Qm
i (s | a = 0) = Qm

i (s | a = 1)} (2)

The Whittle index policy computes the Wi(s) of all arms and
pulls the arms with the highest values of the index at each
timestep. The augmented (with subsidy m) Bellman equa-
tions are solved via value iteration, and binary search is used
to find the smallest m that satisfies Equation 2. To use the
Whittle index in our setting, we must first discretize the con-
tinuous state. Following the convention in previous deploy-
ments (e.g., [Mate et al., 2022]), we assume a binary state
Markov model (‘engaging’ = 1, ‘non-engaging’ = 0, thresh-
olded at s∗). For completeness, we also run simulations with
a more fine-grained discretization of the state, and also in-
corporating history by using an expanded state space (i.e.,
s′ = ×h

i=1si). Of course this significantly increases compu-
tational and memory complexity, and data requirements (see
Sections 1, 1.2, 3).

5.2 Synthetic Data
We generate trajectories containing an equal number of the
following types of ‘agents’ (arms). (i) Habit former: The
value of the continuous sate drops under passive action (a =
0), and increases with a = 1. If the state reaches 1 (formed
a habit), it stays there for some duration, independent of the
action. (ii) Motivation based: State drops over time. If we
act, the state returns to baseline. (iii) Random: Random state
independent of the action.

Drop rates, increase rates, habit duration, and state base-
lines include agent specific noise, drawn uniformly at ran-
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dom (UaR). Trajectories used for testing have higher noise
than the ones used for training (see supplement). Historical
trajectories are produced by simulating the participants un-
der various simple intervention policies. Specifically, we act
i times (drawn UaR in [6, 24]), every j timesteps (also drawn
UaR in [1, 14]). Finally, every participant is associated with a
noisy ‘demographic’ feature related to their type. These fea-
tures are given as an additional input to our model (see Figure
5). Also, they are used by the Whittle index baseline, which
learns (offline) empirical transition probabilities for each type
of agent, and then uses the features online to map each arm to
the corresponding probabilities.

5.3 Real Data on Maternal and Child Healthcare
We use data from a large-scale maternal and child healthcare
program operated by our partner NGO, ARMMAN. The pro-
gram serves pregnant women and early mothers in disadvan-
taged communities with median daily family income of $3.22
– below the global poverty line [TheWorldBank, 2023] – by
disseminating timely health information (via automated voice
calls) to reduce maternal, neonatal, and child mortality and
morbidity. The main challenge the program faces is drop in
engagement over time. Engagement is measured in terms of
total number of automated voice messages listened. To miti-
gate this problem, a planner schedules support calls by limited
healthcare workers.

We model this setting as a continuous state, fully observ-
able RMAB problem. The state of each beneficiary represents
the listening time. Each automated voice message has a max-
imum length of 120 seconds, which we normalise to [0, 1].
The planner’s task is to recommend a subset of beneficiaries
every week to receive support calls from healthcare workers,
with the goal to maximize the number of beneficiaries above
the engaging threshold s∗. ARMMAN considers a benefi-
ciary to be engaging if they listen to more than 30 seconds of
the automated message (i.e., if s > 0.25 = s∗). Transition
dynamics are unknown, and we make no Markov assump-
tions. Finally, the dataset also includes socio-demographic
features per beneficiary such as age, gestational age, family
income, education, etc., that may be used as auxiliary infor-
mation.

Training Dataset
We use historical data from a large-scale quality improvement
study performed by ARMMAN in 2022, obtained with ben-
eficiary consent. The data follows 12000 participants (11256
with complete state information by the end) over a period of
31 weeks. In the study, a set of beneficiaries received inter-
ventions from a variety of policies (see supplement for de-
tails). Each beneficiary is represented by a single trajectory
of states (engagement behavior) and actions (received, or not
a call from a healthworker). Demographic features are used
to infer the missing transition dynamics for the Whittle index
baseline, as in [Verma et al., 2023].

Notice on Data Usage
Our simulations are a secondary analysis on different evalua-
tion metrics. All data are anonymized, and we have received
approval from ARMMAN’s ethics board. There is no actual
deployment of TARI at ARMMAN.

5.4 Time Series Forecasting Models
We implemented a variety of time series forecasting models,
ranging from simple LSTM, and BiLSTM architectures, to
adding time-based vector representations and attention layers,
to Transformer models. The majority of the models showed
high performance. As such, we opted to use an LSTM-based
architecture, as simpler models – being less computationally
intensive and more sustainable in the long run – would be
preferred by NGOs which are operating in a low resource
environment. Our chosen model achieved MAE of 0.03 on
average for one step prediction on synthetic data (excluding
random agents), and 0.20 on real data. We used a history of
h = 7 timesteps as input for the synthetic data, and h = 8
timesteps for the real data evaluation. For detailed results, in-
cluding long horizon forecasts, please see the supplement. It
is important to note that (i) as discussed in Section 1.2, our
contribution is not in developing or improving SOTA TSF
models, and (ii) the proposed TARI depends on relative trends
(ratio of two predicted trajectories, see Equation 1), thus if
the model consistently over- or under-predicts the two trajec-
tories, the trend (ratio) will be consistent.

Counterfactuals in Non-Markovian Settings
Under no Markovian assumptions, we can not build a benefi-
ciaries’ model to compute counterfactual trajectories for the
evaluation on real data. To compute such counterfactuals, we
employed a separate TSF model trained on the entire dataset
(train, validation, and test data). This model is only used
when trajectories deviate from the historical data. Given that
we only act on a small percentage of the beneficiaries (about
2%), the vast majority of the trajectories follow the historical
real data, thus the model will not be used. Note that this sec-
ond model is only needed for the purposes of the simulation.
This is a fully observable RMAB, thus in real life we would
actually observe the next state of each participant. We have
evaluated an alternative approach to computing counterfactu-
als in the supplement.

6 Results on Synthetic Data
Engagement. We run a long-term simulation of one year
(52 timesteps). Starting with the engagement, Figure 6 shows
the percentage of engaging beneficiaries during the time hori-
zon. TARI achieves 44.2% higher engagement on average
(across timesteps and independent runs), and up to 107.3%,
compared to the Whittle index policy (best baseline). Com-
pared to Round-robin and Random it achieves 102.5% and
128.6% higher engagement on average, respectively. Addi-
tionally, TARI achieves significantly lower standard deviation
(3.1%), compared to over 100% for all other baselines, as
TARI never intervenes on Random agents.

Robustness. We evaluated the proposed approach under
varying number of arms (N = {30, 90, 120, 600}) and bud-
gets (k = {0.01, 0.1, 0.2} × N , for n = 90). In both cases,
TARI significantly outperformed all the baselines. Specifi-
cally, compared to the Whittle index (best baseline), TARI
achieved on average 44.2 − 48.2% higher engagement when
varying the number of arms, and 37.8− 88.7% when varying
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Figure 6: Synthetic data, N = 90 arms, budget k = 9. Percentage
of engaging beneficiaries (excluding the random agents). The pro-
posed approach achieves 44.2% higher engagement on average, and
up to 107.3%, compared to Whittle index. Note that we opted not to
show standard deviations for the baselines for better visualization,
due to the high values (contrary, TARI achieves low s.d. of 3.1%).

the budget (the smallest budget corresponds to just one in-
tervention, hence the lower improvement). Furthermore, we
enhanced the model for the Whittle index baseline to incor-
porate history (s′ = ×h

i=1si, for up to 4 past states), and a
more fine-grained discretization of the state (up to 9 bins) –
recall that the Whittle index baseline is not designed for con-
tinuous states, and thus requires discretization. In all of the
cases, TARI achieved at least 44.2% higher engagement on
average (and up to 144.2%). For detailed results, please see
the supplement.

7 Results on Real Data on Maternal and
Child Healthcare

We run our analysis for more than 5 months (31 weeks of
data, minus the 8 weeks we give as input to the TSF model,
which corresponds to the observation period of ARMMAN).
Due to limited resources, ARMMAN is able to provide sup-
port calls to about 2 − 4% of beneficiaries at each week
(timestep). In our dataset of 2252 beneficiaries (in the test
set), the lower number corresponds to just 46 support calls
per week. All policies were evaluated in the entire test set.

Figure 7a depicts the cumulative engagement drops (s <
s∗ = 0.25) prevented, compared to control. This fig-
ure clearly demonstrates the importance, and difficulty of
scheduling effective support calls: the naive round-robin ap-
proach (often used by NGOs [Mate et al., 2022]) performs
similarly to random, i.e., following such a policy would in-
cur all the cost associated with providing support calls, with-
out any benefit. TARI achieves an 90.8% improvement over
Whittle, and 133.9% over round-robin. Ensuring beneficia-
ries remain consistently engaged is crucial for the success of
any healthcare program.
Real-world Significance. To put the real-world signifi-
cance of TARI’s engagement gains into concrete numbers,
this corresponds to 3736 and 7851 additional messages lis-
tened compared to the Whittle index, and Control, respec-
tively. Or, in other words, 16.3 hours of additional content
listened by the beneficiaries compared to the Whittle index,
and 62.6 additional hours compared to Control. Adhering to
the program improves health literacy, which would ultimately
lead to better health outcomes.
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(a) Cumulative engagement drops prevented, compared to no inter-
vention. TARI achieves an 90.8% improvement over Whittle.
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(b) Cumulative percentage of high dropout-risk beneficiaries
reached. TARI achieves a 135.2% improvement over Whittle.

Figure 7: Real data on maternal and child healthcare awareness from
ARMMAN. N = 2252 beneficiaries (arms), budget k = 0.02 ×
N = 45. Results are averaged over 10 independent runs.

Finally, an important open problem for ARMMAN is iden-
tifying and proactively reaching beneficiaries with high risk
of dropping out from the program (‘critical beneficiaries’, see
supplement). Figure 7b shows the cumulative percentage of
critical beneficiaries that TARI, and Whittle chose to inter-
vene. By the end of our observation period, TARI had reached
71.6% of critical beneficiaries, while Whittle only 30.4%, a
135.2% improvement. Please see the supplement for results
on engagement, varying budgets, and more.

8 Conclusion
In this work, we study for the first time non-Markovian
Restless Multi-armed Bandits (NMRMAB). Using real-world
data on a maternal health awareness program from our part-
ner NGO, ARMMAN, we demonstrate significant deviations
from the Markov assumption. To solve the challenges that
arise, we model arms as time-series, and propose the Time-
series Arm Ranking Index (TARI) policy, a novel algorithm
that selects the arms that will benefit the most from an in-
tervention, given our future state predictions. Our evaluation
shows a significant increase in engagement compared to the
SOTA, deployed Whittle index solution, on real data from
ARMMAN with 2252 participants. This translates to 16.3
hours of additional content listened, 90.8% more engagement
drops prevented, and reaching more than twice (×2.35) as
many high dropout-risk beneficiaries. While we focus on ma-
ternal and child healthcare as an indicative application, we
expect the proposed approach to perform well on any other
RMAB application that involves non-Markovian behaviours.
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