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Abstract

The recent advances in deep learning have been
beneficial to automatic sign language recognition
(SLR). However, free-to-access, usable, and acces-
sible tools are still not widely available to the deaf
community. The need for a sign language-to-text
dictionary was raised by a bilingual deaf school
in Belgium and linguist experts in sign languages
(SL) in order to improve the autonomy of students.
To meet that need, an efficient SLR system was
built based on a specific transformer model. The
proposed system is able to recognize 700 different
signs, with a top-10 accuracy of 83%. Those results
are competitive with other systems in the literature
while using 10 times less parameters than existing
solutions. The integration of this model into a us-
able and accessible web application for the dictio-
nary is also introduced. A user-centered human-
computer interaction (HCI) methodology was fol-
lowed to design and implement the user interface.
To the best of our knowledge, this is the first pub-
licly released sign language-to-text dictionary us-
ing video captured by a standard camera.

1 Introduction
The rise of deep learning [LeCun et al., 2015] led to the cre-
ation of successful methods to process unstructured data such
as images, videos or texts. These achievements are reflected
in sign language recognition (SLR). The field has gained in
popularity [Koller, 2020] as it provides a challenging bench-
mark for gesture or poses recognition. Indeed, to correctly
classify signs, a model should be able to grasp facial expres-
sions and precise hand gestures [Stokoe, 1972]. Moreover,
there is a clear societal dimension for such technologies, such
as the sign language-to-text dictionary which is proposed here
to help the deaf community.

Technological advances alone cannot explain the success
of SLR. In the past decades, linguists began to have access
to affordable storage and recording devices. It facilitated the
study of sign languages (SL) and has encouraged several re-
search teams to create digital sign language corpora. In the
meantime, the expansion of smartphones and social networks

led to the creation of groups on social media platforms in
which deaf users can share SL vocabulary or communicate
online. The increasing availability of sign language (SL) data
allows machine learning (ML) researchers to exploit those
corpus [Fink et al., 2021] or crowdsource [Vaezi Joze and
Koller, 2019] social media platforms to build large-scale SL
datasets suitable for deep learning.

Despite those advances, few tools are available to the deaf
community. Initiatives led to the creation of lexicons for sign
language enabling to search for a sign corresponding to a
written word1. However, the opposite is not possible as those
tool does not offer a search from a sign to a written word.
This work proposes to enhance those tools by providing a dic-
tionary searchable via a webcam recording. This dictionary
is, to the best of our knowledge, the first publicly available
sign language-to-text dictionary2 using only video informa-
tion from a simple webcam to identify the sign.

The overall process leading to the creation and use of our
dictionary is summarized in Figure 1. A corpus of French
Belgian Sign Language (LSFB) built by a team of linguists
from the LSFB laboratory (LSFB Lab) of Namur [Meurant,
2015] is used as a database for the system. A cleaned version
of the corpus [Fink et al., 2021] is used as a dataset for the
machine learning pipeline. This paper focuses on the creation
of a lightweight model for SLR using an architecture similar
to the one introduced by Vision Transformer (ViT) [Dosovit-
skiy et al., 2021]. In addition, the integration of the result-
ing model into a web application is also presented. A user-
centered approach is followed for ensuring the stakeholder’s
requirements meeting on the resulting dictionary. This en-
sures that our tool will actually be useful to the deaf commu-
nity, as confirmed by its quick adoption after its public release
in October 2022.

This paper is organized as follows. Section 2 introduces
the stakeholders of the SLR system along with its require-
ments. Then, Section 3 discusses the research in SLR. Sec-
tion 4 gives more information about the dataset used in this
work and its specificities. Section 5 describes the architec-
ture developed for the dictionary and reports results for var-
ious architectural choices. A quantitative evaluation of the
best-performing model is reported. Section 6 explains how

1auslan.org.au
2dico.corpus-lsfb.be
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Figure 1: The high-level processes that lead to the creation and manipulation of the bidirectional sign language dictionary. (1)
The LSFB Lab collected and annotated a large corpus of French Belgian Sign Language (LSFB) [Meurant, 2015]. (2) The
corpus was preprocessed and cleaned to create a sign language dataset [Fink et al., 2021]. (3) The dataset is used to train our
SLR model. (4) An interface was built to capture the user’s signs and use them to query the dictionary (5). The dictionary
proposes possible translations to the user along with definitions and usage examples in text and in video (6).

the web application integrating the model was designed, im-
plemented and evaluated using a user-centered approach. Fi-
nally, Section 7 concludes and discusses future works.

2 Stakeholders and Requirements
It is important to notice that sign languages are not universal
and may vary depending on the country or region. The system
presented in this paper focuses on the French Belgian Sign
Language (LSFB). Nevertheless, the overall process followed
to build the system is transferable to any sign language (SL),
provided that the amount of available data is sufficient.

Our project was initiated by the French Belgian Sign Lan-
guage Laboratory (LSFB Lab) of Namur, where linguists
have been working on the LSFB since early 2000. They col-
lected videos of SL conversations to better study and char-
acterize the language. They also released a text-to-sign lan-
guage lexicon. The LSFB Lab collaborates with Sainte-
Marie, a bilingual French and LSFB school located in Na-
mur. The creation of a sign language-to-text dictionary could
improve the autonomy of deaf students. Thus, the school was
interested and involved in the creation of the interface.

Discussions with the stakeholders allowed us to gather re-
quirements for the application. First, the system should be
robust to variations. The users are not expected to stand in a
controlled environment with uniform background and light-
ning or to wear specific clothing. Also, skin color and any
other physical characteristics should have no influence.

The system should not rely on expensive, impractical or
hard-to-find hardware. Thus, the dictionary should only rely
on video captured by a standard webcam that can be found on
laptops or smartphones. The association hosting the system
cannot afford a server with GPUs. Thus, the algorithm must

run efficiently on CPU only. Finally, the system should an-
swer in less than 10 seconds to a query. This ensures that the
interface is fluid and not frustrating to use.

3 Related Work
Sign language recognition is gaining in popularity in machine
learning [Koller, 2020]. Continuous SLR aims to translate
SL sentences directly into text, while isolated SLR focuses
on classifying a single sign. This section focuses on isolated
sign language recognition using RGB data, as our system can
only rely on raw videos for its predictions and its aim is not
to recognize and translate entire sentences.

The first vision-based SLR systems relied on handcrafted
features like the work of [Huang and Huang, 1998] us-
ing Otsu thresholding to isolate the hands. Those methods
were only capable of recognizing a limited number of signs
(< 100) from a few signers (< 5). The use of sequential mod-
els such as Hidden Markov Models led to the first system able
to recognize larger sign vocabulary like in the work of [Kadir
et al., 2004] that achieved 92% accuracy for 164 signs. By
using dynamic time warping, [Wang et al., 2012] achieve
impressive results with 78% top-10 accuracy on 1,113 signs
using 20 frames and meta-information about the number of
hands used to perform the sign and the handedness of the
signers. However, those systems are sensitive to changes in
lighting, background and signer variations.

The success of convolutional neural networks (CNN) for
computer vision along with the development of large pub-
lic datasets for sign language allowed the creation of algo-
rithms robust to variability in the input data. A CNN-based
method [Pigou et al., 2016] was able to classify a vocabulary
of 100 signs performed by 78 different signers with a top-
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1 accuracy of 60% and a top-10 of 90%. The development
of sequential models allows leveraging the temporal infor-
mation in sign language videos. The MS-ASL dataset was
benchmarked [Vaezi Joze and Koller, 2019] on several archi-
tectures such as CNN+LSTM and I3D networks with a top-1
accuracy of 81% for 1,000 signs and 222 signers. Recently,
transformer networks proved to be efficient in sign language
recognition. A transformer-based architecture achieved 73%
accuracy on a vocabulary of 100 signs performed by 67 sign-
ers by mixing frame information with skeleton metadata ex-
tracted from the videos [De Coster et al., 2020].

In parallel, advances in pose estimation led to the creation
of valuable tools for preprocessing sign language videos.
OpenPose [Cao et al., 2019] and MediaPipe [Lugaresi et al.,
2019] provide easy-to-use models to extract skeletons land-
marks from raw RGB videos. Those skeletons are often used
as a preprocessing step in SLR [Konstantinidis et al., 2018].
This work follows this trend by leveraging landmarks.

Since their creation, transformer-based architec-
tures [Vaswani et al., 2017] have proven successful on
tasks such as image classification with the vision transformer
(ViT) [Dosovitskiy et al., 2021]. This work investigates the
adaptation of such architectures for isolated SLR.

4 Dataset
Our SLR algorithm is trained on one of the largest sign lan-
guage datasets in the world: the French Belgian Sign Lan-
guage (LSFB) dataset [Fink et al., 2021]. It is made of 50
hours of video, including 37 hours manually annotated by lin-
guists from the LSFB Lab. Those videos depict natural dis-
cussions in LSFB between two individuals. In total, 100 sign-
ers participated in the recording sessions. Videos are recorded
in a studio with controlled lighting and camera position. For
each discussion, two videos are recorded, each focusing on
one of the two signers.

LSFB-ISOL. The dataset exists in two versions: (i) LSFB-
CONT which contains continuous videos of the whole LSFB
discussions and (ii) LSFB-ISOL in which all the signs are iso-
lated in shorter videos extracted from the continuous videos.
Only LSFB-ISOL is used here as this paper does not focus
on continuous SLR but rather on the recognition of isolated
signs. Resulting videos only contain a single sign with an as-
sociated label. In total, LSFB-ISOL contains 4,181 different
signs that are performed by the 100 signers. In this work,
those labels are filtered to only keep the ones associated with
French translations in the LSFB dictionary and having more
than 20 examples. This leads to a filtered dataset with 700
labels and 77,900 instances.

The LSFB dataset is challenging as signers are free to dis-
cuss without vocabulary or rhythm constraints. In this con-
text, signers tend to sign more quickly and signs overlap.
Thus, the start position of each sign depends on the previous
one.

Pose Features. The dictionary uses pose data extracted
from frames with MediaPipe [Lugaresi et al., 2019]. As
shown in Figure 2, a pose contains 65 landmarks for the body
pose (23) and the hands (2× 21). As each landmark is made

of an x and y component, each pose contains 130 features in
total.

Figure 2: A frame sampled from the LSFB dataset along with
its corresponding pose extracted using MediaPipe.

Multiple reasons motivate the use of poses instead of di-
rectly using the RGB frames:

(i) Less information is contained in a pose. An RGB frame
of size 224x224 contains 150k values while a pose of
65 2D coordinates only contains 130 values. This rep-
resents a significantly smaller feature space that is easier
to work with.

(ii) Some biases appear in the LSFB datasets, e.g., the uni-
form background and controlled lightning. This can
cause bias if the training is performed directly on the
frames. However, the poses are extracted with Medi-
aPipe which is trained with respect to guidelines that
prevent issues such as physical biases (background,
light condition, etc.) and ethical biases (morphology,
gender, skin color, etc.) [Lugaresi et al., 2019]. There-
fore, this paper “delegates” some potential biases to Me-
diaPipe by using poses.

(iii) Poses only contains information about the joints of the
signer. Therefore, irrelevant information, e.g., the color
of the clothes, is not used to make the prediction. This
prevents overfitting by filtering information. It also
makes the model robust to those variations by design.

Features are processed to avoid a discontinuity in pose se-
quences and to mitigate vibrations caused by a lack of preci-
sion in the pose estimation. Linear interpolation is used to fill
in missing values. Then, a filter [Savitzky and Golay, 1964] is
used with a moving window of size 7 and a polynomial order
of 2 to smooth values and thus mitigate vibrations.

5 Model Design
This section introduces the SLR model integrated to the dic-
tionary. First, the overall architecture is described and re-
sults are reported for various meta-parameters. The best-
performing model is discussed and other results found in the
literature are reported.

5.1 Model Architecture
The success of transformer-based architectures in computer
vision motivates their use for the challenging task of SLR.
As the target is a specific class (i.e., type of sign) for a se-
quence of frames constituting a sign, the decoder part of the
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transformer architecture [Vaswani et al., 2017] is not useful
in our case. Instead, the architecture is inspired by the vi-
sion transformer (ViT) [Dosovitskiy et al., 2021] for image
classification. Figure 3 shows the high-level architecture of
our sign language classifier. The linear embedding reduces
the dimensionality of the input data before applying a posi-
tional encoding on each token. The positional encoding is
a 1D trainable vector added to each input token. A classi-
fication token is added to the sequence as introduced in the
ViT paper. This token is then passed as input to the multi-
layer perceptron (MLP) containing a normalization layer [Ba
et al., 2016] followed by a linear layer in order to predict a
label for the sequence. The detailed architecture for the two
other components is discussed in the following sections.

5.2 Training Setup
This section presents the training setup used to create our
models. The filtered LSFB-Isol dataset presented in Section 4
is used, with a total of 77,900 instances and a vocabulary of
700 signs. The dataset is split into a training set containing
70% of the data and a test set containing the remaining. The
signers appearing in the training set are not in the test set, to
assess the ability of the model to deal with new signers. The
MediaPipe landmarks are extracted from each clip. Only the
landmarks are provided as input to our model, i.e., there are
130 input features. The raw video frames are not used.

All the models are trained using the same training scheme.
The optimizer is a SGD with a learning rate of 2× 10−3 and
a momentum of 0.9. The loss function is the classical cross-
entropy loss. The models are trained for 600 epochs. As
recommended by [Vaswani et al., 2017], a warmup phase is
performed. A linear warmup is applied during the first 200
epochs. The batch size is set to 128. The metric used to com-
pare each model is the standard accuracy. The clip sequences
exceeding the maximal sequence length are cropped and the
ones that are shorter are masked.

5.3 Transformer Encoder Architecture
A transformer encoder is made of one or several encoder lay-
ers containing a multi-head attention layer and a feed-forward
network [Vaswani et al., 2017]. The number of encoder lay-
ers and attention heads has an influence on the performance
and complexity of the model. To determine the transformer
encoder architecture for our SLR model, a grid search on sev-
eral meta-parameters was performed (see Table 1). The max-
imal length of signs sequences is set to 50 and the embedding
size of the tokens is set to 96. In total, 16 configurations were
considered and the results are reported in Table 2.

Number of attention heads 2, 4, 8, 16
Number of encoder layers 1, 2, 4, 6

Table 1: The meta-parameters considered during the grid
search for the transformer encoder architecture (see Table 2).

On the training set, the accuracy score rises as the model
complexity increases, but it is not the case with the test accu-
racy. It can be observed that models quickly overfit when they
are more complex. The best performances are obtained with

Nb. layers Nb. heads Train acc. Test acc.
2 61.2% 50.7%
4 67.2% 51.3%
8 66.4% 44.9%1

16 68.0% 45.3%
2 79.4% 51.6%
4 80.7% 51.9%
8 81.3% 47.3%2

16 79.8% 41.9%
2 93.7% 48.5%
4 93.8% 45.0%
8 94.0% 42.1%4

16 94.4% 37.2%
2 98.0% 41.1%
4 98.8% 33.8%
8 99.1% 35.5%6

16 99.0% 26.3%

Table 2: Training and test accuracy for the 16 models trained
to find the best meta-parameters for the transformer encoder.
The best training and test accuracy are highlighted.

a transformer encoder with 2 layers and 4 attention heads.
Thus, those meta-parameters were chosen for our model.

5.4 Embedding Block Architecture
The linear embedding and position encoding block reduce the
dimensions of the input and add position information to each
token before passing them to the transformer encoder. To find
the best sequence length and token size, several architectures
are considered for the embedding block. Table 3 summarizes
the combinations of meta-parameters. The transformer en-
coder block is the one selected in the previous section. Once
again, a grid search was applied to test all the combinations of
those two meta-parameters. Table 4 summarizes the results.

Tokens size 64, 80, 96, 112
Max sequence length 30, 50, 60

Table 3: Summary of the meta-parameters considered during
the grid search for the embedding block (see Table 4).

Augmenting the maximal size of the sequence seems to
be damageable to the performance, and the embedding size
should remain moderate. As in Table 2, too complex models
tend to overfit. The best model is obtained with a maximal
sequence length of 30 and an embedding size of 80.

5.5 Results and Discussions
Our best-performing architecture uses a transformer encoder
with 2 layers and 4 attention heads with a maximal sequence
length of 30 frames and a token size of 80. It reaches a top-1
accuracy of 54% and a top-10 accuracy of 83% on the test
set. The top-10 accuracy is relevant in our use case as the
user of the dictionary could choose the correct sign out of
the 10 proposed by the system. The average recall and pre-
cision obtained by the model are respectively 43% and 51%.
The per-class accuracy shows that classes with more exam-
ples are better identified by the model. Due to the unbalanced
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Linear Embedding + position encoding

Transformer Encoder

clf token token 1 token 2 token 3 token 4 token 5 token 6

MLP classifier

Figure 3: Summary of the architecture used for LSFB recognition. The input is a sequence of skeletons extracted using
MediaPipe [Lugaresi et al., 2019]. Each skeleton is embedded using a linear layer and a positional encoding is added to the
resulting vector. A classification token is added at the start of the sequence as introduced by ViT. Then, the sequence of resulting
tokens is sent to a transformer encoder. The classification token is then used to predict the label for the sign.

Max. seq.
length

Embedding
size Training acc. Test acc.

64 70.7% 52%
80 76.7% 54.4%
96 81.2% 53.6%30

112 84.2% 50.5%
64 69.9% 48.6%
80 75.9% 47.9%
96 79.7% 46.7%50

112 84.0% 49.4%
64 68.9% 42.8%
80 75.3% 44.2%
96 80.1% 47.0%60

112 83.2% 46.7%

Table 4: Training and test accuracy for the 12 models trained
using various sequence lengths and embedding sizes. The
best training and test accuracy are highlighted.

nature of the data, the most common signs have hundreds of
examples while the least represented appears only 20 times
leading to a great disparity in per-sign accuracy. The model
also frequently mistakes signs presenting the same hand con-
figuration and gestures.

To better assess the performances of our model regarding
previous works, Table 5 reports results obtained by models
using RGB video for isolated sign recognition. Only mod-
els trained on datasets with a similar number of signers and
vocabulary are reported.

Notice that those results should be taken with caution as
they are obtained on different datasets captured in different
conditions and using distinct sign languages. For instance,
the LSFB dataset and the BSL-1K [Albanie et al., 2020] are
the only reported datasets containing signs extracted from
sentences. Thus signs from those datasets are performed

faster and might overlap with the previous sign. It may not
be relevant to compare the accuracy obtained on datasets that
are so different. It is done here to give an indicative assess-
ment of our system. Actually, the performances in real-world
conditions may be radically different and the only relevant in-
dicator of performance is the adoption of the system by users.

A key advantage of our LSFB classifier is that it proposes
the lightest architecture for SLR currently available with, at
least, 10 times fewer parameters than other methods. It is
also lighter than a MobileNet [Sandler et al., 2018] network
designed to run on embedded devices. Despite that, the accu-
racy of our method is in the same range as the performance
obtained by other models in the literature. The LSFB classi-
fier is light enough to run on CPU efficiently, which is key for
its adoption by non-profit stakeholders that have not enough
resources and technical knowledge to maintain a GPU server.
Our overarching goal is to maximize its societal impact.

6 System Integration
To achieve tangible societal impact, according to United Na-
tions’ Sustainable Development Goals [UN, 2015] and par-
ticularly the goal 4 “Quality Education“ and the goal 10 “Re-
duced Inequalities“, the model is integrated into a free and
accessible system: the sign language-to-text dictionary which
has been publicly released and is already used by the deaf
community.

As illustrated in Figure 4, the system takes the form of a
web application combining the features and appearance in-
spired by well-established online textual dictionaries such as
Google Translate3 or Linguee4. The dictionary allows users
to sign in front of their camera to search for the literal trans-
lation of a sign in French. Users are invited to sign during a

3translate.google.com
4www.linguee.com
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Authors Vocabulary Signers Parameters Top-1 Top-10 Dataset Base architecture
[Izutov, 2020] 500 222 8.3M 63.36 - MS-ASL S3D
[Izutov, 2020] 1000 222 8.3M 45.65 - MS-ASL S3D
[Li et al., 2020] 1000 116 12M 47.33 84.33 WLASL I3D
[Albanie et al., 2020] 1000 40 12M 65.57 - BSL-1K I3D
[Liao et al., 2019] 500 8 11.4M 89.8 - DEVISIGN-D Resnet + LSTM
LSFB classifier (ours) 700 100 782k 54.4 83.4 LSFB-ISOL ViT

Table 5: This table reports the score obtained by other researchers on various datasets for isolated SLR using only RGB video.
The number of parameters for each architecture is reported. Our solution has, at least, 10 times fewer parameters than other
methods.

fixed time window. Then, they are able to browse the propo-
sitions made by the model to find the corresponding sign in
the dictionary. For the selected predicted sign, all the possible
French translations are displayed. Moreover, for each trans-
lation, the application displays bilingual examples showing
how the sign is used in a real SL video sentence alongside
its French translation. This allows users to understand the
use of the sign in different contexts. The dictionary drasti-
cally increases the autonomy of deaf people. It is also a use-
ful tool for French-speaking people learning sign language or
sign language interpreters who can perfect their knowledge
by browsing contextual examples of signs.

The remaining of this section discusses the design and im-
plementation of the dictionary. The compliance with the re-
quirements elicited by the stakeholders is also assessed.

6.1 Design and Implementation
In order to put the user in the center of the process, the de-
sign phase started with requirements engineering activities
with the stakeholders. First, based on semi-conducted discus-
sions, four personas [Lallemand, 2018] were created (deaf
user, deaf student, bilingual teacher, and sign language ex-
pert). This HCI good practice helped to identify the tar-
get users for the dictionary and the scope of their require-
ments. Moreover, a comparison of famous online dictionar-
ies or translators (e.g., Google Translate, DeepL, Microsoft
Bing) was conducted to confront their features with the needs
of the personas. This then initiated the design of low and
high-fidelity prototypes [Lallemand, 2018] for the dictionary.
Those artifacts were evaluated in a continuous collaboration
and validation with the four users representing each persona
(2 deaf students, 1 bilingual teacher, 1 sign language expert),
stakeholders (2 project leaders), and experts in HCI (1 UX
expert and 1 inclusive UX expert). Finally, as the website
is used by deaf people, great care has been taken to ensure
accessibility. Guidelines for the design of interfaces suited
for deaf people were searched. The web content accessibil-
ity guidelines (WCAG2) [Caldwell et al., 2008] proposed by
the W3C provide some general recommendations to design
inclusive websites but nothing specific to the context of deaf-
ness. Therefore, the rest of the literature was explored and
examined. Among the identified works, the guidelines were
sometimes not the primary focus of the study or were too gen-
eral for our purpose. There was a need for precision, com-
pleteness and cohesion. The work by [André, 2022] gath-
ered, classified, and completed the recommendations found

in the literature to establish a checklist for the creation of UX
adapted to deafness (e.g., transforming all sound signals to
visual ones, using icons instead of texts). Those recommen-
dations were applied to the creation of our dictionary.

To transform the prototype into a working web applica-
tion, all the components were implemented and connected
together. The frontend of the application uses MediaPipe to
extract the poses on the client side. Thus, only the landmarks
extracted on the devices of the users are sent to the server
to reduce the bandwidth needs and to preserve the privacy
of users. A RESTful API provides endpoints to retrieve the
possible translation for a given sign and the video example
from the corpus LSFB. The API rely on our model to predict
the label of a sign given MediaPipe landmarks. The global
architecture is depicted in Figure 5.

6.2 Requirements Assessment
To assess the conformity of the user requirements, a usabil-
ity testing [Lallemand, 2018] approach was followed. The
main goal was to collect qualitative data to improve the sys-
tem following a feedback loop mechanism. Six realistic us-
age scenarios mixing success and failure cases were proposed
to the four users. It should be noted that tester users were not
involved in the dataset creation, few years earlier. Those sce-
narios forced them to go through all the application function-
alities, allowing us to observe their reactions and spot their
difficulties. The tests were followed by a survey and a semi-
conducted discussion [Lallemand, 2018] to assess the feeling
of users about the web application. Each test session was
recorded by two cameras and two microphones. An observer
took notes on an observation grid to spot all the hesitations or
issues encountered by the user during the scenarios. A briefed
sign language interpreter assisted the test conductor when the
user was deaf. All the materials used during the tests were
translated into sign language by the interpreter.

The observations and remarks collected during those tests
showed that the users were able to execute all scenarios with-
out major difficulties. The success rate for the scenarios
ranges from 87% to 98%. The gap is explained by the va-
riety of users. Indeed, it has been noticed that children took a
little more time, due to their distraction. In general, the first
scenario also lasted longer, since users were new to the appli-
cation. Finally, users reported that they appreciated the ease
of use, simplicity, guidance, and the contextualized exam-
ples. However, they also asked for a better tolerance to their
own inaccuracy while signing. Those insights were compiled
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Figure 4: Screenshot of the dictionary6 after a successful search. The top of the interface shows the sign performed by the user
along with the possible translation in French. The bottom of the interface gives contextual examples of the selected translation
in sign language (video) and in French (text). Signers can hence improve themselves based on those examples.

LSFB 
Corpus

Web App
Sign Language
Recognition 
REST API

Model

User

Figure 5: The system is made of three artifacts: (i) the web
application that provides an interface for the user and uses
MediaPipe JS to preprocess locally the captured video, (ii)
an API hosting the SLR model and that is linked to (iii) the
corpus database containing lexicon and contextual examples.

to serve as the starting point of the next development itera-
tion [André, 2022], as the dictionary will continue to evolve,
so as to better meet the deaf community’s needs.

Regarding the requirements elicited by the stakeholders in
Section 2, the system is compliant as it has been successfully
deployed on the server of the LSFB Lab while responding in
less than 10 seconds to a query. Users can use the website in
various environments and lighting conditions.

7 Conclusion and Future Work
This work introduces the first dictionary searchable from sign
language to text, publicly available through a web interface7.
It relies on a lightweight sign language recognition model, in-
spired by the recent advances in transformer networks such as
the Vision Transformer architecture introduced by [Dosovit-
skiy et al., 2021]. This work leverages the progress made in

7dico.corpus-lsfb.be

pose estimation to achieve SLR on landmarks extracted from
videos instead of the raw frames. This further reduced the
complexity of the model and it removes several challenges
such as the robustness to changes in the recording environ-
ment. Those challenges are delegated to pose estimation li-
braries such as MediaPipe. Our model is able to classify 700
signs with a top-10 accuracy of 83%, and is light enough to
be run on embedded devices if needed. The model achieves
competitive results while being 10 times lighter than alter-
native solutions. The model is integrated into a web dictio-
nary allowing the user to search for the meaning of a sign in
French. The dictionary is continuously populated by a team
of linguists, the LSFB Lab. A user-centered HCI methodol-
ogy was followed to design the interface with insights from
the stakeholders and future users of the system. An evalu-
ation of the tool was performed with the users to assess its
compliance with the requirements identified.

In future work, metrics-based methods will be explored to
train models that recognize more signs by predicting the dis-
tance between two signs instead of predicting a label directly.
Thus, the model might be able to recognize new signs with-
out being retrained. New architectures will be investigated to
improve the SLR performance and classification robustness.
Online learning methods will be investigated to leverage the
input of the users of our website to retrain the model.

A new design iteration for the interface will also be con-
ducted. A survey will be sent to the users to collect their opin-
ions on the UI after a few months of use. Those insights will
be considered to upgrade the interface if needed. A browser
plugin will also be developed to provide better integration of
the tool for the users. The developed dictionary is meant to
become a long-lasting tool for the deaf community.
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Ethical Statement
Our work has no ethical or societal risk. All subjects involved
in the dataset agreed to have their video publicly published.
Moreover, the developed application does not collect any pri-
vate data and relies on pose estimation only. Above all, the
dictionary improves the autonomy of deaf people and con-
tributes to a more inclusive education system. More gener-
ally, it supports a better inclusion of the deaf community in
society, according to SDGs 4 and 10 from United Nations.
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