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Abstract

Irregularities in public health data streams (like
COVID-19 Cases) hamper data-driven decision-
making for public health stakeholders. A real-time,
computer-generated list of the most important, out-
lying data points from thousands of daily-updated
public health data streams could assist an expert
reviewer in identifying these irregularities. How-
ever, existing outlier detection frameworks perform
poorly on this task because they do not account
for the data volume or for the statistical properties
of public health streams. Accordingly, we devel-
oped FlaSH (Flagging Streams in public Health),
a practical outlier detection framework for public
health data users that uses simple, scalable mod-
els to capture these statistical properties explicitly.
In an experiment where human experts evaluate
FlaSH and existing methods (including deep learn-
ing approaches), FlaSH scales to the data volume of
this task, matches or exceeds these other methods
in mean accuracy, and identifies the outlier points
that users empirically rate as more helpful. Based
on these results, FlaSH has been deployed on data
streams used by public health stakeholders.

1 Motivation and Introduction
During the COVID-19 pandemic, daily-updated real-time
public health data was used directly [CDC, 2022] or as in-
put to methods that informed critical healthcare decisions and
policies [Yu et al., 2021] in support of Sustainable Devel-
opment Goals such as good health and well being. How-
ever, aspects of public health data have hampered this data-
driven decision-making in several ways. These include issues
like data delays, corrections, and recording errors [Dong et
al., 2022; Sáez et al., 2021] that may have masked impor-
tant trends in disease progression [Kreps and Kriner, 2020],
as shown in Fig. 1. Additionally, COVID variants or policy
changes often cause sudden, notable distribution shifts in the
data [Zhu et al., 2021]. Finally, public health data streams
are known to be biased or incomplete [Leslie et al., 2021].
For example, regions with low healthcare resource availabil-
ity may not have accurate COVID case counts.
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Figure 1: Temporal irregularities in actual case counts, shown by the
circled, large spikes in March and July 2022, when cases were trend-
ing down, resulted in similar spikes for predicted counts that were
then sent to the US Centers for Disease Control and Surveillance.

Addressing these issues is a significant challenge for any
organization that curates public health data streams [Kraemer
et al., 2021], including the Delphi Group at Carnegie Mel-
lon University (Delphi). Delphi employs a team of full-time
developers, statisticians, researchers, and product managers
to maintain an accurate and performant public health data
source1. Delphi’s publicly available API [Farrow et al., 2015]
and other data products are regularly used by public health
authorities in the United States (US), along with researchers,
forecasters, journalists, and other users (totaling visits from
over 78k unique IP addresses in January 2022). These stake-
holders recommended that Delphi continuously monitor their
data streams for irregularities so that Delphi’s data users have
more information about data quality issues, the state of the
pandemic, and changes in regional disease behavior, to di-
rectly support data-driven decision-making.

To act on this recommendation, expert human reviewers
in Delphi would need to regularly monitor at least ten thou-
sand data streams for stakeholders (e.g. cases, deaths, and
hospitalizations, at several geographical resolutions, includ-
ing county, state, territory, and national level resolutions). If
done manually, this type of monitoring is prohibitively ex-
pensive [Kraemer et al., 2021]. Even if it were feasible,
trained reviewers frequently miss critical irregularities due to
the sheer reviewing load. While some outliers are so extreme
that they require no human review, many outliers that sig-
nify irregularities are more nuanced and require close human
attention. Computationally assisted quality control, where
a reviewer only inspects the top entries from a computer-

1Delphi’s open source repositories can be found at
https://github.com/cmu-delphi
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generated ranked list of outlier streams that a human should
review, is promising because it could prioritize the reviewer’s
time for irregularity detection while retaining the trust and
expertise a reviewer brings.

Creating this computationally ranked list of outliers in
public health streams is a difficult task. In addition to the
practical constraints of operating over the large data vol-
ume necessitated by this task, outlier detection methods must
be robust to the statistical noise, nonstationarity, day of
week effects, and limited historical data that are prevalent
in public health streams in order to provide helpful recom-
mendations [McDonald et al., 2021; Reinhart et al., 2021;
Wang et al., 2021]. Further, the outlier detection methods
must be simple and intuitive for reviewers to understand and
trust them on this task.

To address these challenges, we present FlaSH (Flagging
Streams in public Health), available open source at
https://github.com/cmu-delphi/covidcast-indicators/tree/
main/ delphi utils python/delphi utils/flash eval. FlaSH is
a new outlier detection framework that produces a ranked
list of recent values from data streams that most warrant
human inspection. FlaSH uses simple, scalable, and intuitive
models to explicitly capture the statistical properties of
public health data. To address challenges in evaluating
unsupervised outlier detection methods in time series data
like FlaSH, we also developed and conducted a classification
and ranking evaluation of FlaSH’s performance using input
from several expert human reviewers. This is especially
important given that many recent works in anomaly detection
use semi-synthetic or simulation evaluations that may not
truly reflect an expert user’s assessment of the method utility.
In this evaluation, FlaSH matches or outperforms previous
outlier detection methods, including recent deep learning
baselines.

2 Practical Irregularity Detection Goals
Our goal is to develop a framework that assists reviewers in
detecting important irregularities in Delphi’s data streams on
behalf of public health data users. The data streams available
to the Delphi Group vary by source (local governments, hos-
pitals, private companies, and surveys), and each source has
its own dynamics and measurement definitions. For example,
the Johns Hopkins Centers for System Science and Engineer-
ing (JHU CSSE) COVID-19 source only curates data from
publicly available reports [Dong et al., 2022]. They also only
report real-time cumulative estimates. Thus, subsequent cor-
rections to the cumulative figures can appear as large spikes
or even negative values in derived daily case counts.

Detecting such irregularities across many sources is
uniquely challenging for typical outlier detection methods,
leading to a range of failure modes observed in our experi-
ments. First, modern deep learning methods for outlier de-
tection struggle with the large number of time series, each
with a short history and rapid distribution shifts [Paleyes et
al., 2022]. To perform well, these highly parameterized mod-
els require long training histories often unavailable in pub-
lic health settings. Moreover, high computational costs mean
these methods scale poorly to real-time operation over thou-

sands of distinct time series. Second, simpler statistical meth-
ods are not attuned to the specific structure of public health
data and struggle to accurately identify irregularities [Wong,
2004]. Third, neither class can leverage features of public
health data streams that could assist with diagnosing irregu-
larities. Because of these limitations, Delphi currently relies
on volunteers and group members to manually report issues
on all data streams as they encounter them, but this process is
unsystematic and expensive.

To start, the proposed outlier detection method should de-
tect specific types of outliers present in public health streams
that are relevant to Delphi’s stakeholders so that the method is
both context and user-dependent [Sejr and Schneider-Kamp,
2021]. To identify these outlier categories, we conducted an
exploratory analysis on data streams2 of COVID Case Counts
and Ratios, COVID Deaths, Hospital Visits, Google Symp-
toms Trends, and Doctors Visits at the national, state, terri-
tory, and county level resolutions from the first available date
of the streams until December 2021. Using these streams,
which each have a different possible range of values based on
the region’s population and the measurement quantity, we de-
fined the following categories of outliers based on their ability
to assist reviewers with identifying irregularities:

Out of Range Values and Global Outliers. These outliers
are typically due to retrospective updates made by a data
source in the value of a cumulative quantity. Out of range ex-
amples include “negative” new cases (if the cumulative total
was revised down) or more cases reported on a day than the
population of the geographic area due to multi-day batched
reports. Similarly, global outliers usually appear as large pos-
itive or negative spikes, but the ‘global’ outlier thresholds
may change over time as rapidly shifting disease dynamics
undermine static thresholds. Still, both of these outliers are
relatively easy to identify and very rarely require human re-
view.

Day of Week Outliers. Many public health streams have
systematic day of week effects [Reinhart et al., 2021]. For ex-
ample, fewer COVID cases are reported on weekends partly
because fewer people test on weekends. Day of week outliers
occur when reported data points are anomalous relative to the
expectation for their day of the week (even if they are within
distribution for the stream as a whole). Unlike out of range
or global outliers, day of week outliers are more difficult for
humans to notice but may still indicate an irregularity in the
stream.

Trendline Outliers. Data that deviate strongly from the re-
cent trend (e.g. case counts were rising last week, but to-
day’s count is low) or from the recent trends of close geo-
graphic regions warrant attention. These phenomena are the
most difficult for humans to detect and can indicate critical
irregularities in the context of recent data.

To address failure modes from existing methods and detect
these outlier categories, the proposed method must be intu-
itive, scale to the data volume, and provide outputs (outlier

2The streams were from National, Texas, New York, LA County
(CA), and Loving County (TX) sourced from JHU CSSE, Depart-
ment of Health and Human Services, Google, and USA Facts.
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scores) that are correct and complement human judgment in
this task. Practically, this requires the method to be a single-
pass, point detection algorithm that integrates explainable AI
and human computing interaction insights. Further, the rank-
ing for the FlaSH list shown to the expert reviewers will be
based on the trendline outlier scores because they can indicate
critical irregularities in the context of recent data. Reviewers
will also benefit from inspecting the global and day of week
outlier scores reported alongside. Finally, each of these de-
sired criteria must be evaluated to justifiably compare differ-
ent outlier detection methods for this task.

3 FlaSH Outlier Detection Method
FlaSH formalizes the outlier detection problem discussed
in the previous section as a model-based hypothesis test
[Blázquez-Garcı́a et al., 2021]. We denote a single data
stream as a time series Xt, t = s...T . Here, s is the start-
ing time for the stream analysis3, and T is the current time.
When it is necessary to discuss multiple geographic regions,
we use Xr to denote the stream for a given quantity in geo-
graphic region r (e.g. the stream of COVID cases in a given
US county).

Suppose that Xs:T−1 ∼ m for some m ∈ M, where
M is a set of models. We test the hypothesis that the most
recent point in the stream is drawn from the same model
(H0 : XT ∼ m). If the observed data has a low probabil-
ity under this hypothesis, it means that XT was likely not
generated from the same model m as the historical data. This
sudden shift from the data-generating distribution indicates a
potential irregularity. We conduct the hypothesis test by first
calculating a test statistic measuring the discrepancy between
observed values and values predicted by m. We then obtain
a p-value by comparing the real-time test statistic value to a
historical distribution of test statistics P . FlaSH instantiates
this entire method via a sequence of 3 steps:

S1: Process Data. We want to fit a model m such that
points with irregularities appear in the most extreme tails of
the m’s predictive distribution. However, training m on out
of range, global, and day of week outliers both distorts the
model and inflates the tails of the distribution of prediction
error so that more subtle deviations no longer stand out. We
process the data to identify and impute these outliers prior to
training. The key challenge in this step is to accommodate
the statistical properties of public health data.

S2: Obtain Predicted Values. After processing, we fit a
parametric model m from a model class M that uses the
history of the stream to predict future values. Choosing an
appropriate M is nontrivial. Heavily parameterized models,
like many deep learning models, are unsuitable because of
the limited data history available to tune the model, the ex-
pensive ground truth labels, and the rapid distribution shifts
in the types of irregularities per stream. Further, stakeholders
prioritize interpretability, so the model class must be intuitive.

3Often, there is a ramp-up period before streams report reliable
measurements, so we do not start at t=0.
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Figure 2: In the FlaSH outlier detection method, data stream in-
puts are processed through FlaSH to generate informational outlier
scores. FlaSH itself has three steps. The raw data (gray) is pro-
cessed [S1] (purple), and model m is used to predict future values
[S2] (blue). Then, the historical performance of model m is cap-
tured with the test statistic distribution (gold), and this distribution
is used to compare predicted and actual values [S3].

S3: Compare Predicted and Observed Values. Finally,
FlaSH compares the observed and predicted values to test if
XT could have been generated from m given the historical
performance of observed and predicted values. The critical
decision in this step is the choice of the test statistic and con-
struction of its distribution under the null hypothesis, which
are complicated by short training histories and the resulting
need to share information across geographic regions.

We now discuss each step, as displayed in Fig. 2.

3.1 Process Data
Trendline outliers cannot be reliably identified if the model
is trained on data that also includes out of range, global, and
day of week outliers. However the thresholds for determin-
ing these outliers change with distribution shifts in the stream.
To address this challenge, first, different COVID regimes, or
waves, are identified via changepoints. Then, within each
regime, existing outliers are detected and imputed.

Identifying Changepoints in Nonstationary Streams
Values that would be outliers when there is no COVID wave
may not be outliers during a COVID wave. This phenomenon
of distinct, underlying waves, or regimes, in public health
streams is why they are known to be statistically nonsta-
tionary [Chimmula et al., 2020]4. To identify these regimes
in historical data, FlaSH uses the Pelt Changepoint Algo-
rithm [Killick et al., 2012; Truong et al., 2020], parametrized
with a Gaussian model and a minimum of four weeks be-
tween change points5. However, individual streams may be

4Operationally, we consider regimes present in streams that are
updated daily with at least 60 historical data points. On streams with
fewer than 60 data points, we provide interquartile range-defined
outliers.

5Four weeks is the maximum horizon for many short-term fore-
casts [Cramer et al., 2022], likely because health dynamics change
drastically after that horizon.
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very noisy, and Pelt sometimes overfits to this noise to re-
turn regimes inconsistent with expert knowledge of disease
dynamics. Therefore, we take advantage of geographical de-
pendencies6 by searching for changepoints that are jointly ap-
plicable across a set of nearby regions. Specifically, we run
the Pelt algorithm on the streams for all counties within a
given state, jointly optimizing Pelt’s objective across these re-
gions to find changepoint days that describe the regimes well
across these streams.

While Pelt can identify changepoints in historical data, it
does not identify if real-time data represents a changepoint.
Instead of retraining FlaSH daily to find new changepoints,
which would be computationally expensive, FlaSH assumes
there is no changepoint until there is sufficient evidence of
nonstationarity to trigger retraining as follows. Under the
null hypothesis, there is no changepoint, and p-values are uni-
formly distributed by definition. If the distribution of the test
statistic for the hypothesis test H0 significantly shifts, then
the Kolmogrov-Smirnov test can identify whether the em-
pirical p-value distribution since the last retraining deviates
significantly from the uniform distribution. The user can se-
lect the test significance level α according to their desired
trade-off between the computational expense of retraining
and increased accuracy. Even if a new changepoint is not
detected, FlaSH is retrained every 3 months, which roughly
corresponds to a change in season, and the expert reviewer
can retrain at any time.

Identifying Outliers Within Regimes
Within each changepoint-defined regime, FlaSH identifies
out of range, day of week, and global outliers, and it imputes
non-outlying values that are later used for modeling. First,
out of range outliers, like negative COVID Cases, are identi-
fied and imputed to be in range. Second, data is separated by
day of week, and points where |zscore| ≥ 3 with respect to
the points for that day of the week in the regime are identified
as day of week outliers. The median value of the day of the
week in that regime is then imputed for downstream analysis.
Day of week sensitivity is important here because of system-
atic patterns across the week, like that the median value for
Sundays is usually lower than the median for Tuesdays.

Third, we process the time series to remove systematic
day of week effects (unlike the previous step, which han-
dled points far outside the typical pattern for their week-
day). FlaSH uses a Poisson regression method w (part of Del-
phi’s public API7) which outputs a weekday-corrected value
w(Xt). This model removes systematic differences in mean
values across days (e.g. by scaling values on Saturday up and
scaling Mondays down) to obtain a time series without day of
week effects. Removing such systematic periodicity enables
downstream predictive models to fit the data-generating pro-
cess using fewer parameters.

Finally, after the day of week correction, FlaSH addresses
the noisiness of the stream by identifying global outliers in
the day of week corrected data as those with |zscore| ≥ 3,

6Data reporting and health policies are generally consistent at the
state level [Simon, 2021].

7https://github.com/cmu-delphi/covidcast-indicators/blob/main/
delphi utils python/delphi utils/weekday.py

calculated from all weekdays in the day of week corrected
data. These points are imputed using the mean value of the
current regime. Having removed out of range, global, and day
of week outliers, FlaSH treats the processed data across all
regimes as the null distribution and can now identify trendline
outliers as specified by the following two steps of FlaSH.

3.2 Obtain Predicted Values
To identify trendline outliers, FlaSH uses a small sample of
the processed historical data to train a predictive model m
for XT from model class M and then uses the remaining
processed historical data to characterize the performance of
the model. Specifically, the training set for FlaSH’s null hy-
pothesis model is the maximum of 10% of the historical data
or 30 points. FlaSH then uses M : Linear Autoregressive
(AR) models (lag=7) , where m is characterized by the lin-
ear weights, β̂, fit during training. This class of models is
preferred in public health applications for its simplicity and
performance with limited historical data [McDonald et al.,
2021]. The remaining processed historical data (not used to
fit the model) is used to generate predictions X̂t.

3.3 Compare Predicted and Observed Values
Models from any model class M fit with the null historical
data will not perform uniformly across all streams. Accord-
ingly, out-of-sample data is essential to quantify the typical
discrepancy between model predictions and observed values
per stream. Outliers can then be identified when the discrep-
ancy between predictions and observations is more than typi-
cal, as determined by a distribution of historical performance.
For example, if a model consistently predicts higher values
than what is observed, then the outlier score should reflect
the fact that X̂T > XT is not surprising.

To quantify the discrepancy between predicted and ob-
served values, let Nr denote the total population of geo-
graphic region r. The day of week corrected observed values
(w(Xr

t ), corrected to be comparable to the predicted values)
and the predicted values (X̂r

t = β̂ ∗w(Xr
t−1:t−7)) are used to

calculate the test statistic kt:

kt = (P (w(Xr
t ) < D))

D ∼ Bin

(
n = Nr, p =

X̂r
t

Nr

)
This test models the counts in a region as a binomial dis-
tribution D. The probability of infection per person is the
number of predicted counts divided by the region’s popula-
tion size. Intuitively, we test the hypothesis that the actual
observed counts are drawn from a distribution parameterized
by our predictions. Extreme values of the test statistic indi-
cate that the observations were much bigger or smaller than
expected given the predictions. Each stream model’s typi-
cal performance discrepancy is specified by a distribution Pr,
composed of test statistics kr30:T−1, that compares observed
values and the predicted values for the out-of-sample histor-
ical data Xr

30:T−1. However, there is often too little history
to approximate the null distribution of an individual stream
effectively, with a minimum of 30 points characterizing each
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distribution if there are only 60 days of historical data. Ac-
cordingly, we define the pooled test statistic distribution P ,
specified by

⋃
r∈R kr30:T−1, where R is all the counties in

a state if r is a county, else R is all states and territories
in a nation, because these streams share geographic context.
Note that pooling is enabled by the design of our test statis-
tic, which is chosen to ensure comparable distributions across
regions (e.g. via normalizing by the population).

3.4 FlaSH Output

The final output of FlaSH is a list of real-time points ranked
by how extreme their test statistic is via the transformation
|2p − 1|, where p is the p-value for the real-time test statis-
tic in the pooled historical test statistic distribution P . This
transformation ensures that the most outlying points (from ei-
ther distribution tail) will top the ranked list.

4 FlaSH Labels, Evaluation, & Feedback

As noted in the literature, accurately evaluating algorithms
for unsupervised time series outlier detection is challenging
[Wu and Keogh, 2021]. In most previous work, human-
generated labels have not been provided by experts (instead
coming from readily available subjects such as students or
Mechanical Turk workers). Non-expert labels are noisy since
identifying outliers often requires domain-specific knowl-
edge. However, outlier detection method performance on
simulated data or data with synthetically injected outliers [Lai
et al., 2021] rarely translates to practical performance on real-
world data in epidemiology generally [Wong, 2004].

One of our key contributions is to address this limitation in
the outlier detection literature via a rigorous, real-world eval-
uation of outlier detection methods for public health data. We
obtained high-quality labeled data from human subject matter
experts- Delphi members who are directly involved in build-
ing statistical or software systems using public health data
and who regularly encounter the impact of data irregularities.
In contrast to the binary labels standard in previous work,
which may not be sufficient as different experts have different
thresholds for outlier determination, asking experts to rank
outliers that warrant human inspection provides a more infor-
mative comparison for FlaSH’s output.

For additional evaluation rigor, we preregistered the FlaSH
version, survey design, and analysis before data collection be-
gan [Joshi et al., 2023]. This ensures that our algorithm was
finalized before any data collection occurred, giving an unbi-
ased (prospective) evaluation of FlaSH’s performance. Real-
time COVID Case data streams (3341 streams at county, state,
territory, and national levels available from May 2020-May
2022) were initially sourced daily from JHU CSSE. Of these,
five streams, including the national stream, were randomly
chosen from the following sets to ensure stream variety for
the evaluation: the top 10% of populous states (Pennsylva-
nia), bottom 90% of populous states (Arkansas), top 10%
populous FIPS regions (36081 Queens County, NY), and bot-
tom 90% populous FIPS regions (72043 Coamo Municipality,
PR), as per the US Census.
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Figure 3: Example of a Survey Task. Respondents click on the
time series plot to mark points as unevaluated, uninteresting, or war-
rants investigation. They also rank points that warrant investigation,
and these rankings appear on the plot in yellow. Respondents could
zoom, pan, and see a 7 day average per graph.

4.1 Survey and Analysis
To gather ground truth in order to understand FlaSH’s perfor-
mance on empirical data, we designed a web survey that has
10 interactive questions (Fig. 3) 8. First, respondents classify
candidate data points from a public health stream as ‘warrants
human investigation’ or ‘uninteresting’. Then, they are asked
to rank (with possible ties) the subset of these candidates they
think would warrant additional human inspection.

To form this candidate set of evaluation points, we needed
to select stream values that are at least somewhat anomalous.
That way, survey respondents could meaningfully distinguish
between points that are potentially anomalous. In practice,
we expect < 1% of all points in a stream to represent irreg-
ularities. Accordingly, this candidate set is formed by taking
the union of the top outlying points output by both FlaSH and
8 previously proposed outlier detection methods given all his-
torical data (see Sec. 5). By filtering to data points at the top
of at least one algorithm, the candidate set is limited to points
that are considered anomalous by some method. This empir-
ically meant the candidate set comprised of points that were
at least interesting enough to classify and rank.

In Questions 1-5 (Q1-5), the candidate set was formed
from the top 5% of points from at least one algorithm for each
of the 5 possible data streams. In Q6-10, respondents were
asked to reconsider the top 2% of points from at least one
algorithm, a subset of these candidates from Q1-5, in more
detail to test for respondent internal consistency. They were
also asked how likely they would have flagged each point for
human review had it not been identified by an algorithm (‘un-
likely’, ‘somewhat unlikely’, ‘neither’, ‘somewhat likely’, or
‘likely’). This allows us to measure the value added by the
algorithm over what would have been obvious to a human.

We evaluate the algorithm’s performances in a realistic
setting of only 60 days of history for training (12/21/2021-
1/31/2022). Our test set was the following 100 days (2/1-
5/12/2022). To compare the survey results to the outlier de-
tection method outputs, we use a range of metrics to capture
the complexity of real-world outlier detection. Both tradi-
tional binary classification and ranking metrics provide in-
formation on how well the system finds points that the ma-
jority of respondents thinks warrants human inspection. We

8https://github.com/Ananya-Joshi/IJCAI23 Supplemental
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also seek to understand which points from outlier detection
algorithms provided the most benefit to users based on self-
reports. The points which were rated as both highly anoma-
lous and unlikely to have been flagged without an algorithm
are the most valuable potential contributions of computation-
ally assisted quality control.

Survey Quality. The total number of survey participants
(n=13) is a significant increase over previous work (e.g. n=2
in [Wong, 2004]). We tested for internal consistency in re-
spondents that answered both sets of survey questions (Q1-
5 and Q6-10) by measuring response centrality between the
Copeland aggregate per paired question (e.g. Q1 & Q6, Q2
& Q7) and the raw ranks per person. High centrality values
(0.83 ± 0.13) suggest that respondents generally were consis-
tent in their pairwise preferences between the two sets. Still,
the average number of points that warranted inspection per
person varied from < 2 to > 6, supporting that the threshold
for identifying points of interest varies greatly by individual
and reinforcing the importance of sampling a wider range of
experts than historical standards suggest.

5 Results and Analysis
We compare the trendline outlier scores from FlaSH to outlier
scores from the following off-the-shelf outlier detection algo-
rithm baselines implemented in TODS9 that span recent deep
learning methods, classical machine learning, and statistical
approaches: DeepLog [Du et al., 2017], Telemanom (Telem.)
[Hundman et al., 2018], Variational Autoencoder (VAE) [An
and Cho, 2015], Local Outlier Factor (LOF) [Breunig et al.,
2000], Lightweight Online Detector of Anomalies (LODA)
[Pevnỳ, 2016], Isolation Forest (IF) [Liu et al., 2008], k-
Nearest Neighbors (KNN) [Angiulli and Pizzuti, 2002], and
Linear AR Model [Agarwal et al., 2022]. These methods
have in-built data processing [S1] and prediction comparison
[S3] steps, just like FlaSH. We use default hyperparameters
for the TODS implementations because there is not enough
recent data to select hyperparameters. In fact, many of these
models are too costly to even train once on the full set of
streams, much less to do hyperparameter selection with many
repeated runs. One strength of FlaSH is that it has no hyper-
parameters because it is designed for this task.

Additionally, for an ablation study, we compare results
from the TODS AR model implementation, which has the
same model class M as FlaSH, to a mixed implementation
(Mixed), where the processing step [S1] is the same as FlaSH,
and the prediction comparison step [S3] is from TODS.

FlaSH is computationally scalable. We find that FlaSH
easily scales to a large number of data streams, while many
deep learning methods become infeasible. Performance
statistics (Table 5) were reported from experiments using a
2.6 GHz 6-Core Intel Core i7 machine. Each algorithm was
trained on the full 3341 JHU CSSE COVID-19 case streams
with 60 days of history. This setup mimics the setting that
we expect algorithms to scale to in deployment. A few algo-
rithms (mainly deep learning algorithms) did not finish train-

9Each algorithm had a setting 7 day windows where applicable
to account for day of week effects.

ing within one day (DNF). Training time can only increase
for these deep learning implementations as historical data
increases. While GPU acceleration may benefit deep learn-
ing models, such specialty hardware may not be available in
many public health settings.

FlaSH performs well on outlier detection metrics. Al-
though many of the existing outlier detection methods have
infeasibly long training times for daily deployment, we com-
pare the performance of all algorithms using the labeled data
from the survey. Table 5 shows the 95% CI of various tradi-
tional binary and ranking outlier detection metrics across all
participants for Q1-5 per algorithm.

In the binary analysis, points identified by the majority of
respondents as to-investigate were marked as outliers (ground
truth)10. To calculate binary labels from each algorithm to
compare to this ground truth, we used the following process.
Let k denote the number of human-identified outliers for a
stream. For each algorithm, we took the top k points, ranked
according to the algorithm’s outlier scores, as the predicted
outliers for binary classification tasks and compared these re-
sults to the ground truth labels. We report the 95% CI metrics
per person and per question for accuracy, balanced accuracy
score, F1 score, and the ROC-AUC score. On average, FlaSH
meets or exceeds the performance of all baselines in the bi-
nary analysis. FlaSH performs slightly better than DeepLog,
an unusable, but performant, deep learning method. Some
model classes like Telemanom and LODA performed poorly
on the ROC-AUC score because while they identified global
outliers very clearly, they failed to capture other kinds of out-
liers (e.g. trendline or day of week outliers). For the ranking
analysis, each algorithm’s ranking of the subset points avail-
able in Q1-5 was compared to each respondent’s rankings
using Hamming distance (lower is better), Ranked-Biased
Overlap (RBO) [Webber et al., 2010], and swap correlation
(corr). Once again, FlaSH performs comparably to DeepLog
and is competitive with the other algorithms.

Finally, FlaSH shows strong improvements over the TODS
AR implementation. While the TODS AR method is uncom-
petitive with other approaches, by using data processed using
FlaSH’s first step (Mixed), the AR model can better build a
null model of the data. Still, because the TODS outlier scor-
ing uses the absolute difference between the predicted and
observed values to rank points, the mixed approach performs
poorly on streams with small case counts, as reflected in the
results. Compared to the TODS implementation with the
same model class M, FlaSH’s processing [S1] and compari-
son [S3] steps together provide clear performance benefits.

FlaSH can complement human judgment. We find that
FlaSH identifies useful points that were unlikely to have been
inspected without computational assistance (via an algorithm
identifying the point), as shown in the Assistive Rank section
of Table 5. Specifically, we examine the set of points that (a)
the majority of humans rated as warranting investigation after
a full examination, and (b) at least 40% of such respondents
said that they were “unlikely” or “somewhat unlikely” to have

10The base rates were: US (2/14), Pennsylvania (9/14), Arkansas
(3/16), FIPS 36081 (6/24) and FIPS 72043 (5/21).
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Model Class AR DeepLog Telem. VAE LOF LODA IF KNN
Implementation TODS Mixed† FlaSH TODS

Training (s) 10.1±0.3 169±0.8 DNF DNF DNF 8±0.2 71±0.1 DNF 7±0.08 ✓

B
in

ar
y Accuracy 0.78±0.020.71±0.04 0.8±0.03 ✓ 0.8±0.04✓ 0.6±0.04 0.76±0.04 0.69±0.01 0.68±0.04 0.79±0.04 0.74±0.03

Bal.Acc. 0.68±0.020.59±0.06 0.73±0.05✓ 0.72±0.05 0.42±0.03 0.67±0.07 0.55±0.03 0.54±0.05 0.7±0.07 0.62±0.05

F1 0.54±0.050.43±0.09 0.64±0.08✓ 0.63±0.07 0.19±0.07 0.53±0.12 0.33±0.08 0.34±0.09 0.56±0.11 0.42±0.09

ROCAUC 0.79±0.020.73±0.06 0.75±0.06 0.82±0.05✓0.42±0.07 0.68±0.06 0.62±0.04 0.44±0.07 0.66±0.08 0.65±0.07

R
an

ki
ng Distance 0.66±0.391±0 0.62±0.39✓ 0.63±0.36 0.83±0.24 0.66±0.37 0.66±0.39 0.71±0.39 0.67±0.39 0.66±0.39

RBO 0.84±0.1 0.89±0.08 0.84±0.1 0.84±0.1 0.84±0.1 0.89±0.07 0.88±0.08 0.93±0.06✓0.91±0.11 0.88±0.08

Corr. 0.2±0.63 0.42±0.45 0.37±0.57 0.43±0.54✓−0.13±0.710.18±0.64 0.21±0.67 0.24±0.69 0.17±0.68 0.22±0.66

Assistive Rank* 8.00±6 3.66±1 1.33±0.7 ✓ 2.33±0.7 41.33±38 32.00±57 24.00±40 70.67±51 47.33±39 5.33±5

* Mean rank of points somewhat unlikely or unlikely to be caught by human
† Mixed model with FlaSH data processing [S1] and TODS comparison of predicted and observed values [S3].

Table 5: Summary of Algorithm Comparison with 60 Days Historical Data. ✓marks the best algorithm in each row.

identified the point without algorithmic assistance. We re-
port the mean rank assigned to such points, where a smaller
rank indicates that the algorithm would prioritize those points
more for human inspection. We find that FlaSH consistently
ranks these points near the top of its list (more so than other
methods), indicating that FlaSH can usefully direct human at-
tention to points that would have been missed otherwise. This
is a result of FlaSH’s emphasis on discovering trendline out-
liers, which our prototyping showed are difficult for humans
to recognize in public health data streams.

Overall, FlaSH’s strength lies in leveraging specific fea-
tures of public health data, a simple model class to meet de-
ployment criteria, and an intuitive test statistic. The combina-
tion of these ideas is why FlaSH can scale to the data volumes
required, perform well on traditional outlier detection met-
rics, especially compared to the best-performing deep learn-
ing models, and crucially, prioritize points for human review
that would not have been discovered otherwise.

6 Deployment and Lessons Learned
Based on FlaSH’s empirical performance and design, it has
been deployed as part of Delphi’s daily workflow since Febru-
ary 2023. It runs on selected streams, and an expert reviewer
inspects the ranked, outlying points. To support this interac-
tion, we added a dashboard where expert reviewers can visu-
alize each of FlaSH’s calculations before flagging them. As
new types of irregularities arise, an analyst in the loop can
modify FlaSH to detect those respective outliers.

Lessons Learned. For outlier detection methods that pro-
duce actionable outputs, intuitive methods with informative
outputs that explicitly navigate contextual nuances (like how
FlaSH directly leverages the statistical properties of pub-
lic health streams) innately enhance trust in method outputs
that may also translate to performance gains. Additionally,
method evaluations should consider expert-generated ground
truth tasks that cover classification, because classification can
be more straightforward for humans, and ranking, because
thresholds for classification may vary.

7 Related Works
There are numerous outlier and anomaly detection methods
[Blázquez-Garcı́a et al., 2021], but recent advancements in
the field focus on deep learning applications [Pang et al.,
2021]. In our experiments, we find deep learning meth-
ods perform poorly on this task for various reasons. Ac-
cordingly, only a handful of real-time outlier streaming al-
gorithms have been adapted for public health streaming data.
Specifically, point outlier detection approaches for COVID-
19 streams like [Jombart et al., 2021; Karadayi et al., 2020;
Wang et al., 2021; Agarwal et al., 2022] consider the non-
stationarity of the data streams but use simulations for eval-
uation or only consider a limited set of outlier categories.
Hence, they are not fully applicable to our setting. Some
source-specific COVID outlier detection methods [Dong et
al., 2022] that operate on data streams before Delphi receives
them do not have publicly-available methods, but the contin-
ued presence of irregularities in those streams that impacts
Delphi stakeholders underscores the importance of FlaSH.

8 Conclusion
This paper presents FlaSH, a practical framework for com-
putationally assisted quality control in public health data
streams. FlaSH creates a list of the most important outly-
ing recent data points for domain experts to review by us-
ing simple models to explicitly account for the nuances of
public health streaming data. In our experimental evalua-
tion, which addressed some open design and evaluation chal-
lenges in unsupervised time series outlier detection, FlaSH
scaled to the task requirements, outperformed other meth-
ods (including deep learning approaches) in traditional out-
lier detection metrics, and successfully prioritized points that
would not have been discovered without algorithmic assis-
tance. Our results demonstrate that effective, practical outlier
detection systems require careful, user-informed design and
sustained effort. These efforts will have considerable benefits
for Delphi’s stakeholders and, ultimately, for public health
data users.
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