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Abstract

Traffic Signal Control (TSC) aims to reduce the
average travel time of vehicles in a road network,
which in turn enhances fuel utilization efficiency,
air quality, and road safety, benefiting society as
a whole. Due to the complexity of long-horizon
control and coordination, most prior TSC meth-
ods leverage deep reinforcement learning (RL) to
search for a control policy and have witnessed great
success. However, TSC still faces two significant
challenges. 1) The travel time of a vehicle is de-
layed feedback on the effectiveness of TSC policy
at each traffic intersection since it is obtained af-
ter the vehicle has left the road network. Although
several heuristic reward functions have been pro-
posed as substitutes for travel time, they are usu-
ally biased and not leading the policy to improve
in the correct direction. 2) The traffic condition
of each intersection is influenced by the non-local
intersections since vehicles traverse multiple in-
tersections over time. Therefore, the TSC agent
is required to leverage both the local observation
and the non-local traffic conditions to predict the
long-horizontal traffic conditions of each intersec-
tion comprehensively. To address these challenges,
we propose DenseLight, a novel RL-based TSC
method that employs an unbiased reward function
to provide dense feedback on policy effectiveness
and a non-local enhanced TSC agent to better pre-
dict future traffic conditions for more precise traffic
control. Extensive experiments and ablation stud-
ies demonstrate that DenseLight can consistently
outperform advanced baselines on various road net-
works with diverse traffic flows. The code is avail-
able at https://github.com/junfanlin/DenseLight.

1 Introduction

Reducing traffic congestion is an essential task for efficient
modern urban systems. As the number of vehicles in the cities
increases year by year, backward traffic coordination not only
does harm to the driving experience but also aggravates air
contamination with more harmful fuel emissions [Zhang and
Batterman, 2013]. Alleviating traffic congestion by efficient
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traffic signal control (TSC) [Mirchandani and Head, 2001] is
one of the most practical and economical approaches [Tay-
lor, 2002]. Specifically, TSC aims at coordinating the traffic
lights of a road network to regulate the traffic flows to mini-
mize the average travel time of vehicles. However, the traf-
fic data collected from a road network is usually massive yet
incomprehensible [Liu et al., 2020]. Therefore, the widely-
adopted TSC strategies either fix signal routine [Roess et al.,
2004] or adapt the traffic signal plans in real-time according
to traffic flow patterns [Cools et al., 2013].

To automatically mine useful information from the mas-
sive traffic data, more and more studies leverage the pow-
erful representation capability of deep neural networks [Le-
Cun et al., 2015] to learn TSC agents [Van der Pol and
Olichoek, 2016; Zhang et al., 2021; Zheng et al., 2019;
Oroojlooy et al., 2020; Wei et al., 2018; Wei et al., 2019a;
D’ Almeida et al., 2021] through the advanced reinforcement
learning (RL) methods [Mnih et al., 2015; Schulman et al.,
2017; Liang er al., 2021]. A proper reward function is re-
quired for applying RL to the TSC problem and improv-
ing the policy. Since the travel time is only feasible after
a vehicle leaves the road network and fails to provide in-
stant/dense feedback to the TSC policy in time during its jour-
ney, many previous works [Varaiya, 2013; Wei et al., 2019a;
Wei et al., 2019b; Xu et al., 2021] draw the traditional char-
acteristics of traffic intersections for the reward design, such
as traffic pressure and queue length at the intersection. How-
ever, most of these heuristic rewards may be biased from the
ultimate goal of TSC, i.e., the average travel time minimiza-
tion. The introduced biases could lead the RL methods to
adjust the TSC policy in an incorrect direction.

Apart from the reward design, it is also critical to endow
the RL agents with the capability of precisely predicting the
future dynamics of the environment to make well-founded
decisions [Van Hasselt er al., 2016; Fujimoto et al., 2018;
Yang et al., 2016; Lou et al., 2020]. However, it is non-trivial
for an RL agent to capture the future traffic dynamics of the
intersections in the context of TSC [Chen et al., 2022]. The
future arriving vehicles of one intersection may be running in
a distant intersection at present. To this end, the local ob-
servations of either the intersection itself (i.e., a snapshot of
vehicles at the intersection) [Varaiya, 2013; Wei et al., 2019a;
D’ Almeida et al., 2021] or neighboring intersections [Wei et
al., 2019b; Xu et al., 2021] might be insufficient to predict
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the long-horizontal traffic dynamics of the intersection. Ad-
ditionally, the location and traffic flow trend of an intersec-
tion also play a role in predicting the traffic dynamics of the
intersection. For example, downtown intersections tend to be
more crowded than suburban intersections. For example, a
large number of vehicles entering an empty intersection may
indicate the beginning of the rush hour. Therefore, the non-
local observations and the location of the intersections, and
historical traffic conditions are all important for a TSC agent
to estimate future traffic situations more accurately.

To address the issues discussed above, we propose a novel
RL-based TSC method named DenseLight, which improves
traffic light coordination by exploiting dense information
from both an unbiased reward and non-local intersection in-
formation fusion. Specifically, to provide dense and unbiased
feedback for the policy improvement, we propose an equiva-
lent substitute for travel time, i.e., the gap between the ideal
traveling distance (i.e., the ideal distance a vehicle could have
traveled at the full speed during its journey) and the actual
traveling distance during the whole journey, namely Ideal-
Factual Distance Gap (IFDG). Since the length of the factual
journey of a vehicle is fixed according to its traveling lanes of
the road network, minimizing IFDG is equivalent to minimiz-
ing travel time. Most importantly, IFDG can be calculated at
each intersection and at each timestep. Therefore, IFDG can
also provide instant feedback on the effectiveness of the con-
trol policy at each intersection.

Besides an unbiased and dense reward, DenseLight also
features a Non-local enhanced Traffic Signal Control (NL-
TSC) agent to benefit TSC from the spatial-temporal aug-
mented observation and the non-local fusion network archi-
tecture. Specifically, the NL-TSC agent supplements the orig-
inal observation of an intersection with its location informa-
tion and the previous observation so that each intersection can
customize its own signal plans w.r.t. historical and spatial in-
formation. As for facilitating the TSC agents with a better
awareness of the future traffic dynamics affected by other in-
tersections, a non-local branch is proposed to enhance the lo-
cal features of each intersection with the features of the non-
local intersections. By learning to communicate the non-local
information across non-local intersections, the NL-TSC agent
can better predict the long horizontal traffic condition of each
intersection and can thus make better coordination at present.

Overall, our contributions are three-fold: 1) we propose a
novel RL-based TSC method, i.e., DenseLight, which is op-
timized by an unbiased and dense reward termed IFDG; 2)
to better model the future accumulated IFDG of each inter-
section, we develop the NL-TSC agent, effectively gathering
spatial-temporal features of each intersection and propagating
the non-local intersection information to improve the multi-
agent RL policy; 3) comprehensive experiments conducted on
different real-world road networks and various traffic flows
show that DenseLight can consistently outperform traditional
and advanced RL-based baselines.

2 Related Works

Conventional traffic signal control methods. Traditional
traffic signal control methods [Little e al., 1981; Roess et
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al., 2004; Koonce and Rodegerdts, 2008] typically set traf-
fic signal plans with fixed cycle lengths, phase sequences,
and phase splits. They heavily relied on expert knowl-
edge and hand-crafted rules. Adaptive traffic signal con-
trol methods formulated the task as an optimization prob-
lem and made decisions according to the pre-defined signal
plans and real-time data [Hunt et al., 1981; Luk et al., 1982;
Mirchandani and Head, 2001; Cools et al., 2013; Hong et al.,
2022]. Recently, researchers have made progress by com-
paring the requests from each phase through different traffic
representations [Varaiya, 2013; Zhang et al., 2021].

RL-based traffic signal control methods. For individual
intersection signal control, some studies investigated RL
environmental settings [Van der Pol and Oliehoek, 2016;
Wei et al., 2018; Wei et al., 2019a; Zhang er al., 2021],
agent network design [Zheng et al., 2019], and policy transfer
learning [Zang et al., 2020; Oroojlooy et al., 2020] to opti-
mize the average travel time of all vehicles. Since the travel
time can not be obtained until a vehicle leaves the road net-
work, these methods presumed some objectives to be equiv-
alent to maximizing the traffic throughput, thus minimizing
travel time. For example, [Van der Pol and Oliehoek, 2016]
utilized a combination of vehicle delay and waiting time as
the reward, and PressLight [Wei er al., 2019a] introduced the
pressure of intersection to be a new objective. However, these
optimization objectives are not always aligned with the min-
imization of the average travel time. To resolve this conflict,
[D’ Almeida et al., 2021] defined an instant time loss for vehi-
cles to guide the next action selection. This reward is the aver-
age loss of time at the moment when selecting traffic signals.
Therefore, time loss is not able to reflect the later change in
traffic congestion caused by the newly selected signals. Dif-
ferently, our IFDG integrates speed over time after selecting
a signal, and thus IFDG can reflect the effect of the signal.

Traffic signal coordination. To coordinate multiple inter-
sections, a centralized controller could select actions for
all intersections [Prashanth and Bhatnagar, 2010; Tan et
al., 2019; Van der Pol and Oliehoek, 2016] but may suf-
fer from the curse of dimension in combinatorially large ac-
tion space. Therefore, some studies modeled single agents
in a decentralized way and scaled up to multi-intersection
settings by parameter sharing [Chen er al., 2020]. How-
ever, ignoring the influence of other intersections may affect
the objective optimization above the whole network. Some
studies used centralized training and decentralized execu-
tion [Rashid e al., 2018; Son et al., 2019; Wang et al., 2020;
Tan et al., 2019]; some gathered neighboring information by
concatenating neighborhood observations [Chu et al., 2019;
Liu et al., 2022] or communicating through graph neural
network [Wei et al., 2019b; Guo et al., 2021; Zeng, 2021;
Huang et al., 2021]. However, these methods either treated
other intersections equally or only considered the neighbor-
hood, ignoring useful information from distant intersections.

3 Preliminaries

3.1 Traffic Signal Control

Conventionally, a TSC task D includes a road network and
a set of vehicle flows. A road network is usually composed
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of N multiple intersections I = [1, ..., N| which can regulate
the vehicles in their entering lanes via selecting different traf-
fic signals. Specifically, an entering lane of an intersection
is a lane where the vehicles enter the intersection from the
north, south, west, or east direction. We use L}" to represent
all the entering lanes of the ¢-th intersection. And the exiting
lanes L™ are the downstream lanes of the i-th intersection
where the vehicles leave the intersection. A traffic move-
ment is the traffic moving from an entering lane l;“j €LiMto
an exiting lane l;’“,; € L9, which is generally categorized as
a left turn, through and right turn.We define a combination of
non-conflicting traffic movements as a phase a. An intersec-
tion with phase a gives the corresponding traffic movements
the priority to pass through under a green light while pro-
hibiting the others. According to the rules in most countries,
right-turn traffic is allowed to pass unrestricted by signals. By
convention [Zhang et al., 20211, we only consider a 4-way in-
tersection, resulting in 12 movements and 4 candidate phases.

The goal of TSC is to learn a control policy 7y parameter-
ized by 0 for all intersections in the road network to minimize
the average travel time of all the vehicles X in a road network,
within a finite period Trsc, i.e. ming \T1| Y owex Tl — Te,
where . and x; are the moments the vehicle z enters and
leaves the road network, respectively. Following the conven-
tional setting in [Zheng et al., 2019; Zhang et al., 2021],
each phase persists for a fixed phase duration Tphase. To
avoid confusion, we use d to denote the d-th decision, so that
ta+1 — td = Tphase- We use D to denote the total number
of decision-making steps in each TSC episode, where Trsc =
D X Typase- We use vy () to stand for the speed of vehicle x
at time ¢, and vy, to represent maximum speed.

3.2 Reinforcement Learning for TSC

In this paper, we consider a standard RL framework where
an agent selects the phase for each intersection after every
Tphase seconds. At g4, a TSC agent observes the intersection
state s4 from an intersection. Then, the agent chooses a phase
aq according to the policy 7. The environment returns the
reward r4 and the next observation s441 ~ T (S84, aq), where
T is the environment transition mapping. The return of a
trajectory after the d-th phase is g = Y, v*r 44k, where
v € [0,1) is the discount factor. RL aims to optimize the
policy to maximize the expected returns of future trajectories
after observing sg.

Elements in observation and reward of TSC. In most
previous TSC methods, observations and rewards originated
from the traffic statistic characteristics of intersections, in-
cluding the following examples. 1) Pressure: the difference
between the number of upstream and downstream waiting ve-
hicles (with a speed less than 0.1m/s) of the intersection in a
time step; 2) Queue length: the average number of the wait-
ing vehicles in the incoming lanes in a time step; 3) Time
loss: sum of the time delay of each vehicle, i.e., 1 —v;, /Umax.
at the moment of phase selection t4; 4) Step-wise travel
time: the local travel time at each intersection within the du-
ration Tppase. As proved in Appendix, step-wise travel time is
an unbiased reward for TSC, however, provides sparse feed-
back for each intersection at each time step.
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Figure 1: The policy/value estimator architecture of NL-TSC agent.
Based on the observations from the road network, an NL-TSC agent
predicts action distribution/value through a local branch and a non-
local branch to realize non-local information fusion. The local
branch adopts a ConvNet that extracts features of each intersec-
tion using its own observation alone; the non-local branch consists
of Dense Communication Layers (DCL) and ConvNets, integrating
non-local features into the representation of each intersection.

4 DenseLight

In our paper, we propose a novel RL-based TSC method,
namely, DenseLight, which contains two key ingredients, i.e.,
Ideal-Factual Distance Gap reward and Non-local enhanced
Traffic Signal Control agent, as shown in Fig. 1. In this sec-
tion, we elaborate on each of them in detail.

4.1 Ideal-Factual Distance Gap

As mentioned in Sect. 3, the goal of TSC is to search for a
traffic signal control policy to minimize the average travel
time of vehicles. Before RL takes place in TSC, tradi-
tional methods, such as MaxPressure [Varaiya, 2013], have
been developed and widely adopted in real-world road net-
works. The elements of traditional TSC methods like pres-
sure and queue length have inspired the later development
of RL-based methods [Wei et al., 2019a; Wei et al., 2019b;
Chen er al., 2020]. By trivially adopting traditional elements
as a negative reward, prior RL-based methods have witnessed
a great improvement upon the traditional methods by a sig-
nificant margin. However, these heuristic rewards are usually
designed empirically and not derived from the target. Opti-
mizing with these rewards might hamper the RL agent from
improving in the correct direction.

To develop an unbiased and dense reward function for
TSC, we propose the Ideal-Factual Distance Gap (IFDG) re-
ward function. As the name suggests, IFDG characterizes the
gap between the ideal distance that the vehicles could have
traveled at full speed and the factual distance affected by the
phase decision of the RL agent. Ideally, if vehicles are run-
ning at full speed, IFDG will be zero. We use the negative
IFDG as the reward 7{gp, 4 for i-th intersection received after

d-th decision, and ' € X° to represent each vehicle at i-th
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intersection. Formally,

z
TIFDG,d = — Z / Umax — Ue(2z")dt
Vatitg<zi<tqqi max{tq,xe}
(H
tat1 ]
— Z / Umax — v¢(2")dt.
max{tq,z?}

Vat:(tgpr <zi)A(zh <tqi1)

According to the Eq. (1), the vehicles that either stay or leave
the intersection will contribute their distance gaps to the re-
ward. And since the distance gap is sensitive to traffic con-
gestion, TfFDG’ 4 can effectively reflect the difference in differ-
ent degrees of traffic congestion caused by different phases.
More importantly, IFDG turns out to be an equivalent substi-
tute for travel time:

Z erFDG,d == Z /Il (Umax — v¢())dt

d=0 i€l zeXx VT
Ty
= Z / Ut(l')dt — Z Umax * ((El - {,Ce)
zeX ¥ Te zeX
= constant — VUpax Z (ﬂfl - xe)a @)
zeX

where the first equation is the sum of the IFDG of all vehicles.
The 3, x [i,, ve(x)dt in Eq. (2) is the sum of the travel-
ing distance of all vehicles, which is a constant since each ve-
hicle has a fixed traveled path in our task. And the right-hand
side of Eq.(2) is linear correlative with the travel time. Thus,
our IFDG provides dense feedback for RL improvement and
guides the improvement in an unbiased direction.

4.2 Non-local Enhanced TSC Agent

Considering the Markov property in RL, the decision-making
and the value estimation of an agent require the observation of
RL policy to be self-contained. Due to the complex relations
between intersections of TSC, it is not sufficient to take the lo-
cal observation of the intersection to estimate the policy’s fu-
ture value. In this paper, we propose an Non-local enhanced
Traffic Signal Control (NL-TSC) agent, which takes advan-
tage of spatial-temporal augmented observation and non-local
traffic information fusion to make a better decision and esti-
mate a more accurate value for each intersection.

Spatial-temporal augmented observation. In a road net-
work, the dynamics of traffic congestion at an intersection
generally vary across different areas and different periods.
For example, the traffic congestion in downtown intersections
is usually heavier than that in other areas. And the traffic
tends to be more crowded at the beginning of the rush hour
and more smooth at the end of it. Therefore, the TSC agent
requires not only the current traffic conditions observed in
each intersection but also the location and the tendency of the
traffic congestion of an intersection to make more compre-
hensive decisions. To this end, we propose a spatial-temporal
augmented observation for i-th intersection by concatenating
the original observation s/ at time ¢ with its position encoding
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,L‘ . . . ,L .
p* and its previous observation s};_;:
5%, = concatenate{s’, s, _;,p'}, 3)

where concatenate{...} puts all vectors in the bracket into
one vector and p’ is a 2-D position encoding implemented as
[Dosovitskiy er al., 2020]. Including the position information
allows NL-TSC agents of each intersection to make decisions
according to their locations. Moreover, augmented with the
previous observation, the changes in traffic conditions can be
captured to better predict future traffic dynamics.

Non-local information fusion. On the TSC task, vehicles
arriving at one intersection may come from either nearby or
distant intersections. In this sense, the relations between in-
tersections are complex and entangled. To provide sufficient
information to estimate long-horizontal values, we propose
a non-local branch that can automatically determine what
information to communicate among non-local intersections.
Specifically, the NL-TSC agent first extracts features for each
intersection ¢ by a stack of multiple 1 x 1 convolutional
layers (abbr. ConvNet) (Eq. (4)). After that, the non-local
branch propagates the features of non-local-intersections by
a Dense Communication Layers (DCL) which is parameter-
ized by W € RII*I1I a5 shown in Fig. 1(c). The features of
non-local intersections are fused and integrated into the orig-
inal representations of each intersection according to Eq. (5).
Then, the final non-local features h’non.ocal fOr each inter-
section are processed by another ConvNet, as formulated in
Eq. (6).

h* = ConvNetemped(5°). €]
R =k + W x [hY, A2, K. 6))
B pontocal = h*’ 4 ConvNetprocess (7). (©6)

However, as the size of the road network increases, W tends
to be over-parameterized and degrades the expression ability
of the extracted non-local features. To address this problem,
we use two consecutive DCLs with two smaller parameters
W, € RIXM and W, € RM*!I to replace the original
DCL with W, so that W = W, x W, as demonstrated in
Fig. 1(b). The above operations (Eq. (5) and (6)) are repeated
twice to better fuse the non-local information. To allow the
model to automatically fuse local and non-local information,
the NL-TSC agent also extracts the local features focusing on
the intersection itself:

h%ocal = COHVNetlocal (él) . (7)

Finally, both local and non-local features are forwarded to the
final ConvNet to predict the categorical action distribution or
the future policy value for each intersection:

hliused = Concatenate{hgon—localv hfocal}7 (8)
0" = ConvNetgnal (Pfysed)- 9)

o' can be either the action logits log mg(al8) or the value
Vs (8) where 6 and ¢ are the networks parameters of the pol-
icy and value estimator, respectively. The structure of either
policy or value estimator of the NL-TSC agent is sketched in
Fig. 1(a). As for RL-optimization, we adopt the well-known
and stable policy gradient algorithm, proximal policy opti-
mization (PPO-Clip) [Schulman et al., 2017].
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Arrival Rate (vehicles/300s)
Mean  Std. Max Min

Road Network Traffic Flow

i Dtz 526.64 8670 676 256
Dy 36361 6410 493 233
Diigs 63911 177.63 1036 281
Dizts 250.71 3820 335 208
Hangzhoul6 5y ¥ 0 572.48 29339 1145 202
NewYorkd8  Duvas 23642 8.13 257 216
NewYork196 Dayies  909.90 7122 1013 522

Table 1: Data statistics of the traffic flow datasets. Dataset with
the symbol * is generated based on the real data with an increasing
volume of vehicles, and the others are open real-world datasets.

5 Experiments

5.1 Experiment Setting

The experimental environment is simulated in CityFlow
[Zhang et al., 2019], which simulates vehicles behaviors ev-
ery second, provides massive observations of the road net-
work for the agents, and executes the TSC decisions from
the agents. Following the existing studies [Wei ef al., 2019a;
Zhang et al., 2021], each episode is a 3600-second simula-
tion (i.e., Trsc = 3600), and the action interval Tppqe is 15
seconds, then the number of decision-making steps, i.e., D, is
3600/15 = 240. By convention, a three-second yellow signal
is set when switching from a green signal to a red signal.

Datasets. Experiments use four real-world road networks.
i) Jinan12: with 4 x 3 (4 rows, 3 columns) intersections
in Jinan, China; ii) Hangzhoul6: with 4 x 4 intersections
in Hangzhou, China; iii) NewYork48: with 16 x 3 intersec-
tions in New York, USA; iv) NewYork196: with 28 x 7 in-
tersections in New York, USA. For each road network, the
corresponding traffic flow data are collected and processed
from multi-sources with detailed statistics recorded in Tab. 1.
To evaluate the performance of the TSC methods on various
traffic conditions, we synthesize a novel dataset Djnjo(r) with
high average traffic volumes and high variances (which in-
dicates the fluctuating traffic flow) by randomly re-sampling
vehicles from the real traffic flow data and adding them back
to the original data with re-assigned enter time.

Baselines. To evaluate the effectiveness of our method,
we compare our DenseLight with the traditional and RL-
based approaches. The results of the baselines are ob-
tained by re-running their corrected open codes. The tra-
ditional methods are described in the following. Fixed-
Time [Koonce and Rodegerdts, 2008]: Fixed-Time con-
trol consists of pre-defined phase plans that are fixed in du-
ration; MaxPressure [Varaiya, 2013]: an adaptive policy
that greedily selects the phase with the maximum pressure;
Efficient-MP [Wu ef al., 2021]: an adaptive policy that se-
lects the phase with the maximum efficient pressure. Efficient
pressure is the difference of average queue length between
the upstream and downstream of each traffic movement;
Advanced-MP [Zhang et al., 2021]: an adaptive method that
defines the number of running vehicles within an effective
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range near the intersection as the request of the current phase,
and defines the pressure as the requests of other phases. The
policy selects the phase with the maximum request. And the
advanced RL-based methods are as follows. FRAP [Zheng
et al., 2019]: FRAP designs a network for traffic signal con-
trol that models the competition relations between different
phases based on the demand prediction for each phase with
queue length as the reward; MPLight [Chen et al., 2020]:
MPLight integrates pressure into the observation and uses
the reward and agent as FRAP [Zheng et al., 2019]; CoL-
ight [Wei et al., 2019b]: CoLight uses a graph attention net-
work to learn the influences from neighboring intersections
and adopts the length of vehicles in entering lanes as the re-
ward; Advanced-MPLight [Zhang et al., 2021]: Based on
MPLight, Advanced-MPLight uses the current phase and the
advanced traffic states (including efficient pressure and the
number of vehicles within an effective range) as an intersec-
tion observation; Advanced-CoLight [Zhang et al., 20211]:
Advanced-CoLight adds the advanced traffic states to the ob-
servation of CoLight; TimeLoss-FRAP [D’Almeida et al.,
2021]: TimeLoss-FRAP uses the FRAP [Zheng et al., 2019]
agent with the instant time loss of vehicles in the entering
lanes as the observation and reward; DenseLight (Ours):
The component of observation s’ at the intersection i and
step d is the same as Advanced-MPLight. DenseLight is op-
timized with IFDG reward and NL-TSC agent.

Training details. As for DenseLight, the training hyper-
parameters follow the defaults in PPO-Clip [Schulman er al.,
2017] implemented in the open source platform [Weng et al.,
2021]. In brief, the number of episodes in By, for k € [0, 500)
is 2. The size of all hidden layers of neural networks is 64.
Both the local branch of NL-TSC and ConvNetyrocess are Con-
vNets with 2 1 x 1 convolutional layers. Other ConvNets in
NL-TSC are single 1 x 1 convolutional layers. The size of the
training batch is 64. The learning rate is 3e-4 at the beginning
and linearly decays to 0. M of W, and W), is set as |I|. For
Dny 196, the batch size is set as 16 to reduce the memory occu-
pancy, M is set as 0.1 x || to prevent over-parameterization,
and the 28 x 7 road network is divided into four 7 x 7 road net-
works to reduce the dimension of the state. These measures
are adopted to ease the optimization without causing conflicts
with our contributions. The dimension of position encoding is
16. Following the conventional settings in [Chen ez al., 2020;
Zhang et al., 2021], all results in the tables of experiments are
the average of the final 10 evaluation episodes.

5.2 Results

We test each method in 60-minute simulations separately and
report the average performance of the last ten episodes. We
have following findings from the comparison results in Tab. 2.

Consistent improvement. As shown in Tab. 2, our Dense-
Light achieves consistent improvement by a clear margin
across different road networks and traffic flows. Particularly,
DenseLight hits a travel time of 800 seconds on Dny19¢ While
the previous state-of-the-art result is about 1000 seconds, sav-
ing about 20% of the time. Another significant improvement
can be observed under Dyzi6ry Where DenseLight achieves
nearly 10% improvement over the previous best result.



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on Al for Good

Method Dinviz Dinizey Diwiaey DPuzie DPuzisey  Dnvas Dnyios
Fixed-Time 415.63 351.84 41324 47544 393.92 107045 1506.85
MaxPressure 259.87 229.74  279.88 268.37 336.78 775.63 1178.71
Efficient-MP 256.00 224.45 27720 264.25 315.38 293.27 1122.32
Advanced-MP 24143  225.71 262.32  263.49  309.29 197.84  1060.36
FRAP 273.50 249.35 298.99 287.07 352.20 180.04 1241.54
MPLight 27827 25139 303.36 297.80 349.29 1841.86 1909.92
CoLight 252.87 235.09 278.59 276.08 329.56 168.12 988.78
Advanced-MPLight 239.10 219.21 250.36 255.06 306.25 1617.80 1339.09
Advanced-CoLight 232.16 217.20 251.21 251.44 303.15 160.25 1004.52
TimeLoss-FRAP 23434 22190 249.62 25847 321.06 896.25 1143.90
DenseLight (Ours) 226.97 215.82 239.58 24843 272.27 156.30 803.42

Table 2: The average travel time results of baselines across different traffic flow datasets in different road networks.
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Figure 2: Relations between the normalized IFDG reward/step-wise
travel time reward and other normalized rewards.

Generalization to various traffic flows. We observe that
under two existing flow data Djni2 and Dyniae) with the Ji-
nanl2 road network, different methods have close perfor-
mances. However, on another similar road network, i.e.,
Hangzhoul6, DenseLight can obtain a more significant im-
provement under Dyzi6r). The potential reason is that the
traffic flow in Dyz6r) shows a more diverse pattern than that
of the Jinan12 road network. As shown in Tab. 1, the num-
bers of arriving vehicles in every 300 seconds in Dyzi6(r) vary
considerably. To further verify this point, we have designed a
fluctuating flow Djnior with its detailed statistics presented
in Tab. 1. From the results of Djnia), we observe that the
improvement of DenseLight becomes more evident.

5.3 Ablations and Analyses
In this part, we sequentially add modules for ablation.

Rewards

To evaluate the effect of reward, we compare our IFDG re-
ward with other rewards. In the experiments, all the elements
except for the reward are strictly controlled to be the same.
The upper part of Tab. 3 shows that our IFDG obtains the best
performance. As the size of the road network and the variance
of flows increase, the advantage of IFDG becomes more sig-
nificant. Especially on Dyzi) and Dnyigs, our IFDG can
obtain the most clear improvements. The potential reason
could be that IFDG not only aligns with the ultimate goal as
deduced in Eq. (1), but also carries dense information about
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Figure 3: Errors of the value prediction with different components.

traffic congestion of different degrees. To intuitively demon-
strate that our IFDG carries more dense information about the
intersection than step-wise travel time, we show their associ-
ations with other dense rewards, respectively in Fig. 2a and
Fig. 2b. We observe that IFDG is positively associated with
the other dense rewards while step-wise travel time is not.

Spatial-Temporal Augmentation

To investigate the individual effect of position encoding and
consecutive observation separately, we conduct experiments
that concatenate the original observation with either position
encoding (P) or consecutive observation (C). As shown in the
middle part of Tab. 3, in comparison to the results of the
“Ideal-Factual Distance Gap” which only uses the original
observation, we find that TSC agents can obtain further im-
provements with either spatial or temporal information. Es-
pecially with position encoding (P), TSC agents can achieve
consistent gains. However, we also discover that in the case of
Dnyi196, the performance degrades with consecutive observa-
tion alone while using both information does not witness the
same degradation. To this end, we suppose the potential rea-
son is that in a large road network, the location of the intersec-
tion plays a critical role in predicting future traffic congestion.
And the consecutive observations without the context of the
location of the intersection, i.e., Consecutive Observation (C)
in Tab. 3, might be a piece of misleading information. We vi-
sualize the curves of future congestion estimation losses with
different components in Fig. 3. In Fig. 3b, the future traffic
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Component Method Diniz Dinize Diniay Duzis DPuzisty Dnyas Dnyios
EfficientPressure [Zhang er al., 20211 230.31 217.30 244.50 251.03 334.55 1556.77 1106.46
Queue Length [Wei et al., 2019b] 229.76 217.30 24725 250.53 29342 16243 1026.24
Reward TimeLoss [D’Almeida et al., 20211  233.88 217.07 257.78 250.49 313.18 161.67 1049.19
Step-wise Travel Time 230.10 217.78 244.47 253.16 28841 16291 1056.36

Ideal-Factual Distance Gap 229.60 216.77 243.50 25038 276.75 161.02 963.21
Consecutive Observation (C) 229.04 217.08 24271 250.30 274.53 160.90 1052.93

S.T. Aug. Position Encoding (P) 228.73 216.70 24229 249.61 27648 159.59 954.99
Spatial-temporal Augmentation (C+P) 228.20 216.31 240.03 249.38 274.16 159.50 953.48

1-hop 228.17 216.12 240.21 249.17 288.81 157.78 926.85

Non-local 2-hop 228.23 21631 24036 249.10 284.52 158.18 931.62
Transformer [Vaswani er al., 20171  227.79 216.12 240.44 249.14 274.04 158.66 917.25

DenseLight 226.97 215.82 239.58 248.43 272.27 156.30 803.42

Table 3: The average travel time results of ablation studies, ranging from rewards to agent components. For briefness, we use S.T. Aug. to

stand for spatial-temporal augmentation.

congestion prediction is worse with only consecutive obser-
vations. Moreover, from Fig. 3, we can observe that the pat-
terns of estimation losses are in accordance with the results
in Tab. 3, which implies that the average travel time has an
association with the accuracy of value estimations. This is
because, by using IFDG as a reward, the value is the expecta-
tion of the discounted accumulated ideal-factual distance gap,
positively associated with the average travel time. This ob-
servation also justifies the benefit of our IFDG reward as an
unbiased measurement of the average travel time.

Non-Local Fusion

As shown in Tab. 3, adding the non-local branch achieves
consistent improvement on all tasks. Especially under
Dnyi9s, non-local information enhancement results in a
breakthrough in that the average travel time approaches 800
seconds. To comprehensively analyze the advantages of our
non-local branch, we conduct analyses from three aspects in-
cluding the accuracy of future traffic conditions, communica-
tion mechanisms and dense communication layers.

The accuracy of future traffic conditions. From Fig. 3,
we observe that, by adding a non-local branch, the value
losses of DenseLight obtain further improvements in compar-
ison with others. Especially on tasks Dyzi6¢r) and Dny19s, the
value losses when using non-local branch drop significantly,
which is consistent with the results in Tab. 3 (the last row of
“S.T. Aug.” part v.s. “DenseLight”). Given the positive asso-
ciation between value using IFDG and future average travel
time, this observation highlights the importance of aggregat-
ing non-local traffic conditions in predicting the long-horizon
future traffic condition of each intersection.

Non-local communication. To highlight the advantage of
learning to propagate and integrate information from non-
local intersections against manually specified communication
among neighboring intersections, we include two sets of ex-
periments that use fixed attention weights, i.e., Wipnop and
W.hop, in the dense communication layer. Wiy, for exam-

ple, assigns non-zero —L  to the Wi Vjel f»hop, where

‘ Il—hnp ‘ 1-hop?
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Ié_hop includes intersections that can be reached at most n
steps from the intersection 7. As shown in Tab. 3 (“1-hop”,
“2-hop” and “DenseLight”), with the learnable W, Dense-

Light can outperform both Wi_p,, and Wo.p0p consistently.

The effectiveness of dense communication layer. To
investigate the effectiveness, we modify our DenseLight
by replacing the non-local branch with a transformer en-
coder [Vaswani et al., 2017, Wang et al., 2022]. The trans-
former is a well-known architecture to capture the global
relationships among language tokens/image patches. From
the results in Tab. 3, DenseLight+Transformer can outper-
form DenseLight without a non-local branch consistently
and has better results against both 1-hop and 2-hop in most
cases. This observation again justifies the benefit of ag-
gregating non-local information in solving TSC problems.
However, efficient as the transformer is, it is usually over-
parameterized (the total size of parameters is about 2.8 MB)
and computation-heavy, making RL difficult to improve. Dif-
ferent from the transformer, our non-local branch only uses a
linear weighted sum to aggregate non-local information, re-
sulting in a more slim model (the total size of parameters is
about 0.2 MB) and an easier RL optimization process.

6 Conclusion

In this paper, we propose a novel method DenseLight for a
multi-intersection traffic signal control problem (TSC) based
on deep reinforcement learning (RL). Specifically, Dense-
Light optimizes the average travel time of vehicles in the
road network under the guidance of an unbiased and dense re-
ward named Ideal-Factual Distance Gap (IFDG) reward and
further benefits the future accumulated IFDG modeling by
a Non-local enhanced TSC (NL-TSC) agent through spatial-
temporal augmented observation and non-local information
fusion. We conduct comprehensive experiments on several
real-world road networks and various traffic flows, and the
results demonstrate consistent performance improvement. In
the future, we will extend our method to learn policies with
generalization ability over different road networks.
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