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Abstract

We conduct a quantitative analysis of the develop-
ment of the industry chain from the environmental,
social, and governance (ESG) perspective, which is
an overall measure of sustainability. Factors that
may impact the performance of the industrial chain
have been studied in the literature, such as govern-
ment regulation, monetary policy, etc. Our inter-
est lies in how the sustainability changes (i.e., ESG
shocks) affect the performance of the industrial
chain. To achieve this goal, we model the indus-
trial chain with a graph neural network (GNN) and
conduct node regression on two financial perfor-
mance metrics, namely, the aggregated profitabil-
ity ratio and operating margin. To quantify the ef-
fects of ESG, we propose to compute the interac-
tion between ESG shocks and industrial chain fea-
tures with a cross-attention module, and then fil-
ter the original node features in the graph regres-
sion. Experiments on two real datasets demonstrate
that (i) there are significant effects of ESG shocks
on the industrial chain, and (ii) model parameters
including regression coefficients and the attention
map can explain how ESG shocks affect the perfor-
mance of the industrial chain.

1 Introduction
Recently, the digital development of the industrial chain at-
tracts more and more attentions from researchers and policy-
makers [An et al., 2014; Hao et al., 2016; Geng et al., 2014;
Li et al., 2022b]. One of the critical issues is how the effi-
ciency of the industrial chain is affected by external factors,
such as the macroeconomic policy, government regulation or
monetary policy, international political factors, as well as in-
ternal factors, such as microeconomic driver factors, and so
on.

In contrast to these traditional factors, sustainability and
ethical issues are particularly worthy of investigation [Ser-
afeim and Yoon, 2021], which are potential new drivers of
development of the industrial chain. Unfortunately, there is
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limited research on how sustainability and ethical considera-
tion affect the aggregate performance of the industrial chain
in the literature. Our work focuses on studying how the en-
vironmental, social, and governance (ESG), a performance
evaluation of the sustainability and ethical impacts, affects
the development of the industrial chain.

The ESG issues in business have been a fast-growing
phenomenon. The number of companies reporting their
ESG data publicly has been increasing dramatically since
the early 1990s all over the world [Serafeim et al., 2022].
Among all the ESG related data, the ESG rating released
by a trusted third-party institution is one of the most im-
portant metrics for the ESG evaluation. The ESG rating has
been demonstrated to affect the cash-flow, risk, and valuation
of a firm [Giese et al., 2019b; Zeidan and Spitzeck, 2015;
Derrien et al., 2021a].

We are interested in how ESG affects the aggregate per-
formance of the industrial chain. The rationale is that these
ESG-linked variations in cash-flow, risk, and valuation will
cause a series of reactions on the production cost to the cor-
responding industry nodes. Suppose that industry i is hit by a
negative ESG shock on cash-flow, and it may reduce its pro-
duction and hence increase the price of good i. Such a price
increase adversely impacts all downstream industries linked
to good i [Carvalho and Tahbaz-Salehi, 2019]. Because they
rely on good i as an intermediate input for their production, it
causes a direct shock on the downstream industries’ customer
companies. Consequently, the shock will be propagated over
the whole industrial chain.

Traditionally, researchers investigate the efficiency of the
industrial chain with Leontief’s input–output production the-
ory [Leontief, 1951; Carvalho and Tahbaz-Salehi, 2019].
However, the input–output production method fails to con-
sider external shocks. Our goal is to study the ESG shocks
on the industrial chain from the perspective of deep graph
representation learning. In the past few years, graph neural
networks (GNNs) have played a central role in modeling net-
work data and achieved state-of-the-art performance in a wide
range of applications, such as social network analysis [Wang
et al., 2019; Tan et al., 2022], recommendation systems [Yang
et al., 2022], text [Yao et al., 2019], molecule recognition
[Duvenaud et al., 2015], quantum chemistry [Gilmer et al.,
2017], and so on. The propagation of ESG shocks over the in-
dustrial network can be viewed as a neural message-passing
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problem under the framework of GNNs. To the best of our
knowledge, this is the first work of studying ESG shocks on
the industrial chain using GNNs.

We first collect financial data from the firms that belong
to an industrial node as its node features. Additionally, the
supplier–customer linkages among industrial nodes are avail-
able, which can be quantified as an adjacency matrix. The
adjacency matrix and node features can be taken as an initial
setting of our model. We further incorporate ESG shocks into
our model with a cross-attention mechanism. To achieve that
goal, we first define an industrial ESG based on its subordi-
nate firms’ ESG scores using the bag-of-words model. We
then calculate a query of cross-attention with a regression
model under which the explanatory variables are industrial
ESG scores and the changes of those scores. Finally, we in-
tegrate the ESG shocks into a graph convolutional network
(GCN) by filtering the original industrial node features with
the cross-attention map from ESG. We conduct extensive ex-
periments on China’s industrial data provided by ChinaScope
iNews1 from 2018 to 2020 and the ESG data released by
Sino-Securities Index Information Service.

The contributions of this work can be summarized as fol-
lows:

• First, we define an industrial ESG based on the affiliated
firms’ ESG scores using the bag-of-words model;

• Second, we propose to integrate the cross-attention
mechanism into GNNs to interpret the ESG shocks prop-
agation over the industrial chain;

• Finally, we substantiate the proposed model with anal-
ysis of the real-world industrial chain and ESG rating
data.

2 Related Works

2.1 Industrial Chain
First of all, our paper is related to the studies on modeling the
industrial chain with classical econometric methods, such as
the spatial regression model [Gillan et al., 2021] and input–
output model [Leontief, 1951; Barrot and Sauvagnat, 2016].
These methods model the production process of humans with
the tool of linear algebra. Under the framework of matrix the-
ory, the production process can be interpreted conveniently.
However, the input–output model only accepts the adjacent
relationship among industrial nodes as the input, making it
difficult to be extended to predicting additional node features.

Another stream of studies on modeling the industrial chain
pertains to complex networks. For example, [2016] use com-
plex network techniques to study the evolution of the fossil
energy industrial chain; [2014] and [2014] focus on analyz-
ing the trade-based network of international crude oil and nat-
ural gas from the view of the petroleum industrial chain and
natural gas industrial chain, respectively. Likewise, [2022b]
examine the chromium resources competition network from
the perspective of the whole chromium industrial chain.

1https://inews.chinascope.com.cn/#/index

2.2 ESG
The ESG factors are environmental, social, and governance
matters that have great impacts on the economy. The ESG rat-
ings are usually given by authoritative rating agencies [Cheng
et al., 2014]. The ESG shocks are defined as the changes
in the ESG ratings (e.g., upgrade or downgrade). The ESG
shocks may have a positive or negative impact on the fi-
nancial performance of a firm. For example, ESG shocks
may exert a positive/negative impact on the price [Serafeim
and Yoon, 2021], as well as on future returns [Serafeim and
Yoon, 2021]. In addition, ESG shocks may influence the
return on assets (ROA) [Di Giuli and Kostovetsky, 2014],
cash value [Chang et al., 2019], bond value [Amiraslani
et al., 2017] and revenue growth [Di Giuli and Kostovet-
sky, 2014]. All the existing works of ESG shocks focus
on the firm-level analysis from the microeconomic perspec-
tive. In contrast, our goal is to study the ESG shocks on
the whole industrial chain from the macroeconomic view.
A concept similar to ESG is known as the Sustainable De-
velopment Goals (SDGs), proposed by the United Nations.
Many institutional investors use SDGs to allocate resources
or highlight related investments [Consolandi et al., 2020;
Zhu et al., 2022]. Clearly, SDGs and ESG have overlapping
missions.

2.3 Cross Attention
Recently, the attention mechanism, such as self- and cross-
attention, has gained popularity and attracted more research
[Vaswani et al., 2017]. The self-attention mechanism com-
putes the symmetrical interaction among a single feature se-
quence. The cross-attention makes an asymmetrical fusion of
multiple separate sequences of the same dimension and cal-
culates the interaction between them. These sequences may
come from multimodal inputs, such as image, text, and au-
dio [Radford et al., 2021; Jaegle et al., 2022]. In multimodel
settings, cross-attention usually plays a more important role
than self-attention in the sense that it can result in more degra-
dation in performance through pruning. For instance, [2021]
reveal that fine-tuning only the cross-attention parameters can
be nearly as effective as fine-tuning all parameters.

3 Background and Data Description
3.1 The Whole Industry Chain
The industrial chain (or industry network) is an industry-level
production network [Carvalho and Tahbaz-Salehi, 2019]. It
can be represented by a directed graph that reflects the up-
stream and downstream supply relationships. As shown in
Figure 1, each node in this graph—which we refer to as the
industry chain—corresponds to an industry. A direct edge
from node i to node j suggests industry i is an input-supplier
of industry j. Each node of the industrial chain usually con-
tains a collection of firms which are the carriers of the in-
dustrial chain nodes. For example, Figure 1 shows visualiza-
tion of the semiconductor industry chain. It illustrates four
industry nodes: Silicon Materials, Polysilicon Silicon Wafers
(Poly Si Wafers), Manufacturing Equipment for Semiconduc-
tor Materials (ME Semicon Materials), and Polycrystal Fur-
naces. ME Semicon Materials and Polycrystal Furnaces are
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Figure 1: Illustration of the partial industry chain in semiconductor.
The ovals and squares denote the industries and firms, respectively.
Each industrial node contains a number of firms. Square colors from
green to brown represent firms’ ESG scores from high to low. The
gray arrow indicates a supplier–customer relationship between two
industrial nodes. The bar-plot is the ESG distribution for an indus-
trial node (i.e., Zt in Section 3.3).

the upstreams of Silicon Materials and Poly Si Wafers, which
supply the necessary equipments for the production of the
downstreams. Each industry node contains a collection of
enterprises, and usually there are no intersections among the
enterprises affiliated with different industry nodes.

3.2 The ESG Score
What is ESG?
The environmental, social, and governance (ESG) is an ob-
jective measurement or evaluation of a given company, fund,
or security’s performance with respect to ESG issues. Be-
cause ESG issues grow in prominence in almost every sector,
the ability to manage ESG risks and opportunities is increas-
ingly important that may affect corporations’ financial per-
formances. Consequently, both companies and investors are
putting more and more emphasis on ESG. On the one hand,
companies try to be highly compliant with ESG principles
to alleviate conflicts with stakeholders, in order to minimize
the probability of failure and the likelihood of default [Wu et
al., 2022]. On the other hand, investors who follow the ESG
ranking can be more effective in avoiding “sinful companies”
(such as alcohol, tobacco and gambling companies) that may
pose greater financial risks due to their environment, society
and community practices [Wu et al., 2022].

Firm-level ESG Rating
There is a growing need for evaluating a firm’s ESG level,
for which the ESG rating is often adopted. Recently,
the number of global ESG rating agencies has exceeded
600. Their goal is to generate a number, typically a
discrete grade to quantify an individual company’s over-
all ESG performance. For example, a nine-grade score
{AAA,AA,A,BBB,BB,B,CCC,CC,C} is used in our
dataset. Each rating takes into account a large amount of in-
formation across various categories. In comparison with their
peers, ESG leaders proactively manage ESG risk and take ad-
vantage of ESG opportunities more effectively, and ESG lag-
gards have relatively more unmanageable exposure to ESG
risks.

ESG Shocks
The impact of firm-level ESG scores and news on financial
performance has been well studied in the literature [Giese et
al., 2019a; Derrien et al., 2021b; Capelle-Blancard and Pe-
tit, 2019]. Companies with strong ESG profiles are more
competitive, because they are typically better at developing
long-term business and incentive plans for senior manage-
ment [Gregory et al., 2014].

The ESG shock is defined as the change in a firm’s ESG
rating. Usually, the sustainability change is likely to affect a
firm’s revenue directly. For example, a severe downgrade in
the ESG rating (i.e., a negative shock) of a firm may lead to
a boycott from the potential clients. In contrast, an improve-
ment in the ESG score (i.e., a positive shock) of a firm may
incite new customers to buy its products. From a global view,
we aim to analyze the impact of ESG shocks on the industrial
chain networks.

3.3 Industry-level ESG

We define an industry-level ESG rating based on the firm-
level ESG scores, which typically can be classified into
nine grades, {AAA,AA,A,BBB,BB,B,CCC,CC,C}.
An industrial node usually contains a number of firms and
each firm is reported with an ESG score periodically. At
present, there are no organizations or agents releasing ESG
ratings for industries. On the other hand, we propose to de-
fine an industrial ESG score based on the affiliated firms’
ESG scores. In particular, with the ESG grade vocabu-
lary {AAA,AA,A,BBB,BB,B,CCC,CC,C}, we map
a collection of firm-level ESG scores of the industrial node
at time t to a fixed-length vector zt using the bag-of-words
method. As shown in Figure 1, we let zt ∈ R9 be the ESG
representation of an industry, and let Zt ∈ Rn×9 denote the
industrial ESG level for all the industrial nodes at time t,
where n is the number of industrial nodes.

Industrial ESG Shocks
With the industrial ESG defined above, we can calculate the
industrial ESG shock at time t as the change of the ESG level
[Serafeim et al., 2022]; that is, ∆Zt = Zt − Zt−1, and obvi-
ously, ∆Zt ∈ Rn×9.

4 Methodology

4.1 Preliminaries

Let G = (V, E) be an industrial chain with n nodes, where
V = {1, . . . , n} is the set of n nodes and E ⊆ V × V is the set
of edges connecting paired nodes in V . The graph structure is
represented by the n × n adjacency matrix A = {aij}ni,j=1,
where aij = 1 if there exists an edge eij ∈ E between nodes
i and j, and aij = 0 otherwise. Suppose that graph G is as-
sociated with certain attributes, and we let X ∈ Rn×d denote
the feature matrix of the n nodes and let y ∈ Rn be a target
vector for the n nodes (e.g., y can be the profitability ratio or
operating margin as detailed later).
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4.2 Model
Cross-Attention GNN
The overall framework of the proposed cross-attention GNN
can be represented by the following equations:

Qt = β0 +∆Zt−1β1 + Zt−1 ⊙∆Zt−1β2 + ϵ (1)

K = XWK , V = XWV (2)

H0 = softmax

(
QtK

⊤
√
dmodel

)
V +X (3)

Hl
i = g(Hl−1

i ,Aggre{Hl−1
j |j ∈ N (i)};Wl), (4)

where Qt ∈ Rn×dq is a query vector for the n industry nodes
at time t, K represents the matrix of keys, V is that of val-
ues, X is the original node features, and WK ∈ Rd×dk and
WV ∈ Rd×dv are parameters associated with cross-attention.
To perform a residual connection in Eq. (3), we set dv = d.
In our model, we set dk = dq = dmodel, Z ∈ Rn×9 (∆Z) is
the bag-of-words representation of ESG scores (shocks), and
⊙ is an element-wise product. The coefficient β0 ∈ Rn×dq is
bias, and β1,β2 ∈ R9×dq link the ESG shocks to the query
vector. For l = 1, . . . , L, Hl ∈ Rn×dl is the hidden fea-
ture matrix of the l-th graph convolutional layer, Hl

i is its i-th
row, N (i) denotes the neighborhood set of node i, g(·, ·;Wl)
is a linear mapping in the l-th layer with parameter Wl (i.e.,
Wls are parameters in GNN), and Aggre{Hl−1

j |j ∈ N (i)}
can be any standard graph convolutional operation. As a re-
sult, the overall framework contains three steps: (i) an auto-
regression for the current query Qt with the historical query
and ESG shocks at time t − 1 (∆Zt−1 and Zt−1 ⊙ ∆Zt−1)
corresponding to Eq. (1); (ii) a cross-attention module that
aims to capture the interactions between the ESG shocks and
industrial node features as given in Eqs. (2) and (3), where a
residual connection is used in Eq. (3); and (iii) a subsequent
standard GNN to integrate the ESG shocks into its message-
passing process as given in Eq. (4).

The cross-attention in Eqs. (2)–(3) quantifies how the ESG
shocks affect the industrial network, which is an attention
mechanism in the transformer architecture that mixes two dif-
ferent embedding sequences [Vaswani et al., 2017]. The two
sequences can come from different modalities, such as text
and image. Eqs. (2) and (3) calculate the cross-attention be-
tween the node features and the industrial ESG shocks.

As described earlier, the query Qt is calculated indepen-
dently with a linear regression model, in which we choose
industry-level ESG shocks and interaction terms as the ex-
planatory variables. The rationale for this choice is that the
interaction term between the ESG level Zt−1 and the change
∆Zt−1 as shown in Eq. (1) implies that a shock to the sus-
tainable score will impact industries heterogeneously, which
depends on not only the change but also the original rating.
Firms with outstanding ESG credentials are at much higher
risk to ESG scandals than those with already brown reputa-
tions, and the overall performance depends on its subordinate
companies.

Graph Node Regression
With the hidden embedding HL output by the graph convo-
lution as shown in Eq. (4), we conduct a graphical node re-

gression task by minimizing

Loss(G,Z;Θ) = ∥f(HL;W0)− y∥22
where f(·;W0) is a link function (e.g, a multi-layer percep-
tron and W0 represents the corresponding parameter), Θ :=
{WK ,WV ,Wl,βi}, where i = 0, 1, 2; l = 0, 1, . . . , L.

In practice, many metrics can be defined to evaluate the
performance of the industrial chain from different perspec-
tives. In our problem, we link the hidden node embedding
HL to two different tasks: the profitability ratio and operat-
ing margin.
Profitability Ratio (PR) . The PR is a financial metric that
evaluates the ability of a company to generate income (profit)
relative to the revenue during a specific period of time, which
is defined as

PR =
Aggregate Profit
Aggregate Cost

× 100%.

Hence, we use the sum-up PR to measure the industry’s earn-
ing power.
Operating Margin (OM) . The OM is a ratio used to mea-
sure how well a company controls its cost. It is calculated
through dividing the operating income by net sales, expressed
in percentage,

OM =
Aggregate Profit

Aggregate Income
× 100%.

Although the PR and OM are related to each other, they
characterize the performance of the industry chain from two
different view points. It would be desirable to draw consistent
conclusions based on the experimental results using these two
metrics.

5 Experiments
5.1 Experimental Setup
We split all industrial chain nodes with the ratio 7:1:2 into the
training set, validation set, and test set. We use the historical
industrial chain data in 2018–2019 to predict the next year’s
data. All experiments are replicated five times.

5.2 Datasets
Industrial Chain Dataset
As shown in Figure 2, we collect the industrial chain data
used on ChinaScope, including the supplier–customer rela-
tionship data and industrial node features in 2018–2020. With
a total of 1164 industrial nodes, the adjacency matrix of the
industrial chain is denoted by A ∈ R1164×1164. Table 1
shows the basic statistics about the industrial chain. Each in-
dustrial node in the database can be identified with a unique
product code. Usually, there are a number of listed compa-
nies associated with each industrial node. ChinaScope also
reports the financial information for each firm, including the
firm cost, profit, revenue, and HHI (Herfindahl–Hirschman
Index2). We sum up the costs, profits, revenues and HHIs of

2The Herfindahl–Hirschman index is a measure of the size of a
firm in relation to the industry which is an indicator of the amount
of competition among the firms.
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Figure 2: Visualization of the industrial chain. The nodes represent
industries, and the edges represent supplier–customer relationships
of the industrial chain.

the companies associated with the same industry node to form
the industrial costs, profits, revenues, and industrial HHIs, re-
sulting in the industrial node feature matrix X ∈ R1164×4.
We calculate X with the original industrial chain data of 2018
and 2019, and use the PR and OM data in 2020 as the corre-
sponding label y. Considering the different scales of each
column of X, we perform normalization for the four features,
which is conducted via subtracting the batch mean and di-
vided by the standard deviation.

Statistics Value

Number of Nodes 1164
Number of Edges 38769
Average Degree 15.008
Average Path Length 3.558
Diameter 9
Density 0.013

Table 1: Summary statistics of the industrial networks.

Sino-Securities ESG Data
We use the ESG scores provided by Sino-Securities In-
dex Information Service (Shanghai) Co. Ltd. The Sino-
Securities ESG rating takes into account the reality of the
Chinese capital market and the characteristics of various
listed companies [Li et al., 2022a], and it measures ESG
performance from four perspectives: ownership concentra-
tion, equity balances, executive shareholding, and institu-
tional investor shareholding, resulting in nine-grade scores
{AAA,AA,A,BBB,BB,B,CCC,CC,C}. The Sino-
Securities ESG data cover ESG scores from 2009 to 2022 of

Figure 3: The distribution of ESG grades of the Chinese listed com-
panies in 2019. Colors ranging from red to green denote an ascend-
ing order of ESG scores.

all Chinese listed firms.
Figure 3 shows the distribution of Sino-Securities ESG rat-

ings of all Chinese listed companies on December 31, 2019.
Colors from red to green correspond to an ascending order of
the ESG grades from C to AAA. Similar to a normal distribu-
tion, we observe that only a very small number of companies
receiving top ratings of AAA,AA (ESG leaders) and bottom
ratings C,CC (ESG laggards), while most of the companies
receive average scores. We then calculate the industrial-level
ESG Zt−1 and ESG shocks ∆Zt−1 with the Sino-Securities
ESG data in 2018 and 2019 using the bag-of-words method.

5.3 Evaluation Metrics
As the loss function is based on the mean squared error
(MSE), three other metrics are used to evaluate the prediction
performance. Let y

′

i and yi be the predicted and ground-truth
values, respectively, and let m be the total number of samples.
The three evaluation metrics for regression are defined as fol-
lows,

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(yi − y
′
i)

2

• Mean Absolute Error (MAE):

MAE =
1

m

m∑
i=1

∣∣∣yi − y
′

t

∣∣∣
• Mean Absolute Percentage Error (MAPE):

MAPE =
1

m

m∑
i=1

∣∣∣∣∣yi − y
′

i

yi

∣∣∣∣∣× 100%.

5.4 Overall Performance
Baseline Methods
We integrate cross-attention into a standard GNN framework
as demonstrated in Eqs. (1)–(4). Suppose the effects of the
ESG shocks do not exist; that is, Qt = 0, then Eq. (3) can be
simplified as H0 = X. In this case, we can treat Eqs. (3) and
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(4) as the baseline method, which is independent from Eqs.
(1) and (2) (ESG shocks).

In the baseline methods, we choose four graph convolu-
tional models as the aggregation function Aggre{Hl−1

j |j ∈
N (i)} in Eq. (4),

• Graph Convolutional Network (GCN) [Kipf and
Welling, 2017],

• Graph Attention Network (GAT) [Veličković et al.,
2018],

• ChebyNet [Defferrard et al., 2016],
• GraphSage [Hamilton et al., 2017].

We conduct two node regression tasks respectively on the
profitability ratio and operating margin.

Results on Profitability Ratio
Table 2 summarizes the results of industrial node regression
on the profitability ratio. We evaluate the regression perfor-
mance on three commonly used metrics, RMSE, MAE, and
MAPE with the corresponding standard deviations. The rows
of “+ Cross-Attention” are the results of our methods using
the graph aggregation of the baseline methods GCN, GAT,
ChebyNet, and GraphSage, respectively. We can observe that
(i) the proposed cross-attention methods achieve better per-
formances on the industrial chain node’s profitability ratio re-
gression than the baselines; (ii) ChebyNet and GraphSage and
the proposed methods with graph aggregation of ChebyNet
and GraphSage achieve better results than GCN and GAT on
the profitability ratio regression; and (iii) according to the
three metrics, RMSE, MAE, and MAPE, GraphSage-based
methods (including the baseline GraphSage and our method
with GraphSage aggregation) make the best predictions.

Results on Operating Margin
Table 3 presents the results of the industrial node regression
on another financial metric, the operating margin. The ex-
perimental setting of this task is the same as the previous
task. From the results, we have similar observations: (i) the
proposed methods in rows with “+ Cross-Attention” achieve
better performances on the industrial chain node’s operat-
ing margin regression than the baselines without the cross-
attention; and (ii) ChebyNet and GraphSage and the proposed
methods with graph aggregation of ChebyNet and GraphSage
achieve better performances than GCN and GAT, while the
advantages of their performances on the three metrics RMSE,
MAE, and MAPE are indistinguishable.

The ESG shocks are eliminated in the results given in rows
2, 4, 6, 8 (baselines) of both Tables 2 and 3. Therefore, by
comparing the results between the baseline and the proposed
methods in both Tables 2 and 3, we can draw a conclusion that
the cross-attention mechanism can capture the effects of ESG
on the profitability ratio and operating margin of industrial
nodes.

5.5 Training Process
We further analyze the validation curves for model parameter
selection. Figure 4 (a) exhibits the training losses for two
baselines (GCN, GraphSage) and our corresponding models
(GCN+Cross-Attention, GraphSage+Cross-Attention) over

RMSE MAE MAPE

GCN 0.0930±0.0372 0.0653±0.0259 0.0286±0.0111

+ CA 0.0428±0.0092 0.0299±0.0060 0.0132±0.0026

GAT 0.0777±0.0467 0.0593±0.0391 0.0262±0.0173

+ CA 0.0368±0.0074 0.0234±0.0049 0.0103±0.0022

ChebyNet 0.0192±0.0069 0.0066±0.0022 0.0029±0.0009

+ CA 0.0126±0.0019 0.0059±0.0008 0.0026±0.0004

GraphSage 0.0193±0.0078 0.0078±0.0019 0.0034±0.0008

+ CA 0.0106±0.0039 0.0057±0.0022 0.0025±0.0010

Table 2: The RMSE, MAE, and MAPE under the industrial chain
node regression on the profitability ratio (with standard deviation),
averaged over five cross-validation folds. “+ CA” denotes the pro-
posed cross-attention GNN with a standard graph aggregation listed
above it.

RMSE MAE MAPE

GCN 1.7760±0.5336 0.6510±0.2045 0.0949±0.0306

+ CA 0.8565±0.3268 0.5307±0.1772 0.0768±0.0253

GAT 1.5951±0.5256 1.1058±0.4041 0.1577±0.0507

+ CA 0.8524±0.1517 0.5493±0.1436 0.0789±0.0219

ChebyNet 0.4902±0.0842 0.1780±0.0259 0.0229±0.0043

+ CA 0.2960±0.1054 0.1076±0.0161 0.0140±0.0018

GraphSage 0.4693±0.1260 0.2616±0.0853 0.0374±0.0162

+ CA 0.2868±0.1135 0.1455±0.0413 0.0201±0.0063

Table 3: The RMSE, MAE, and MAPE under the industrial chain
node regression on the operating margin (with standard deviation),
averaged over five cross-validation folds. “+ CA” denotes the pro-
posed cross-attention GNN with a standard graph aggregation listed
above it.

multiple epochs. We see that GCN/GCN+Cross-Attention
converges faster than GraphSage/GraphSage+Cross-
Attention, while the latter two methods achieve relatively
lower training losses. We have a similar observation in the
validation curves as shown in Figure 4 (b). Furthermore, we
find that GCN-based methods have more severe jitters or
spikes than GraphSage-based methods in both the training
and validation processes.

By comparing the training and validation processes be-
tween the baselines and our methods, we observe that the
cross-attention module can help to improve the training and
validation curves from two perspectives: (i) It improves
the stability of learning processes, as the learning curves
with cross-attention are smoother than those without cross-
attention; (ii) It helps the proposed cross-attention GNNs to
achieve lower losses than the traditional GNNs (e.g., GCN,
GraphSage).

5.6 Regression Parameters Analysis
To visualize the regression parameters β1 and β2

in Eq. (1), we note the rows of βi, i ∈ {1, 2},
correspond to the nine grades of the ESG rating
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(a) Training (b) Validation

Figure 4: Learning curves of the operating margin regression for
industrial nodes, depicting (a) training losses for two baselines and
our methods, (b) the corresponding validation losses.

{AAA,AA,A,BBB,BB,B,CCC,CC,C}. For the
convenience of visualization, we plot the row summation
of βi, i ∈ {1, 2}, with respect to the operating margin and
profitability ratio as shown in Figure 5. Figure 5 (a) and (c)
for β1 and Figure 5 (b) and (d) for β2 depict the contributions
of ∆Zt−1 and Zt−1 ⊙∆Zt−1 in our model, respectively. We
see that β1 and β2 are consistent on the two node regression
tasks. The heights of the ninth (invisible) bars in Figure 5
(a)–(b) are all zero because there are almost no companies
with the AAA grade in the data.

Figure 5: Row summations of β1 and β2 on the two regression tasks,
operating margin and profitability ratio.

5.7 Attention Map
The results in Tables 2 and 3 have demonstrated that the
ESG shocks indeed affect the industrial chain’s performance.
We explain how ESG affects the industrial chain from the
view of the attention map in Eq. (3). The original val-
ues in the attention map M = QtK

⊤ are smooth among
different industrial nodes. To make their differences more
distinguishable, we sharpen the attention weight matrix as
exp{100(M − 1

n (M1) ⊗ 1⊤}, where ⊗ denotes the Kro-
necker product, 1 is an n-dimensional vector of 1s. In the
processed attention map as visualized in Figure 6, we have
an interesting observation that automobile-related industries

Figure 6: Visualization of the attention map, where the most signifi-
cant industrial nodes are marked according to their large magnitudes
on the map, including Auto Parts and Equipment (APE), Automobile
Engine Unit (AEU), Auto Engines (AE), Automobile Crankshafts
(AC), Automotive Connecting Rod (ACR), and Supercharger Com-
ponents (SC).

have been selected out from the 1164 industries. It can be
easily interpreted as follows: (i) The automobile is the most
representative of the high-end manufacturing industry, which
affects and connects with almost all other basic industries;
and (ii) As the biggest developing country, the automobile
manufacturing related industries in China account for almost
one-tenth of the total industrial output.

6 Conclusion
The impacts of the environmental, social, and governance
(ESG) on the financial market have been examined by many
studies. However, how the ESG rating affects the macroe-
conomy is still unknown. From the view of the whole in-
dustrial chain, we model the ESG shocks on the performance
of the industrial chain with the cross-attention mechanism.
The ESG shocks are taken to produce queries (Qt) while
the industrial node features are linked to keys (K) and val-
ues (V). We use a standard GNN to predict the industrial
node’s performance with the filtered values. The proposed
cross-attention GNN can predict industrial node performance
accurately with ESG shocks. Moreover, the attention map
can explain how the ESG rating impacts the development of
the industrial chain. As a conclusion, the GNN using cross-
attention is a valuable tool to model the ESG shocks on the
whole industrial chain.
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Blancard and Aurélien Petit. Every little helps? esg news
and stock market reaction. Journal of Business Ethics,
157:543–565, 2019.

[Carvalho and Tahbaz-Salehi, 2019] Vasco M. Carvalho and
Alireza Tahbaz-Salehi. Production networks: A primer.
Annual Review of Economics, 11(1):635–663, 2019.

[Chang et al., 2019] Ching-Hung Chang, Sheng-Syan Chen,
Yan-Shing Chen, and Shu-Cing Peng. Commitment to
build trust by socially responsible firms: Evidence from
cash holdings. Journal of Corporate Finance, 56:364–387,
2019.

[Cheng et al., 2014] Beiting Cheng, Ioannis Ioannou, and
George Serafeim. Corporate social responsibility and ac-
cess to finance. Strategic management journal, 35(1):1–
23, 2014.

[Consolandi et al., 2020] Costanza Consolandi, Himani
Phadke, Jim Hawley, and Robert G Eccles. Material esg
outcomes and sdg externalities: Evaluating the health
care sector’s contribution to the sdgs. Organization &
Environment, 33(4):511–533, 2020.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
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