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Abstract

Accurately credit rating on Interbank assets is es-
sential for a healthy financial environment and sub-
stantial economic development. But individual par-
ticipants tend to provide manipulated information
in order to attack the rating model to produce a
higher score, which may conduct serious adverse
effects on the economic system, such as the 2008
global financial crisis. To this end, in this paper,
we propose a novel selective-aware graph neural
network model (SA-GNN) for defense the Inter-
bank credit rating attacks. In particular, we first
simulate the rating information manipulating pro-
cess by structural and feature poisoning attacks.
Then we build a selective-aware defense graph neu-
ral model to adaptively prioritize the poisoning
training data with Bernoulli distribution similari-
ties. Finally, we optimize the model with weighed
penalization on the objection function so that the
model could differentiate the attackers. Extensive
experiments on our collected real-world Interbank
dataset, with over 20 thousand banks and their rela-
tions, demonstrate the superior performance of our
proposed method in preventing credit rating attacks
compared with the state-of-the-art baselines.

1 Introduction
International interbank relations have undergone significant
changes in recent years as a result of the development of new
financial instruments, advances in artificial intelligence tech-
nology, regulatory developments, etc [des Règlements Inter-
nationaux, 1992; Macchiati et al., 2022]. Most notably, mod-
ern financial operations involving derivative instruments have
altered the role of conventional interbank loan markets [Nier
et al., 2007]. Therefore, it is far from satisfactory to only
consider their own financial statements in the Interbank credit
rating [Brunnermeier, 2009]. How to develop an accurate rat-
ing method capable of modern financial situations is crucially
important for building a stable economic development and
preventing systemic financial crises.
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(a) Pre-attacking Ratings (b) Post-attacking Ratings

Figure 1: Typical attacks on the Interbank credit rating, A-D (rating
score high-low). The red nodes and edges represent banks’ tamper-
ing with data to deceive the model to improve ratings. Node I.D
(left) successfully misled the model to produce rank C (right) after
the attack. Similar from Node II.D (left) to rank B in II.B (right).

However, each participant is always eager to achieve a
higher score by the credit rating model [Gyntelberg and
Wooldridge, 2008]. It has been reported [Dittrich, 2007;
Becker and Milbourn, 2011] that some banks provide dis-
honest financial information for a higher rating, such as tam-
pering with financial statements, exaggerating their reports,
or creating false loan relationships with high-ranking banks.
Figure 1 illustrates a typical credit rating attack process. The
A-D (high-low) denotes the rating level. The red node I.D
(Figure 1a) attacks the rating model by artificially tampering
with its features and creating false relations with higher credit
banks (I.B and II.A). Consequently, I.D (Figure 1a) success-
fully misled the model to produce rank C (red node I.C in
Figure 1b) based on the attacked features and structures. A
similar attack was issued by II.D (Figure 1a) and deceived
the model promote to rank B (red node II.B in Figure 1b).

Recently, in order to accurately model Interbank relations,
graph neural networks (GNNs) have been widely utilized for
credit ratings [Golbayani et al., 2020a; Agarwal et al., 2021]
and achieve more promising improvements compared with
conventional machine learning-based rating models [Wallis
et al., 2019; Bhatore et al., 2020], such as logistic regression,
support vector machine [Lee, 2007]. For instance, HGAR
[Cheng et al., 2019] learns the embedding of loan networks
by high-order adjacent measures and a graph attention layer,
and CCR-GNN [Feng et al., 2022] applies GNN for credit
rating with a graph-level perspective. However, there is still
a blank area for the research community that addresses pre-
venting attacks on GNN-based credit rating models.

Existing researches about preventing attacks on graph neu-
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ral network mainly only focus on the feature attack or the
structural attack [Sun et al., 2022]. For example, [Entezari et
al., 2020] and Pro-GNN [Jin et al., 2020] use the low rank
to pre-process the graph and learn. RGCN [Zhu et al., 2019]
models the Gaussian distribution as a hidden layer in order
to absorb the impact of adversarial attacks in the variance.
PA-GNN [Tang et al., 2020] instead learned the supervision
knowledge from clean graphs. But existing works failed to
treat the joint poisoning attacks of both data tampering and
fake relations, named feature and structural joint poisoning
attacks, which face significant limitations in the Interbank
credit rating attacks problem.

Therefore, we propose a novel selective-aware graph neu-
ral network model (SA-GNN) for simultaneously defending
the feature attack and structural attack of Interbank credit rat-
ing. Specifically, the model builds a selective representation
layer, and explores the label similarity and the feature simi-
larity, to adaptively prioritize the poisoning training data with
Bernoulli distribution similarities and simulate a clean graph.
This is due to the fact that, when graphs are attacked, their
structures and node attributes are typically abnormal com-
pared to existing ones, leading to adverse effects on the clas-
sification process. By learning and optimizing, simulating a
clean graph with these abnormal nodes removed can enhance
the robustness. Finally, we optimize the model with weighed
penalization on the objection function so that the model could
differentiate the attackers. To evaluate the model, we con-
ducted experiments on a global bank dataset to predict credit
ratings and obtained further insight. The contributions of this
paper are summarized as follows:

• Objective and accurate rating of financial institutions’
credit risk is critical for a healthy market environment
and economic development. To the best of our knowl-
edge, this is the first work that addresses the Inter-
bank credit rating attack problem by proposing a novel
selective-aware graph neural network model.

• We simulate the rating information manipulating process
by structural and feature poisoning attacks. Then we
adaptively prioritize the poisoning training representa-
tions with Bernoulli distribution similarities and devise
a penalized loss function in the joint optimization pro-
cess so that the model could differentiate the attackers.

• We evaluated our method on a real-world ten years
global Interbank dataset. Extensive experiments show
that our proposed method significantly outperforms the
compared state-of-the-art baselines in the Interbank
credit rating attacks. The sources of our approach will
be available on Github1.

2 Preliminaries
2.1 Interbank Network
The process of risk contagion between banks can be quite
complex, but network analysis can provide an effective way
to characterize it. Increasingly, studies are focusing on the
development of Interbank market networks to identify risk

1https://github.com/finint/interbank

contagion between banks, with banks as nodes and Inter-
bank lending quotas matrix as network links. Consider a sys-
tem where N banks participate in Interbank lending. Ma-
trix X ∈ [0,∞)N×N represents the total Interbank position,
where the typical element Xij represents the amount lent by
bank i to bank j. Such networks are directed and valuable.
For each bank i, the row sum of X represents the total Inter-
bank assets Ai =

∑N
j=1Xij , and the column sum represents

the Interbank liabilities Li =
∑N
j=1Xji.

Given the inability of banks to report their bilateral expo-
sures, there is a need for a reliable method of inferring Inter-
bank borrowing limits. Existing studies mostly infer the In-
terbank borrowing limits matrix reasonably through the max-
imum entropy principle, which indicates that under the con-
dition of incomplete information of objects, the maximum
uncertainty should be maintained to estimate the most rea-
sonable probability distribution. Sheldon and Maurer were
the first to apply the concept when studying Interbank lend-
ing, proposing that the disorder degree of the Interbank limit
matrix should be maximized given incomplete information
of bank transactions [Sheldon et al., 1998]. The standard
method in literature is the Maximum Entropy estimation ma-
trix [Elsinger et al., 2013], which disperses the risk expo-
sure as evenly as possible and is consistent with the margin,
thereby filling all the cells among the active banks.

The Interbank lending network constructed based on the
maximum entropy principle is completely connected, such
that each bank maintains lending transactions with all other
banks. However, in reality, most banks only maintain lend-
ing links with a few banks due to the high cost of informa-
tion processing, risk management, and reputation checks. To
address this issue, [Anand et al., 2015] proposed the mini-
mum density method. In contrast to maximum entropy, this
method takes into account the economic rationale that Inter-
bank linkages are expensive to maintain. The minimum den-
sity method seeks to identify the most probable links and as-
signs the largest allowable exposures to them, consistent with
the total lending and borrowing banking balance sheet. This
method can be expressed as a constrained optimization prob-
lem of matrix Z,

min
Z

c ·
N∑
i=1

N∑
j=1

1[Zij>0] (1)

s.t.
∑N
i=1 Zij = Ai, i = 1, 2, 3 . . . , N∑N
j=1 Zij = Lj ,j = 1, 2, 3 . . . , N

. (2)

However, we encountered several issues when implement-
ing this method for large bank datasets, as it took up a lot of
time and space to solve them. To optimize this process, we
focused on the most time-consuming task of calculating the
matrix, according to the asset and liability, and sampling the
probability of its values (both complexities O(n2)). We real-
ized that we only needed to update one row or column when a
number was modified in either the asset or liability sequence.
Sampling was essentially querying the matrix prefix. Conse-
quently, we considered using a Binary Index Tree (BIT) to
maintain the matrix, which can be modified and queried in
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a single point complexity of O(log n). This feature enabled
us to reduce the complexity of calculation and sampling to
O(n · log n) and O(log n · log n), respectively.

2.2 Problem Definition
In this paper, a graphG is defined asG = (V,E), where V =
{v1, v2, . . . , vN} represents the set of nodes, with N = |V |
being the number of nodes, and E is the set of edges between
nodes. The adjacency matrix A ∈ RN×N is a representa-
tion of the graph, with Aij denoting the relationship between
nodes vi and vj . Furthermore, X = {x1, x2, . . . , xN} ∈
RN×d is the node characteristic matrix, with each character-
istic vector xi and a total of d nodes characteristics. There-
fore, the graph can also be represented as G = (A,X). In
common node classification settings, only a subset of nodes
VL = {v1, v2, . . . , vL} are labeled YL = {y1, y2, . . . , yL},
with the label yi of node vi.

In previous studies, structural attacks were often empha-
sized while feature attacks were ignored, and we hope to
consider both of these attacks comprehensively. In terms of
structural attack, research shows it tends to add antagonistic
edges connecting nodes with different characteristics. Thus,
for each class of rated nodes, connections with nodes of the
same rating are established with a fixed probability a. We
have also considered feature attacks, taking into account the
social conditions and economic principles that make banks
strive to improve their ratings. In this instance, each type of
rating node is randomly attracted to the average features of
the previous rating with a fixed probability a.

Through the definitions mentioned above, the problem to
be solved can be formally expressed as follows: Given G =
(A,X), learn the perturbed graph structure and features so as
to improve the node classification performance of unmarked
nodes from the adjacency matrix A and feature matrix X .

3 The Proposed Framework
3.1 Model Architecture
In order to defend against both feature and structure attacks,
a natural strategy is to eliminate the carefully designed distur-
bance to restore the original graph features and structure, thus
protecting against adversarial interference. We propose the
SA-GNN model, aiming at learning and simulating the clean
graph structure of several independent selection layers, ex-
ploring the feature similarity and label similarity of the graph,
and integrating optimization to achieve this goal.

The proposed framework is illustrated in Figure 2, wherein
black edges represent regular edges, blue nodes are regular
nodes, and red edges and nodes denote adversarial elements
which reduce performance. To defend against these attacks,
SA-GNN leverages the stored best matrix by several inde-
pendent selection layers and optimizes, thus reconstructing a
clean graph. This process allows it to consider feature simi-
larity and label similarity in order to reduce the effect of the
feature and structural attack. In addition, SA-GNN feeds the
reconstructed graphs into its optimization problem, which it
reiterates and optimizes as needed. The details of the pro-
posed framework are described in the following subsections.

3.2 Selective Representation Layer
To defend against the feature attack, it is a natural and ef-
fective strategy to delete the attacked node. We introduce a
Boolean matrix Br×N ∈ {True, False} to code whether
a node in G is removed. That is, node ij is removed if
Bij = True. Otherwise, if node ij is reserved, Bij = False.
For improved performance, we propose a selective represen-
tation layer. This layer filters out clean nodes during random
and independent removal, and executes r independent runs of
GNN during each iteration of training, using a set of values
R = {1, 2, ..., r}. To ensure each node has a fixed probability
p of removal, independent of all other nodes, a Bernoulli dis-
tribution of p is used with the Boolean matrix. Then the drop
part of matrix X[B] = 0sum(B)×d, where

B = Bernolli(1r×N , p) (3)

Though there exist several different GNN methods, in this
work, we focus on GCN [Kipf and Welling, 2016] and GAT
[Veličković et al., 2017]. Note that it is straightforward to ex-
tend the proposed framework to other GNN models. Specifi-
cally,a two-layer GCN with θ = (W1,W2) implements as:

f(X,A) = σ(D̃−
1
2 ÃD̃−

1
2H lW l), (4)

where Ã = A+IN and D̃ is the diagonal matrix ofA+I with
D̃ii =

∑
j Ãij . σ is the activation function such as ReLU .

For the hidden layer, the attention mechanism is introduced
to weighted sum the features of adjacent nodes, where αi,j is
the attention coefficient, K is the number of attention heads,
and
−→
h′ i is the node output characteristic.

αij =
exp (LeakyReLU (a [Wxi‖Wxj ]))∑

k∈Γvi
exp (LeakyReLU (a [Wxi‖Wxk]))

(5)

−→
h′ i = σ

 1

K

K∑
k=1

∑
j∈Ni

αkijW
k~hj

 (6)

For the result of r independent runs in each epoch, we need
to identify the one with the smallest difference between the
predicted and true values and save its Boolean matrix. We can
do this by passing X to a softmax function so as to obtain
the predicted label,Ŷ = softmax(X), X = [x1, x2, ..., xr].
The cross-entropy loss be like:

argminLi
i∈R

= −
∑
v∈V

C∑
c=1

YvclogŶvc, (7)

where V is the set of nodes, C is the number of classes, Y is
the label matrix, and Ŷ is the prediction by passing represen-
tation in the final layer to a softmax function.

We use r to represent the number of runs per epoch, and
the total number of runs in m rounds of iterations is m · r.
This is large enough to ensure that the observed set suffi-
ciently covers all possible adversarial attacks. Given an at-
tack ratio a, number of ncodes n, and removal probability p,
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Figure 2: The framework of our proposed Selective-aware Graph Neural Network (SA-GNN). It contains three components : (a) the selective
representation layer for prioritizing the poisoning training data with Bernoulli distribution similarities; (b) the target similarity model for
exploring the label similarity and the feature similarity; (c) The model with optimization in weighed penalization to better update the graph.

the probability of accurately simulating the actual attack is:(
n
n·a
)
· pn·a · (1− p)n(1−a). In this case, we want the value of

m and r to meet:

m · r ≥ 1(
n
n·a
)
· pn·a · (1− p)n(1−a)

(8)

Therefore, the probability of simulation accuracy closely
follows the cost-benefit optimization of parameters. This is
very difficult when the dataset is large. So we consider adopt-
ing an aggregation method to optimize and solve the problem.
We suggest an additional step to merge a total of m matrices
saved at each round into a single matrix, which is then used
as the current optimal matrix in the next epoch.

Assuming that Bm is the optimal Boolean matrix saved in
the mth round, then in the m + 1th round, the input matrix
is Splicing of Br×N and the aggregation of B1, B2, ..., Bm,
whereM = {1, 2, ...,m}, f is a nonlinear transformation and
F is the stack function.

B(r+1)×N = F (Br×N , fm∈M (Bm)) (9)

By using the aggregation method, we can gain more precise
results and improve the overall quality of the simulation.

3.3 Target Similarity
To defend against structural attacks, we aim to ensure the sim-
ilarity in the learned graph. Research shows that connected
nodes in graphs are likely to share similar features [McPher-
son et al., 2001], which has been validated in many domains.
For instance, connected nodes often share similar attributes
in recommender systems and social networks.

Similarly, in the Interbank network, connected banks often
have the same or just one-grade different tag ratings. Mean-
while, if two nodes have similar target variables, the mes-
sage passing between them improves the performance of the
graph neural network, so we hope that the target similarity is
as small as possible. In order to achieve this goal, we propose
using LS to describe the label similarity. Thus, we expect
LS to be as small as possible, that is, the cost function can
serve as an effective strategy to minimize the label similarity
between connected nodes.

LS =
1

2

n∑
i,j=1

Ai,j(yi − yj)2 (10)

We also consider the similarity of node features under the
same label. Such groupings are largely due to similar fea-
tures, so we can confidently assert that the features of nodes
under the same label are similar to some level. In order to
measure this feature similarity, we use a feature selection FS
algorithm to calculate the difference between these nodes and
the feature mean value for all nodes labeled with i, where k
is a super parameter.

FS =
1

k

m∑
i=1

(
n∑
j=1

xj − avgX(i)) (11)

In order to achieve feature similarity and label similarity in
the learning graph, we should minimize FS and LS. There-
fore, we can add them to the objective function to punish
those with higher values.
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Algorithm 1 The training framework of SA-GNN
Input: Graph G = (V,E), Feature Matrix X , Label Y
Parameter: Hyper-parameters p, Number of Layers L,
Number of Hidden Layers Lh
Output: Updated Graph G

′
, Predict Credit Rating Y

′

1: Initialize all parameters.
2: while Stopping condition is not met do
3: Selective represent nodes at p rate using Eq.(3)
4: Merge all saved matrices B using Eq.(9)
5: for l ← 2 to L do
6: Calculate X[B](l) using Eq. (4)
7: for l ← 2 to Lh do
8: Calculate X[B](l) using Eq. (6)
9: end for

10: end for
11: Compare using Eq.(7) and save the best matrix
12: Calculate label similarity LS using Eq.(10)
13: Calculate feature similarity FS using Eq.(11)
14: Calculate L using Eq.(12)
15: end while

3.4 Objective Function and Optimization
There are multiple loss components in the overall solution of
SA-GNN. So, we form the final loss function of SA-GNN by
taking a linear combination of all as shown below:

argminL
i∈R,α,β,γ

= α · Li + β · FS + γ · LS (12)

among α, β, and γ are predefined parameters used to control
the contribution of various parts in the objective function.

Once we obtain the best Boolean matrix B of the recon-
structed adjacency graph after optimizing Equation 5, we in-
tegrate all the previously stored optimal matrices for the next
iteration of SA-GNN. The pseudo-code of SA-GNN is pre-
sented in Algorithm 1.

In each iteration of the process, SA-GNN randomly gener-
ates r Boolean matrices to cover potential adversarial attacks
as comprehensively as possible. The matrices are then inte-
grated with the optimal ones from the previous rounds and
tested separately. In graph training, the algorithm uses two
GCN layers in conjunction with a GAT hidden layer. Addi-
tionally, feature similarity and label similarity penalty mech-
anisms are used to penalize nodes for any inconsistencies that
may appear. This adds to the optimization of the target func-
tion. Overall, the proposed SA-GNN model aims to create
a secure environment for GNN by covering a wider range of
potential attacks and punishing nodes for any discrepancies
that may arise.

4 Experiments
4.1 Experimental Settings
In this section, we empirically evaluate the effectiveness of
our proposed method. We first introduce the experimental
settings and then present our experimental results.

Datasets
We collected data from seven kinds of banks worldwide be-
tween 2011 and 2020 to study the attack and defense of Inter-
bank networks, including commercial banks, savings banks,
cooperative banks, real estate & mortgage banks, investment
banks, Islamic banks, and central banks. After the screening,
14,272 pieces of data were finally obtained each year, totaling
142,720 pieces of data.

Our analysis was based on a careful selection of indica-
tors across three categories: (1) basic information (Name,
Address, Bvd id); (2) basic items (Assets, Liabilities, and
Buffers); and (3) change rates (impaired Impaired loans /
Gross customer loans & advances (%), Loan loss reserves /
Impaired loans (%), Customer loans & advances / Total as-
sets (%), Net charge offs (NCOs) / Average gross customer
loans & advances (%), Unreserved impaired loans / Equity
(%)). With these data, we constructed a financial network
and investigated the relationship between propagation attacks
and defense strategies.

Attack Methods
We compare these models and our proposed model under two
attacking methods:

• Feature Attack: We randomly select nodes and modify
their features which tend to be higher-level labels.

• Structural Attack: We randomly select nodes and gener-
ate fake edges of nodes with higher-level labels.

Baselines
To evaluate our model, we compare it with the state-of-the-art
GNN and defense models.

• GCN: this is the original GCN model which defines the
graph convolution as aggregating features from neigh-
borhood nodes.

• GAT: Graph Attention Network (GAT) is composed of
attention layers that can learn different weights to dif-
ferent nodes in the neighborhood. It is often used as a
baseline to defend against adversarial attacks.

• RGCN: RGCN models node representations as Gaus-
sian distributions to absorb the effects of adversarial at-
tacks. It also employs an attention mechanism to penal-
ize nodes with high variance.

• Pro-GNN: Pro-GNN learns clean graph structure from
disturbance graph and GNN parameters at the same time
to defend against adversarial attacks.

Parameter Settings
In the experiment, we set the number of layers of all methods
to 2 according to the previous suggestions [Veličković et al.,
2017]. For GCN, RGCN, Pro-GNN, and SA-GNN, we set the
number of hidden cells to 256. For GAT, we use 8 attention
headers, each of which contains 8 features, namely 64 hidden
units suggested by the author. For SA-GNN, the super param-
eters are set as follows: α = 0.7, β = 0.2, γ = 0.1, r = 2,
and p is adjusted from {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. For
optimization, we use Adam, the fixed learning rate is 0.01,
and the epoch is set to 1000.
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Year Method 0% 5% 10% 15% 20% 25%

GCN 49.62 46.34 44.60 44.18 43.67 43.59
GAT 50.89 48.89 45.22 45.64 43.83 44.72

2016 RGCN 55.55 53.29 49.59 47.17 45.53 44.48
Pro-GNN 54.88 49.98 49.90 48.29 46.03 45.65
SA-GNN 56.07 55.88 54.53 53.89 52.16 51.93

GCN 51.06 50.39 48.68 48.92 48.34 47.98
GAT 51.89 50.15 49.59 49.38 49.55 49.29

2017 RGCN 52.17 51.57 49.62 49.24 48.20 47.61
Pro-GNN 52.11 50.16 50.87 45.63 46.37 47.94
SA-GNN 52.73 52.65 52.58 52.48 52.40 51.05

GCN 47.16 45.24 45.08 45.22 44.79 43.61
GAT 48.20 47.62 47.46 45.44 45.85 44.41

2018 RGCN 48.29 47.99 47.33 45.81 45.94 45.09
Pro-GNN 48.85 48.05 47.78 45.91 45.57 45.20
SA-GNN 49.59 49.47 48.94 47.78 47.24 46.23

GCN 55.21 53.07 51.67 50.85 49.89 49.98
GAT 57.60 54.32 53.64 52.38 51.49 50.67

2019 RGCN 56.02 54.18 52.86 50.82 50.08 50.28
Pro-GNN 53.83 49.45 47.74 46.59 49.11 48.65
SA-GNN 62.41 62.37 62.34 60.16 60.07 58.76

Table 1: Performance of credit rating predicting in a test of different
years on different attack rates. SA-GNN, as it exploits both feature
and structural attacks of the problem along with learning the graph
structure, is able to perform better in most of the cases.

4.2 Defense Performance
We first evaluate the node classification accuracy of differ-
ent methods in the face of adversarial attacks on the Bank
Dataset. Specifically, we use both feature attack and structure
attack to poison the bank data set and predict the credit rating
of the bank data set in the next year. We change the per-
turbation rate—or proportion of attacks—from 0 to 25% in
increments of 5%. We repeated these experiments 10 times
and reported the average accuracy in Table 1 and the relative
accuracy rate in Figure 3.

Our results indicated that under different perturbation rates,
our method consistently outperforms other methods, and the
average accuracy was also generally less affected by the at-
tack. Specifically, at a 10% perturbation rate on the four-year
dataset, the impact of attacks on our model was respectively
only 1/3, 1/8, 1/2, and 1/30 compared to GCN. Even un-
der larger perturbations, our method had greater advantages
over other baselines. At a 20% perturbation rate on the four-
year dataset, the performance of GCN was very poor, and
our model increased GCN by 8%, 5%, 3%, and 10%, respec-
tively. Generally speaking, our model has an excellent per-
formance in both prediction and anti-attack.

4.3 Ablation Study
To better understand how different components help our
model resist attacks, we conducted ablative experiments. Our
model has two components, namely Selective Representation
(SR) and Target Similarity (TS). To explore the impact of
each component, we created three model variants for com-
parison: (w/o) SR, (w/o) TS, and (w/o) SR&TS. For exam-

(a) Predict Year - 2016 (b) Predict Year - 2017

(c) Predict Year - 2018 (d) Predict Year - 2019

Figure 3: Decline of the accuracy of credit rating predicting in a test
of different years on different attack rates. SA-GNN can decline less
in most of the cases.

Year Method 10% 20%

SA-GNN 52.58±0.77 52.40±0.41
2017 (w/o) SR 52.11±0.41 50.83±0.94

(w/o) TS 51.04±0.89 50.90±0.72
(w/o) SR&TS 51.27±0.55 50.91±0.21

SA-GNN 62.34±0.78 60.07±0.70
2019 (w/o) SR 62.27±0.81 59.29±0.95

(w/o) TS 61.09±1.08 59.41±0.51
(w/o) SR&TS 60.03±0.54 58.93±0.71

Table 2: Performance of SAGNN with different variants of credit
rating predicting under feature attack and structural attack.

ple, (w/o) SR indicates that we removed the SR module while
keeping the other modules unchanged. We only evaluated
these models for prediction in 2017 and 2019 under 10% and
20% attacks, since similar patterns were observed under other
circumstances, as shown in Table 2.

Our results revealed that the performance of (w/o) SR or
(w/o) TS is better than (w/o) SR&TS when the network has
10% or 20% adversarial nodes. Additionally, both of these
models slightly under-performed compared to our proposed
SA-GNN. Hence, we can conclude that different components
have distinct roles in defending against attacks. By merging
the components in the proposed SA-GNN model, it can ef-
fectively explore the properties of the graph, leading to its
superior performance compared to the advanced baselines.

4.4 Parameter Sensitivity Analysis
In this section, we investigated the sensitivity of the super pa-
rameter p to SA-GNN, focusing specifically on how changing
the value of rate p affects the model’s performance in the four-
year dataset experiment with an attack ratio of 20%. More

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6090



(a) Predict Year - 2016 (b) Predict Year - 2017

(c) Predict Year - 2018 (d) Predict Year - 2019

Figure 4: Performance of SA-GNN with different parameter p of
credit rating predicting under feature attack and structural attack.

specifically, after changing p from 0 to 0.3, in 0.05 incre-
ments respectively, we can observe the resulting changes in
the accuracy of SA-GNN.

Figure 4 shows that the performance of SA-GNN is not
constant. When an optimum value is chosen for p, SA-GNN’s
accuracy can be improved. However, if the value is too large
or too small, it can damage the results, with p being too large
in particular posing a particularly serious threat. Our results
suggest that the optimal value of p for SA-GNN is around
half of the attack ratio.

5 Related Works
5.1 GNN for Credit Rating
Traditional credit rating models have relied on logistic regres-
sion algorithms with aggregated financial information, and
then turned to machine learning and deep learning methods.
[Ioannidis et al., 2010] found that multi-criteria decision sup-
port and neural networks had the highest accuracy amongst
methods such as multi-criteria decision support, neural net-
work, classification tree, and k-nearest neighbor neural net-
work. [Golbayani et al., 2020b] went on to analyze the
performance of four neural network methods—MLP, CNN,
CNN2D, and LSTM—in predicting credit ratings.

With the advent of Graph Neural Networks(GNNs), some
graph-based models have been widely used in contagion risk
and credit ratings[Cheng et al., 2020; Cheng et al., 2021],
which have achieved more promising results. For instance,
NetRating [Meng et al., 2017] presents a network-based
credit rating strategy to measure the credit worthiness, HGAR
[Cheng et al., 2019] learns the embedding of guarantee net-
works by high-order adjacent measures and a graph atten-
tion layer, iConViz [Niu et al., 2020] facilitates the closed-
loop analysis process as interactive visual tool, and iConReg
[Cheng et al., 2022] for detecting and isolating of contagion
risk. However, these methods do not take into account that

individuals may tamper with data in order to improve their
own ratings, so they lack the ability to resist attacks.

5.2 Attack and Defense on Graph Neural Network
Research on adversarial attacks on graph neural networks has
been scarce until recently, when researchers began to study
them in earnest [Sun et al., 2022]. [Zügner et al., 2018]
and [Dai et al., 2018] first studied adversarial attacks on neu-
ral networks with graph data. Adversarial attacks on these
graphs are typically divided into two categories based on the
target: feature attacks and structural attacks; and two types
based on when they are executed: poisoning attacks and eva-
sion attacks. Poisoning attacks prove particularly challenging
to execute, as they usually require difficult bi-level optimiza-
tion problems, and as such tend to be far less studied. Addi-
tionally, compared to structural attacks, feature attacks have
been comparatively less explored, as it has been proposed that
structural attacks are more destructive [Wu et al., 2019].

Compared to the exploration on attacks, defense methods
have yet to be thoroughly studied. Recently, research on
strengthening the robustness has begun to emerge, with possi-
ble solutions such as graph purification [Wu et al., 2019] pro-
posed to eliminate the links between dissimilar nodes since
attackers tend to connect to nodes with distinct properties.
[Entezari et al., 2020] recognized that nettack can lead to vari-
ations in a high-rank spectrum, recommending preprocessing
the graph with low-rank approximations. However, simplistic
techniques may prove inadequate when combating complex
global attacks. Alternatively, we can focus on learning a ro-
bust network. RGCN [Zhu et al., 2019], for example, uses
Gaussian distributions as hidden layers for absorbing the ef-
fects of adversarial attacks. PA-GNN [Tang et al., 2020] takes
advantage of supervision knowledge from clean graphs. Pro-
GNN [Jin et al., 2020] combines the low rank of the graph
with both the perturbation graph and GNN parameters.

However, the existing GNN attack and defense models still
have limitations when facing our problem. There are few
kinds of research on feature attacks, while banks often want to
have a good rating, so they may tamper with their bank state-
ments, which is a typical feature attack; The processing of the
low rank of a graph usually only considers the structure at-
tack, and it is also difficult to introduce additional clean chart
data in the financial network because there is no way to judge
that all characteristics of the bank are truthfully reported.

6 Conclusion
In this paper, we present a novel solution to the issue of vul-
nerable credit rating predictions being attacked, called SA-
GCN. This model learns clean graphs by building a selective
representation layer and exploring the label similarity and the
feature similarity. We demonstrate its efficacy by conducting
experiments on global bank data, where it outperforms ex-
isting state-of-the-art baselines and exhibits improved robust-
ness under attack. These findings open up avenues to predict
future credit ratings more accurately, aiding to maintain the
safety of the global financial market, thus helping to promote
economic growth. Future directions include generalizing this
solution to attacking data of other types, as well as consider-
ing broader sustainable impacts.
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