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Abstract

Accurate prediction of crop yield under the condi-
tions of climate change is crucial to ensure food se-
curity. Transformers have shown remarkable suc-
cess in modeling sequential data and hold the po-
tential for improving crop yield prediction. To un-
derstand how weather and meteorological sequence
variables affect crop yield, the positional encod-
ing used in Transformers is typically shared across
different sample sequences. We argue that it is
necessary and beneficial to differentiate the posi-
tional encoding for distinct samples based on time-
invariant properties of the sequences. Particularly,
the sequence variables influencing crop yield vary
according to static variables such as geographical
locations. Sample data from southern areas may
benefit from more tailored positional encoding dif-
ferent from that for northern areas. We propose a
novel transformer based architecture for accurate
and robust crop yield prediction, by introducing
a Customized Positional Encoding (CPE) that en-
codes a sequence adaptively according to static in-
formation associated with the sequence. Empiri-
cal studies demonstrate the effectiveness of the pro-
posed novel architecture and show that partially lin-
earized attention better captures the bias introduced
by side information than softmax re-weighting.
The resultant crop yield prediction model is ro-
bust to climate change, with mean-absolute-error
reduced by up to 26% compared to the best base-
line model in extreme drought years.

1 Introduction
Climate change is anticipated to exacerbate extreme weather
events, including heat waves and droughts, which pose sig-
nificant risks to global food security. To mitigate these ef-
fects, it is essential to accurately estimate and predict regional
and global crop productivity in response to climate variability,
changes, and extremes. Such estimates are crucial for devel-
oping agricultural policies, prioritizing international food aid,

forecasting and analyzing global trade trends, and identifying
effective strategies for climate change adaptation.

Agriculture is the mainstay of Ethiopia’s economy, con-
tributing 46% of its gross national product, employing 85%
of the population, and accounting for almost all commodity
exports [Yang et al., 2021]. Despite this, Ethiopia is among
the most severely food-insecure countries in the world. In
2022, approximately 23.6 million people, equivalent to 23.1
% of its total population, were facing high levels of acute food
insecurity[FSIN and GRFC, 2023]. Food security remains a
significant challenge in Ethiopia. The country’s smallholder,
rain-fed agriculture system is highly susceptible to climate
variability and extremes, exacerbating the vulnerability of its
food production system. [Yang et al., 2020]

Crop yield prediction based on seasonal meteorological
forcing and soil properties is an effective approach. Machine
learning methods have been used to create predictive mod-
els [Zhang et al., 2019; Jiang et al., 2020; Sun et al., 2019;
Khaki et al., 2020; Liu et al., 2022a]. Recently, Transformers
have demonstrated exceptional success for natural language
processing and computer vision tasks, and have been tested
in crop yield prediction using the Informer model [Liu et al.,
2022b]. However, the Informer only considers longitudinal
variables, and does not consider non-sequential side informa-
tion, such as soil and fertilization data. The side information
can be critical, as evidenced by the impact of the synthetic fer-
tilizers import ban in May 2021, which caused a 20% drop in
rice production in the following 6 months and led to an 80%
increase in the rice price in Sri Lanka. Leveraging this type
of side information in Transformers should further improve
the prediction performance.

Transformer was first introduced for natural language pro-
cessing where a sentence or a paragraph is decomposed into
many tokens (letters, words, passages) that are naturally or-
dered according to the sentence. Positional encoding (PE) is
originally designed as a fixed vector to be added to the em-
beddings of tokens, and later on, evolves to become learnable
parameters. Attention weights are then calculated based on
query, key, and value which take into account both token se-
quences and the positional encoding. Commonly, the posi-
tions are one-to-one mapping to order indices and this map-
ping is shared among different sequences.
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The core component in Transformers, the attention mech-
anism, actually does not distinguish the sequence orders.
By calculating the attention value of each pair of tokens,
the attention block is able to exchange information between
any token pairs. Without the explicit ordering informa-
tion, researchers can still design the positional encodings for
the nodes in a graph, such as the full Laplacian spectrum
[Kreuzer et al., 2021]. Those positional encodings are specif-
ically calculated for each graph node, which inject more in-
formation and achieve performance improvements.

Although the longitudinal meteorological variables have
explicit orders, it remains a question whether the same po-
sitional encoding should be used for different samples. The
growing periods of crops in different locations are different.
From the north to south, the seed and harvest times vary sig-
nificantly, which could be independent of the meteorologi-
cal variables in the data. Multiple types of crops could be
planted in the same area for different seasons, thus farmers
have to follow the specific loop to plant and harvest which is
not affected much by weather conditions. Moreover, if two
nearby locations have comparable features such as soil and
fertilizer, the growing period tends to be similar, which en-
courages us to predict the yield based on these non-sequential
data together with temporal sequences of weather and related
variables. Incorporating side information has been proved to
be beneficial. For instance, EAGCN [Shang et al., 2021] ap-
plies graph edge type as side information and performs better
than Graph Attention Network[Veličković et al., 2017] which
purely relies on similarity attention between graph nodes in
representation learning. In this work, we employ the non-
sequential side information to generate the customized posi-
tional encoding (CPE) for the sequential data and thus con-
trol the information exchange within a sequence differently
between different location, soil, or fertilizer conditions.

Our solution is straightforward yet effective. We decouple
the positional encoding from the token embedding, and cal-
culate the positional encoding based on non-sequential vari-
ables which characterize when and where a meteorological
sequence is sampled.1 This strategy allows the sequences
with similar side information to share similar position encod-
ings. Our contributions are summarized as follows:

• A new learnable CPE is designed for the Transformer
architecture to make the positional encoding of sequen-
tial data dependable on non-sequential side information
of different sequences.

• A Partially Linearized Attention Module is proposed to
capture the bias from the side information of sequences,
which we show better than softmax re-weighting.

• Extensive experiments demonstrate the effectiveness of
the proposed novel architecture and the robustness of our
approach with respect to climate change.

2 Related Work
2.1 Positional Encodings
Shared Positional Encodings in Sequence The original
Transformer [Vaswani et al., 2017] either uses a sinusoidal

1Code and data are available at https://github.com/Luckick/CPE

position signal or learns a position embedding for each po-
sition and then add that to word embeddings. [Shaw et al.,
2018] proposes relative position embeddings to produce a dif-
ferent learned embedding according to the offset between the
“key” and “query”. Text-to-Text Transfer Transformer (T5)
[Raffel et al., 2020] uses a simplified relative position em-
bedding where each embedding is a scalar and added to the
corresponding logit used for computing the attention weights.
[Huang et al., 2020] proposed a multiplicative relative posi-
tional embedding for the logit. Decoupled Directional Rel-
ative Position Encoding [Zhang et al., 2022] decouples the
relative distance and directional information and maintains
them with two different embeddings. TUPE[Ke et al., 2020]
decouples the positional encoding from the word embedding
and gives a specific design in the attention module to untie the
positional encoding for [CLS] symbol. [Luo et al., 2022] pro-
poses a Universal RPE-based (URPE) Attention to guarantee
the Transformers using this form of attention are universal ap-
proximators of continuous sequence-to-sequence functions.
In other domains, the corresponding positional encodings are
also developed, according to the property of the input data.
For example, [Li et al., 2021][Raisi et al., 2021] proposes
the 2D Learnable Sinusoidal Positional Encoding for images,
position encoding for both spatial and temporal.
Positional Encoding in Graph and Image [Dwivedi and
Bresson, 2020] calculates the eigenvector of the graph Lapla-
cian as positional encoding and adds it to node features. The
method also modifies the attention score by multiplying a
weight calculated from edge information. Spectral Atten-
tion Network (SAN) [Kreuzer et al., 2021] also applies the
eigenvectors and their corresponding eigenvalues when sup-
plying information about relative positions in a graph. The
Graphormer [Ying et al., 2021] calculates the distance of the
shortest path (SPD) between two connected nodes as spatial
encoding. [Chu et al., 2021] applies convolution operation
to calculate a local environment as conditional positional en-
codings for image patch.

2.2 Side Information Integration in Transformer
TransReID [He et al., 2021] incorporates the non-visual in-
formation, such as cameras or viewpoints, into embedding
representations and then calculates summation of this embed-
ding and the input sequence. [Zheng et al., 2022] develops a
learnable template for side information and concatenates the
template into sequences as extra tokens. NOVA [Liu et al.,
2021] designs Non-invasive Self-attention which only applies
the sequential side information into the attention calculation
but not the value matrix in the Transformer heads. AliFormer
[Qi et al., 2021] merges the attention from other sequences
which could include future information to help with the pre-
diction of the main sequence. DIF-SIR [Xie et al., 2022] fol-
lows a similar concept while proves that the merged attention
matrix has a higher rank and could be more informative.

2.3 Crop Yield Prediction
Agricultural scientists [Jones et al., 1986][Attia et al., 2021]
have developed a Process-Based Model which takes meteoro-
logical variables (e.g., air temperature and humidity, precipi-
tation, and solar radiation) and soil properties as inputs. They
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parameterize crop physiological and phenological processes,
and entail a large number of cultivar-specific parameters that
have to be calibrated based on field experiments. [Yang et
al., 2020] [Zhang et al., 2019] and [Jiang et al., 2020] inte-
grate multiple sources of data such as meteorological forcing,
soil properties, irrigation information and cumulative expo-
sure metrics, to train Random Forest (RF), Gradient Boosting
(XGBoost), long short-term memonry (LSTM), least absolute
shrinkage and selection operator (LASSO) or Convolutional
Neural Network (CNN) model for maize yield in China and
the U.S. Corn Belt. [Sun et al., 2019] and [Khaki et al., 2020]
include both CNN and LSTM in a framework where CNN
is used to process spatial features and weather components
while LSTM is used to capture the time dependencies. [Liu
et al., 2022a] proposes attention-based LSTM model that cal-
culates the attention of each time point based on side infor-
mation and provides a shortcut to aggregate the hidden states
of all time points when making prediction. [Liu et al., 2022b]
is the first to use Transformer to process the sequences.

3 The Proposed CPE Method
In this section, we first briefly review the structure and differ-
ent components of Transformer, and then describe how our
CPE method integrates non-sequential side information into
the positional encoding of Transformer to improve sequence
regression performance and robustness.

We solve a regression problem where each data point con-
sists of a set of sequences and a side information vector s.
The sequence data X contains the time series of d features
as columns (x1, x2, ..., xN )T where N is the total number of
time steps and each xi contains d features. The label associ-
ated with each record is a scalar.

3.1 Attention Module
The attention module [Vaswani et al., 2017] is formulated as
querying a dictionary with key-value pairs, e.g.,

Attention(Q,K, V ) = softmax(QKT )V (1)

where Q (Query), K (Key), V (Value) are specified as
the hidden representations: Q = (X + P )WQ, K =
(X + P )WK , V = (X + P )WV where X is the se-
quence embedding, P is positional encoding which could
be either calculated from sine/cosine function or set as
learnable parameters with the same size of X , WQ,WK ,
and WV are learnable parameters. We refer the QKT as
score matrix and apply a softmax re-weighting to get the
attention matrix softmax(QKT ). The multi-head vari-
ant of the attention module is popularly used and allows
the model to jointly attend to the information from differ-
ent representation sub-spaces, and is defined as Multi −
Head(Q,K, V ) = Concat(head1, head2, ..., headM )
where headm = Attention(X ′WQ

m , X ′WK
m , X ′WV

m ) and
X ′ = X + P .

Following the TUPE [Ke et al., 2020] method 2 which
questions the rationality of the linear arithmetic between the
word embedding and the positional embedding, the positional
correlation and word correlation are computed separately.

The score matrix becomes the sum of word embedding score
matrix and positional embedding score matrix.

α(i,j) = (xiW
Q)(xjW

K)T + (piU
Q)(pjU

K)T (2)

where α is the score matrix, xi, xj are the embedding of the
sequence at indices i and j respectively, pi, pj are the corre-
sponding positional encoding, UQ and UK are the learnable
parameters for the query and key counterparts in the posi-
tional encoding.

3.2 Customized Positional Encoding
In contrast to the conventional positional encoding which, as
previously discussed, is shared across various sequences, our
CPE aims to re-calibrate the positional encoding in a man-
ner that reflects the unique side characteristics intrinsic to
its associated sequence, thereby moving away from a univer-
sal, one-size-fits-all encoding scheme. Essentially, the CPE
should be a function of side information s, which can be for-
mulated as

CPE(i,j) = f(s, i, j) (3)

In such a way, the CPE possesses the potential capability
to distinguish periods within a sequence, using the static in-
formation as a guide. Consequently, sequences with varying
side information exhibit unique patterns, thereby promoting
the model’s ability to capture these differentiated patterns.

Generally, we have two categories of methods that encode
the customized positional information in the attention mod-
ule, pairwise CPE and explicit CPE, depicted in Fig. 1. We
also show that the CPE concept could be generalized to se-
quential side information in Supplemental Material Sec. 1.

Pairwise Customized Positional Encoding
This approach aims to model the relationships between a pair
of input features or positions by utilizing different projection
matrices UQ and UK . It involves integrating the side infor-
mation s with the shared positional encoding pi into a func-
tion g, as opposed to relying solely on pi, and we have

CPEpairwise
(i,j) = (g(pi, s)U

Q)(g(pj , s)U
K)T (4)

Given that pi and pj could be generated from the
sine/cosine functions for sequences of arbitrary length, the
pairwise CPE is also able to handle the sequences of varying
length. In our implementation, as demonstrated in Fig. 1(b),
g(·) is a multi-layer perceptron (MLP) that takes the concate-
nation of pi and s as input and generates a vector. This vector
is used to calculate the key or query representation to further
form our CPE matrix, similar to (2).

Explicit Customized Positional Encoding
This approach does not incorporate any prior knowledge of
positional encoding; rather, it solely relies on the side infor-
mation, and in other words, calculating the CPE matrix as a
function h(s). The dimensionality of the output produced by
h(s) could either be N ∗N , which symbolizes absolute posi-
tional encoding of the sequence, or 2N−1 in accordance with
the Directional Relative Position Encoding paradigm [Zhang
et al., 2022]. Our approach also supports specialized designs,
such as untying the special tokens from positions [Ke et al.,
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Figure 1: The Proposed CPE: (a) shows the overall structure for a single head, (b) and (c) provide two implementations of CPE. Notation X
denotes the sequential variables and s denotes the static variables.

2020], by filling in the CPE matrix according to a given set-
ting.

CPEexp
(i,j) = h(s)[τ(i, j)] (5)

where τ is an indexing function to extract specific indexed
elements from the vector h(s) and use them to fill CPEexp.

In our implementation, shown in Fig. 1(c), we take the
absolute positional encoding that transforms s into a vector
h(s) of size N ∗ N and then fill each element to a position
of a CPE matrix with size (N,N). The absolute CPE can be
looked up from vector h(s) with τ(i, j) = i ∗ N + j , such
that CPEabs

(i,j) = h(s)[i ∗N + j].

3.3 Partially Linearized Attention Module
As introduced in Section 3.1, the vanilla version of attention
module employs a softmax function to transform the score
matrix and obtain row-wise normalization to yield probability
values. Empirically, the softmax attention tends to get better
performance by punishing far-away connections and enforc-
ing locality in some cases [Qin et al., 2022]. The Linearized
Attention was first proposed in [Katharopoulos et al., 2020]
to reduce the complexity and to accelerate the inference. We
generalize the linear attention to use any similarity measure
derived from a kernel function. In other words, we utilize a
kernel function as innter product of mapped features ϕ(x) and
rewrite the attention matrix in a vectorized form as follows:

Attention(Q,K, V )Linear = (ϕ(Q)ϕ(K)T )V (6)

While using the softmax function is beneficial for sequence
modeling, mitigating the issue of gradient explosion, it poten-
tially undermines the bias introduced by side information, as
softmax normalizes its input into probabilities.

Hence, we propose a Partially Linearized Attention Mod-
ule (PLAM) that applies the softmax function to the attention
score derived from the sequence embedding, while retaining
a linear/identical function for the CPE. We combine the score
matrix and CPE additively, and use the resulting matrix as the

attention matrix in the corresponding head of the Attention
Module.

Attention(Q,K, V )PL

=(λ1 ∗ softmax(QKT ) + λ2 ∗ CPE)V
(7)

By avoiding softmax on CPE, the influence on token in-
teractions is more explicit and straightforward, making it less
affected by the actual sequence data. While the linearized at-
tention was invented to reduce the computational complexity
at a cost of a small sacrifice in the performance, our exper-
iments further indicate that it could help maintain the bias
introduced by the side information and give more accurate
prediction. We will justify the benefits of the PLAM through
comparative analysis in Section 4.4.

Case Study: Attention-based Residual Block
We argue that the Attention-based Residual Block in
LSTMatt [Liu et al., 2022a], aggregating hidden states at
each time step, can be seen as a special case of our PLAM.
By employing a single head, injecting λ1 = 0 and λ2 = 1
in (7), and treating WV as an identity matrix such that V =
XWV = X , the output of PLAM becomes CPE × X , so
we have the embedding of the first token as

∑n
j=1 h(s)[j]∗xj

for the regression task. This aligns well with the the attention
mechanism in LSTMatt wherein the final state is a weighted
sum of all hidden states, aggregated through attention values
derived from static side information.

3.4 Overall Structure
Based on the aforementioned basic modules, we construct
our CPE network following the structural design of a Trans-
former encoder. We utilize a fully connected layer to combine
the outputs from the multi-head attention (MHA) module and
merge them with MHA inputs via a skip connection. Similar
to vanilla Transformer, we extract the first token’s embed-
ding, which encapsulates learning from the input sequence
and its side information, and then employ a fully connected
layer for final prediction.
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Figure 2: Baseline Transformer models which use APE or DPE, and merge the side info into the modelings based on EC or ST. Here the
matrices colored in pink are shared among all inputs, which could be fixed values or learnable parameters.

Dataset Size Day County Year MF SF
Maize 20,259 210 1,413 2000-2018 19 97
Soybean 25,171 210 717 1979-2018 19 95
Ethiopia 7,951 154 563 2004-2021 26 106

Table 1: Dataset Statistics

4 Experiments
In this section, we first evaluate the overall performance of
the proposed CPE on three real-world agriculture datasets.
We then analyze the robustness of our model under extreme
weather conditions. Finally, we demonstrate the effectiveness
of decoupling side information from the sequence data.

4.1 Datasets
In our experiments, we utilize three real-world datasets from
various locations, including one from Ethiopia and two from
the United States. Each dataset is assembled by collecting and
merging data from multiple sources. We first present the sta-
tistical summary of the pre-processed datasets, which serve
as the input to the proposed Transformer model. The content
and characteristics of the features are further described.

Table 1 provides an overview of the key characteristics of
each data, including the sample size (Size), the number of
days for which a meteorological forcing feature was captured
(Day), counties or regions (County), recorded years (Year),
meteorological forcing features measured in each day (MF),
and static side information features (SF) in each dataset.

In the Maize and Soybean datasets, crop yield data is ob-
tained from the USDA National Agricultural Statistics Ser-
vice (NASS) website https://www.nass.usda.gov for counties
located in the US Cornbelt. The surface meteorological vari-
ables are extracted from the gridMET dataset[Abatzoglou,
2013], which includes information on temperature, humid-
ity, radiation, moisture, wind, precipitation, solar radiation,
and evapotranspiration. For the data from Ethiopia, the crop
(maize) production data was sourced from the Central Statis-
tics Authority (CSA) [CSA, 2021], spanning from 2004 to

2021, and was obtained through interviews and measure-
ments conducted on over 45,000 households across the ru-
ral regions of the county. Additionally, climate and environ-
mental variables, such as wind speed, temperature, dewpoint
temperature, surface pressure, precipitation, soil temperature
and soil water at 4 layers, were acquired from the European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis v5 (ERA5) dataset [Hersbach et al., 2018]. The side
information utilized in this study comprises geographical fea-
tures (e.g. latitude, longitude, area), year information, fertil-
ization usage, and static soil features [Cao et al., 2018] (e.g.
soil texture, bulk density, etc.).

The meteorological forcing and soil data were originally
sourced at grid-level. We aggregate the grid-level feature val-
ues into county level by computing the mean value of all
grids within each county. Given that the study area spans
a widerange of latitudes that exhibit variations in the start
date and duration of the growing season, our models are con-
figured to utilize the 154-day ERA5 and 210-day gridMET
data of each year, covering the period from May 1st to Oc-
tober 1st in Ethiopia, and April 10th to November 6th for
Maize/Soybean, respectively.

4.2 Set-up
Baseline: We test the proposed method against seven base-
line methods. TF(No-Side) employs vanilla Transformer and
operates solely on sequential data without incorporating with
any side information. The other baselines include traditional
forecasting methods such as Random Forest (RF) and XG-
Boost, advanced Long Short-Term Memory with Attention-
based Residual Block (LSTM-Att), and Transformer-based
(TF) methods for both sequential and static features. These
transformers can be categorized into vanilla Additive Posi-
tional Encodings (APE) and Decoupled Positional Encodings
(DPE), based on the approach to adding positional encod-
ings. We also examine different techniques for aggregating
the static features into the transformer architecture, including
Expanding and Concatenating (EC), or generating a Special
Token (ST). We show the differences between APE and DPE,
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Figure 3: The yield and predictions map.

as well as EC and ST in Fig. 2.
CPE: We propose several variants of CPE including CPE-
P for pairwise CPE, CPE-Abs for absolute CPE, and CPE-
Att with an additional layer the same as discussed in the
Attention-based Residual Block case study.
Train/Test Split: Similar to k-fold cross validation, we adopt
a leave-one-year-out approach for our study. It involves loop-
ing through each year and using it as the test set with all other
years for training. For the Corn and Ethiopia dataset, we test
the methods on every year. On Soybean, we only leave year
2000-2018 as test considering the data quality.
Evaluation Metrics: All methods are evaluated in terms of
four metrics: mean absolute error (MAE), root mean square
error (RMSE), correlation coefficient (r), and coefficient of
determination (R2).

Additional implementation details can be found in the Sup-
plemental Material Sec. 2.

4.3 Experimental Results
Overall Forecasting Quality
We first evaluate the performance of CPE by comparing it
with all the aforementioned baselines. As shown in Table
2, we collect the records from all testing years and calculate
the evaluation metrics. Primarily, integrating static side in-
formation into the model evidently improves the prediction
performance. The proposed CPE outperforms the best base-
line model. CPE-P does not perform well in this study as
it benefits from sequences of different lengths by calculating
CPE implicitly. However, in our study datasets, the length of
all sequences is fixed and the growing stage is deterministic,
which allows the absolute variant performs better.

Fig. 3 presents the mean yield and prediction for all testing
years, and provides several observations. First, our model
demonstrates an ability to capture the inductive bias from
each county, as evidenced by the close alignment of predic-
tion values with corresponding yield value. Second, all of
the models employed in this study exhibit poor performance
in predicting the maize yield in Ethiopia. This can be at-
tributed to the dramatically increasing yield trend in the re-
gion, while all models primarily focus on capturing a linear
growing trend, as depicted in Fig. 4.

Robustness in Years with Extreme Weather Conditions
In Fig. 4, we present the MAE and R2 metrics for all pre-
dicted years. Notably, the year 2012 was marked by an ex-
treme drought [Boyer et al., 2013][Jin et al., 2019], which

Figure 4: The Yield/Predictions, MAE and R2 along all testing years

posed a significant challenge for all models to achieve ac-
curate predictions. Nonetheless, our method performs rela-
tively better in this year than the other models. Furthermore,
while all models fail to take into account the impact of the
aphid, other disease, and pest issues that led to the low soy-
bean yields in 2003 [Schnitkey, 2013], our method still out-
performs other models. Specifically, the model created by our
method is able to capture the moderate drought that occurred
in 2003 and contributed to a yield drop.

Comparing the proposed CPE method to the baseline mod-
els, we found that the baseline with special token has a
good overall prediction performance but is not robust in ex-
treme weather conditions. In contrast, the proposed CPE has
smallest spike, and can make precise predictions even under
extreme weather conditions. The baseline APE-ST which
achieves the best overall performance is fragile during ex-
treme weather and can not make accurate predictions. Quan-
titatively, our model has reduced the MAE by up to 26%
(22.76 vs 30.77 in 2012) and 17% (6.53 vs 7.79 in 2003) re-
spectively for Corn and Soybean, in those years with extreme
weather conditions. Interestingly, we do not observe spikes
in Ethiopia probably due to the overwhelmingly increasing
trend in yield, which makes the drop less noticeable.

Robustness is crucial and even more important than the
overall forecasting quality, as a huge decrease in production
can drastically inflate crop prices and threaten food security.
For instance, a 20% decrease in yield in Sri Lanka has led to
an 80% increase in prices. Robust predictions under condi-
tions of extreme weather can help develop effective agricul-
tural policies and prioritize international food aid to prevent
people from hunger and poverty due to production decreases.

Ability to Capture Inductive Bias from Side Information
As previously mentioned, the inclusion of side information
can have great impact on yield prediction. These important
features on soil quality, fertilizer usage and other hidden vari-
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Maize Soybean Ethiopia
Model r R2 RMSE MAE r R2 RMSE MAE r R2 RMSE MAE
TF(No-Side) 0.45 0.27 31.21 24.42 0.72 0.48 8.03 6.17 0.35 0.11 17.12 13.61
RF 0.70 0.46 26.79 20.91 0.70 0.35 8.95 7.27 0.56 0.27 15.46 12.40
XGBoost 0.78 0.60 23.03 17.40 0.76 0.55 7.46 5.78 0.67 0.41 13.91 10.51
LSTM-Att 0.85 0.73 18.96 14.14 0.86 0.74 5.64 4.35 0.67 0.44 13.59 10.48
TF(APE-EC) 0.81 0.66 21.27 16.12 0.85 0.72 5.93 4.52 0.66 0.44 13.63 10.53
TF(APE-ST) 0.85 0.72 19.16 14.30 0.87 0.75 5.52 4.19 0.68 0.47 13.27 10.21
TF(DPE-EC) 0.82 0.66 21.13 16.12 0.85 0.72 5.85 4.43 0.67 0.44 13.58 10.45
TF(DPE-ST) 0.85 0.72 19.29 14.34 0.86 0.74 5.66 4.27 0.68 0.46 13.37 10.33
CPE-P 0.79 0.62 22.53 17.20 0.85 0.73 5.77 4.42 0.66 0.44 13.62 10.54
CPE-Abs 0.85 0.73 18.98 14.52 0.86 0.75 5.60 4.32 0.67 0.45 13.52 10.40
CPE-Att 0.88 0.77 17.48 13.39 0.86 0.74 5.69 4.36 0.68 0.45 13.51 10.31

Table 2: Overall Performance Metrics

Figure 5: The MAE and Pearson Correlation along all testing years,
for different inputs, with a CPE-Att model

ables, such as management ability and technical expertise, are
not reflected in the input features. These factors can result in
significant variations in the yield across counties, even in the
presence of similar meteorological forcing features. The ex-
periments, as depicted in Table 2 and Fig. 5, show that the
incorporation of side information greatly enhances the pre-
diction performance.

To investigate this further, we conduct an experiment on
the Maize dataset, where a Gaussian noise (mean: 0, standard
deviation: 1) is applied to replace the meteorological forcing
input for all counties, shown in Fig. 5. By decoupling the
side information from the sequence embedding and using Par-
tially Linearized Attention Module to avoid re-weighting by
softmax normalization, our model is able to learn a relatively
fixed CPE for sequence data sampled from the same county,
and focus more on the changes in the meteorological forc-
ing. As a result, the model is more sensitive to the changes
due to the meteorological forcing, thus enabling the predic-
tion from the abnormalities. The side information with noise
does not perform well on the years with drought weather such
as 2003 and 2012. However, using the gridMET meteorolog-
ical forcing as input, we can capture the abnormality infor-
mation within the gridMET and produce relative good per-
formance. Fig. 5 also indicates the side information captures
better inductive bias than sequential information alone as it
has a higher correlation in most of the years.

We conduct an ablation study where the PLAM demon-
strates superior performance, and consistently outperforms

Dataset Method r R2 RMSE MAE

Maize Softmax 0.84 0.70 20.03 15.19
PL 0.85 0.73 18.98 14.52

Soybean Softmax 0.84 0.70 6.05 4.59
PL 0.86 0.75 5.60 4.32

Ethiopia Softmax 0.63 0.39 14.20 10.95
PL 0.67 0.45 13.52 10.40

Table 3: Softmax vs Partially Linearized (PL)

the softmax based networks, as shown in Table 3.

5 Conclusion and Discussion
In this study, we introduce a new CPE to crop yield modeling
that incorporates meteorological forcing and soil information,
and apply it to the U.S. Corn Belt (for maize and soybean)
and Ethiopia (for maize). CPE is found to outperform several
other approaches in capturing the spatiotemporal variability
of crop yield in both countries.

The performance of our model varies between regions, be-
ing notably better in the U.S. Corn Belt than in Ethiopia. In
the U.S., weather is the primary cause for the inter-annual
and spatial variability of crop yield, due to better seed qual-
ity, technology advancement, and resource availability; in
Ethiopia however, factors such as labor availability and labor
input, seed quality, fertilizer affordability can vary dramati-
cally from year to year, which influence crop yield variability
but are not reflected by input data. For this reason, weather is
not the primary cause for crop yield in Ethiopia.

Another distinct feature is that crop yield has experienced
a stronger increasing trend in Ethiopia than in the U.S.. Crop
yield in Africa is much lower than the rest of the world due to
the low rate of irrigation and low agricultural input, among
others. More recently, the adoption of technology, better
seed, and expansion of irrigated land have caused rapid in-
crease of yield. These non-environmental factors play a ma-
jor role in influencing the trend and variability of yield in
Ethiopia, making the training of models more challenging.
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