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Abstract
As a fundamental problem in Operations Research,
sparse process flexibility design (SPFD) aims to de-
sign a manufacturing network across industries that
achieves a trade-off between the efficiency and ro-
bustness of supply chains. In this study, we propose
a novel solution to this problem with the help of
computational optimal transport techniques. Given
a set of supply-demand pairs, we formulate the
SPFD task approximately as a group sparse opti-
mal transport (GSOT) problem, in which a group
of couplings between the supplies and demands
is optimized with a group sparse regularizer. We
solve this optimization problem via an algorith-
mic framework of alternating direction method of
multipliers (ADMM), in which the target network
topology is updated by soft-thresholding shrinkage,
and the couplings of the OT problems are updated
via a smooth OT algorithm in parallel. This op-
timization algorithm has guaranteed convergence
and provides a generalized framework for the SPFD
task, which is applicable regardless of whether the
supplies and demands are balanced. Experiments
show that our GSOT-based method can outperform
representative heuristic methods in various SPFD
tasks. Additionally, when implementing the GSOT
method, the proposed ADMM-based optimization
algorithm is comparable or superior to the com-
mercial software Gurobi. The code is available at
https://github.com/Dixin-s-Lab/GSOT.

1 Introduction
Sparse process flexibility design (SPFD) is a fundamental
Operations Research (OR) problem that aims to design a
sparse bipartite manufacturing network to make plants shift
production portfolios according to the dynamics of demands
with little penalty in terms of time and cost. This problem
originates in automotive manufacturing [Jordan and Graves,
1995] and commonly appears in various industrial scenarios,
e.g., supply chain design [Graves and Tomlin, 2003; Simchi-
Levi et al., 2018], medical resource management [Chan et

∗Correspondence author.

al., 2022], express delivery system optimization [Chou et al.,
2008], and so on. Because of its significance in industry, the
study of the SPFD problem has both theoretical values and so-
cial impacts, which is highly correlated with the 8th and 9th
United Nations Sustainable Development Goals, i.e., promot-
ing sustained, inclusive, and sustainable economic growth,
building resilient infrastructure, promoting inclusive and sus-
tainable industrialization, and fostering innovation. Espe-
cially for those developing countries, the flexibility of their
supply chains is critical for making their economy robust to
the uncertainty in the global market. Solving the SPFD prob-
lem helps optimize their existing supply chains and provides
valuable guidance for establishing their future industrial in-
frastructures.

In general, the SPFD problem corresponds to a multi-
stage optimization problem. In particular, we need to es-
timate the significance of edges in the current manufactur-
ing network and update the network topology via adding or
deleting edges based on the edge significance [Chou et al.,
2008]. Repeating the two steps above leads to a heuris-
tic search process. Most existing methods implement the
above heuristic strategy in different ways. When estimat-
ing the edge significance, they often solve the maximum
flow (max-flow) problem [Harris and Ross, 1956] or learn
a neural network-based surrogate of the max-flow solver
in the reinforcement learning framework [Wei et al., 2021;
Chan et al., 2022]. Given the edge significance, the network
topology is updated in a deterministic [Chou et al., 2010]
or stochastic [Chen et al., 2015] way. These methods have
been applied in many scenarios, whose performance even has
theoretical guarantees in some settings. However, the meth-
ods and their theory are often developed under questionable
assumptions, e.g., the same cost/profit per edge, same-sized
supply and demand sets, specified topology type (like long
chain or k-chain), and so on, which limits their practical ap-
plications. Moreover, none of the methods consider jointly
optimizing the edge significance and the network topology in
a scalable framework. As a result, they often lead to local
optimum for large-scale applications [Feng et al., 2017].

To overcome the drawbacks mentioned above, we pro-
pose a novel approximate solution, called group sparse op-
timal transport (GSOT), to the SPFD problem based on com-
putational optimal transport techniques [Peyré et al., 2019].
As illustrated in Figure 1, given predefined supplies and a
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Figure 1: An illustration of the proposed method.

set of demands sampled from some distributions (as existing
work [Feng et al., 2017; Wei et al., 2021; Chan et al., 2022]
did), we jointly approximate the SPFD problem by solving
a set of optimal transport (OT) problems. Each OT problem
corresponds to maximizing the expected profit of a manufac-
turing network given a supply-demand pair. All OT problems
are optimized jointly with a group sparse regularizer [Bengio
et al., 2009; Deng et al., 2013], leading to a set of couplings
(or called optimal transport plans) with a consistent sparse
structure. The aggregation of the group sparse couplings in-
dicates the flexible network topology that is robust to the de-
mand uncertainty.

Instead of applying heuristic multi-stage optimization
strategies, our GSOT approximates the SPFD problem by
solving a convex optimization problem, whose convergence
to the global optimum is theoretically-guaranteed. In partic-
ular, we design an algorithmic framework based on the al-
ternating direction method of multipliers (ADMM) [Boyd et
al., 2011], solving the optimization problem efficiently. The
ADMM framework updates the target network topology iter-
atively, in which a group-lasso operation [Simon et al., 2013]
ensures the group sparsity of the couplings. Each coupling is
updated by solving a quadratically-regularized optimal trans-
port problem, leading to the smooth OT algorithm [Blon-
del et al., 2018]. Our GSOT method is applicable for both
balanced and unbalanced supply-demand settings, and the
ADMM framework is feasible for large-scale SPFD prob-
lems. The comparisons with existing heuristic methods on
synthetic and real-world datasets demonstrate the effective-
ness of our method.

2 Related Work
2.1 Sparse Process Flexibility Design
Focusing on the SPFD problem, many solutions have been
proposed. The early work in [Jordan and Graves, 1995] pro-
posed a concept called “long chain”, which designed a flexi-
ble process empirically by constructing a long circular chain
visiting as many nodes as possible. Taking the long chain
as the design principle, many heuristic methods have been
proposed [Graves and Tomlin, 2003]. These methods de-
sign a sparse manufacturing network by adding edges to a
null graph [Chou et al., 2011; Feng et al., 2017] or delet-
ing edges from a complete bipartite graph [Yan et al., 2018;
Simchi-Levi et al., 2018] step by step.

In each step, different methods select one or multiple can-
didate edges to add or delete by various criteria, which can
be coarsely categorized into three classes. The optimization-
based methods select the edges by solving a max-flow prob-
lem [Harris and Ross, 1956] or its variants (e.g., its dual
problem [Yan et al., 2018] and its stochastic version [Feng
et al., 2017]) given the current network topology. The node
expansion methods adapt the concept of graph expanders in
graph theory, adding edges iteratively to improve upon the
node expansion ratio in a greedy manner [Chou et al., 2008].
Theoretically, the “probabilistic graph expander” introduced
in [Chen et al., 2015] provides an upper bound for the number
of edges that guarantees (1−ϵ)-optimality with a high proba-
bility in balanced and symmetric systems. The work in [Chen
et al., 2019] further generalizes the theoretical result to un-
balanced and asymmetric systems with O(n ln(1/ϵ)) edges.
Recently, some learning-based SPFD methods have been de-
veloped to solve combinatorial problems [Khalil et al., 2017;
Sultana et al., 2022; Barrett et al., 2020]. These methods
formulate the steps of adding edges and their influences on
the cost of the whole supply chain as an action-state se-
quence in the reinforcement learning (RL) framework. In-
stead of solving the max-flow problem per step, they train
a policy model to imitate the optimizer [Wei et al., 2021;
Chan et al., 2022]. The RL-based methods are more efficient
than the optimization-based methods in the deploying phase
because of avoiding iterative optimization. However, they of-
ten have poor scalability and limited generalization power.

Although the above methods achieve encouraging perfor-
mance in some cases, their nature of heuristic search often
leads to undesired local optimum in practical applications.
In theory, the optimality of the long chain is only held in
some ideal situations, as discussed in [Désir et al., 2016]. As
aforementioned, most existing methods ignore the grounding
cost/profit associated with each edge. Moreover, none con-
sider reformulating the two-stage strategy (i.e., the network
update and evaluation) in a joint optimization framework.

2.2 Computational Optimal Transport
Optimal transport (OT) theory [Villani, 2008] has proven to
be useful in machine learning tasks, e.g., distribution match-
ing [Frogner et al., 2015], graph matching [Maretic et al.,
2022], data clustering [Agueh and Carlier, 2011; Cuturi and
Doucet, 2014], information fusion [Xu and Cheng, 2022],
and generative modeling [Arjovsky et al., 2017]. Given the
samples of two distributions, the discrete OT problem cor-
responds to a linear programming problem [Kusner et al.,
2015], which optimizes a joint distribution of the samples
(a.k.a., the coupling or the optimal transport plan) to min-
imize the expected pairwise distance between the two dis-
tributions’ samples. Typically, this problem is solved by
the conditional gradient algorithm [Titouan et al., 2019] or
the Bregman ADMM algorithm [Wang and Banerjee, 2014;
Ye et al., 2017]. To accelerate the optimization step, the
work in [Cuturi, 2013] proposed a surrogate called Sinkhorn
distance, which makes the OT problem strictly convex by
adding an entropic regularizer to the coupling. The entropic
OT problem can be solved efficiently by the Sinkhorn-scaling
algorithm [Sinkhorn and Knopp, 1967; Benamou et al.,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6122



2015]. To further improve the numerical stability and scal-
ability of the Sinkhorn-scaling algorithm, some variants have
been proposed, including the proximal point method [Xie
et al., 2020] and the stochastic Sinkhorn algorithm (called
Greenkhorn) [Altschuler et al., 2017]. Besides the entropic
OT problem, the quadratically-regularized OT problem is also
considered in many applications, which can be solved by the
smoothed semi-dual algorithm [Blondel et al., 2018] or the
Bregman ADMM algorithm [Xu and Cheng, 2022].

Note that although the above methods are designed for the
balanced OT problem (i.e., the marginal distributions of the
coupling are known and with equal measures), they can be
extended to the cases where the marginal distributions of the
coupling are unreliable or unavailable, e.g., the unbalanced
OT problem [Chizat et al., 2018] and the partial OT prob-
lem [Benamou et al., 2015]. The optimal coupling indicates
the correspondence between the two distributions’ samples,
which has the potential to various resource assignment prob-
lems [Zhang and Zhu, 2019; Hughes and Chen, 2021]. To our
surprise, however, applying the optimal transport methods is
seldom considered for the SPFD problem. In the following
content, we fill this blank and propose a group sparse optimal
transport method to solve the SPFD problem approximately.

3 Proposed Method
3.1 An Optimal Transport Perspective on SPFD
Given M plants and N products, we would like to design
a flexible manufacturing network to match the plants’ sup-
plies with the products’ random demands in a robust and
efficient way. Following existing SPFD work [Chou et al.,
2008], we assume that the supplies are predefined and for-
mulated as a vector µ ∈ [0,∞)M , and the demands are un-
known but can be sampled from a known distribution, i.e.,
ν ∈ [0,∞)N ∼ νD, where νD is the distribution of the de-
mands defined in the sample space D. As illustrated in Fig-
ure 1, the proposed SPFD problem corresponds to construct-
ing a bipartite graph connecting the plants with the products.
Mathematically, this problem can be formulated as the fol-
lowing bi-level optimization problem:

A∗ = arg maxA∈{0,1}M×N Eν∼νD [pν(A)]︸ ︷︷ ︸
Expected profit maximization

s.t. pν(A) = maxA⊙X∈Π(µ,ν)⟨P ,A⊙X⟩︸ ︷︷ ︸
Max-flow problem

,

∀ν ∼ νD, and ∥A∥0 ≤ L︸ ︷︷ ︸
Sparse constraint

.

(1)

Here, A = [amn] ∈ {0, 1}M×N is a binary matrix indicating
the network topology. amn = 1 means that there exists an
edge (m,n) between the plant m and the product n. pν(A)
represents the maximum profit obtained when the network
topology is A and the demand vector is ν. The upper-level
optimization problem corresponds to optimizing the network
topology to maximize the expected profit. In the lower level,
a set of max-flow problems are solved to determine the profits
given the current network topology. To avoid a trivial solution
(i.e., A = 1M×N ), we further consider the sparsity of A,

restricting its number of nonzero elements to be equal to or
less than a threshold L, i.e., ∥A∥0 ≤ L, where ∥ · ∥0 is the
ℓ0-norm of the matrix.

Following the work in [Chan et al., 2022], we decouple
the variables of each max-flow problem as the network topol-
ogy A and the transport matrix X = [xmn] ∈ RM×N . Ac-
cordingly, A ⊙ X represents the Hadamard product of the
two matrices. Its (nonzero) element amnxmn indicates the
number of products passing through the edge (m,n). Obvi-
ously, A ⊙ X should meet the constraints provided by the
supplies and the demands, i.e., A ⊙X ∈ Π(µ,ν) = {T ≥
0|T1N ≤ µ,T T1M ≤ ν}. The objective ⟨P ,A ⊙X⟩ =∑

m,n pmnamnxmn is the whole profit created by the net-
work, and P = [pmn] is the grounding profit matrix record-
ing the profit per product created by a plant (i.e., pmn repre-
sents the profit of making the product n from the plant m).

In this study, we consider simplifying the SPFD problem
in (1) based on computational optimal transport techniques.
In particular, we replace A⊙X with a single functional vari-
able T (·). Accordingly, we can reformulate (1) as follows.

maxT (·) Eν∈νD [ maxT∈Π(µ,ν)⟨P ,T ⟩︸ ︷︷ ︸
T (ν)

]

s.t. Eν∈D[T (ν)]∥0 ≤ L.

(2)

Here, the functional variable T (·) : D 7→ RM×N takes a de-
mand vector as its input and outputs a transport matrix. Ac-
cordingly, T (ν) := argmaxT∈Π(µ,ν)⟨P ,T ⟩ corresponds to
the output determined by the input ν, which is a typical op-
timal transport problem.1 The expectation of the output, i.e.,
Eν∈D[T (ν)], indicates the network topology, whose element
represents the expected amount of products per edge. It works
as a surrogate of the A in (1), and we impose the sparse con-
straint on it, as shown in (2).

Introducing the functional variable, we reformulate the bi-
level optimization problem (1) to a nested functional opti-
mization problem (2). The inner problem optimizes a slice
T (ν) given a specific ν, and the outer problem optimizes
the whole function T (·) with a sparse constraint. Suppose
that we have a set of demands sampled from νD, denoted
as {νk}Kk=1, as the work in [Wei et al., 2021; Chan et al.,
2022] did. We can approximate the functional variable with
the help of the kernel trick [Schölkopf et al., 2001], i.e.,
T (ν) =

∑K
k=1 Tkκ(ν,νk), where Tk := T (νk) and κ can

be a predefined kernel function. Then, we can rewrite (2) as

max{Tk∈Π(µ,νk)}K
k=1

1

K

∑K

k=1
⟨P ,Tk⟩,

s.t.
∥∥∥∑K

k=1
Tk

∥∥∥
0
≤ L,

(3)

which corresponds to solving a group of K optimal transport
problems with a consistency regularizer on the sparsity of the
couplings. Denote the coupling group as a tensor T = [Tk] ∈
RM×N×K . Following the work intensor [Bengio et al., 2009;

1When Π(µ,ν) = {T ≥ 0|T1N = µ,T T1M = ν}, the prob-
lem is a balanced OT problem [Villani, 2008]. When Π(µ,ν) =
{T ≥ 0|T1N ≤ µ,T T1M ≤ ν}, the problem is an unbal-
anced/partial OT problem [Benamou et al., 2015].
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Deng et al., 2013], we relax the strict sparse constraint in (3)
to a group sparse regularizer and derive the final group sparse
optimal transport (GSOT) problem as follows.

min{Tk∈Π(µ,νk)}K
k=1

1

K

∑K

k=1
⟨−P ,Tk⟩+ α∥T ∥1,2, (4)

where ∥T ∥1,2 =
∑M

m=1

∑N
n=1

√∑K
k=1 t

2
mnk represents the

group sparse regularizer. This regularizer encourages the cou-
plings to share the same sparse structure, whose significance
is controlled by the hyperparameter α ≥ 0.

We achieve sparse process flexibility design approximately
by solving the GSOT problem in (4). In particular, after ob-
taining the optimal couplings {T ∗

k }Kk=1, we can determine the
network topology as I(

∑K
k=1 T

∗
k ), where I(·) is an indicator

returning 1 when the input is nonzero and returning 0 oth-
erwise. Compared to the original SPFD problem in (1), the
GSOT problem is convex, which can be solved efficiently and
have a theoretical guarantee of convergence. In the next sub-
section, we develop an efficient ADMM algorithm to solve
this problem iteratively.

3.2 An ADMM-Based Optimization Algorithm
For the GSOT problem in (4), we introduce an auxiliary vari-
able Z = [Zk] ∈ RM×N×K and a dual variable U = [Uk] ∈
RM×N×K , respectively, and reformulate it in the following
augmented Lagrangian form:

min{Tk∈Π(µ,νk),Zk,Uk}K
k=1

1

K

∑K

k=1
⟨−P ,Tk⟩+

α∥Z∥1,2 + ρ
∑K

k=1
⟨Uk,Tk −Zk⟩+

ρ

2
∥T − Z∥2F ,

(5)

where ρ > 0 and ∥ · ∥F represents the Frobenius norm of
matrix. This problem can be solved in an ADMM framework.
In particular, we update T , Z , and U iteratively. In the l-th
iteration, we solve the following three subproblems.

1) Update T : Fixing currentZ(l) and U (l), we achieve this
step via solving K independent optimal transport problems
with ℓ2 regularizers: for k = 1, ...,K , we have

T
(l+1)
k =arg minT∈Π(µ,νk)⟨−P ,T ⟩

+
ρ

2
∥T −Z

(l)
k +U

(l)
k ∥

2
F .

(6)

Ignoring the term irrelevant to T , we can equivalently for-
mulate (6) as a quadratically-regularized optimal transport
(QROT) problem, i.e.,

minT∈Π(µ,νk)⟨C,T ⟩+ ρ

2
⟨T ,T ⟩, (7)

where C = −P + U
(l)
k − Z

(l)
k . We solve the problem

based on the smooth OT algorithm proposed in [Blondel et
al., 2018]. Here, we consider the following two situations.

• Balanced supply-demand cases: When ∥µ∥1 =
∥νk∥1, we impose the doubly-stochastic constraint on
the coupling T , i.e., the feasible domain is Π(µ,νk) =
{T ≥ 0|T1N = µ,T T1M = νk}. In this situation,

we can rewrite the QROT problem in (7) in its smooth
relaxed dual formulation:

maxa∈RM ,b∈RN µTa+ νT
k b

− 1

2ρ
∥[a1T

N + 1MbT −C]+∥2F ,
(8)

where [·]+ means setting negative elements to be zeros,
and a and b are dual variables. This dual problem is un-
constrained and can be solved efficiently by the L-BFGS
algorithm [Liu and Nocedal, 1989]. Given the optimal
solution of (8), denoted as a∗ and b∗, we can derive the
optimal coupling T

(l+1)
k = 1

ρ [a
∗1T

N +1M (b∗)T −C]+.

• Unbalanced supply-demand cases: When ∥µ∥1 ̸=
∥νk∥1, the feasible domain of the coupling becomes
Π(µ,νk) = {T ≥ 0|T1N ≤ µ,T T1M ≤
νk, and 1T

MT1N = min{∥µ∥1, ∥νk∥1}}. In this sit-
uation, we relax the problem in (7) to a semi-relaxed
smooth form: without the loss of generality, we assume
that ∥µ∥1 < ∥νk∥1, and the problem becomes

minT≥0,T1N=µ⟨C,T ⟩+ ρ

2
⟨T ,T ⟩

+
1

2ρ
∥T T1M − νk∥22.

(9)

This problem can be solved by the FISTA algo-
rithm [Beck and Teboulle, 2009] or conditional gradient.

2) UpdateZ: Given fixed T (l+1) and U (l), we achieve this
step via solving a group sparse problem.

Z(l+1) = arg min
Z
∥Z∥1,2 +

ρ

2α
∥T (l+1) −Z + U (l)∥2F . (10)

Applying the soft-thresholding method [Bengio et al., 2009;
Deng et al., 2013], the solution of this problem corresponds
to M ×N independent updates:

rmn = t(l+1)
mn + u(l)

mn, ∀m = 1, ...,M, n = 1, ..., N

z(l+1)
mn = max

{
1− α

ρ∥rmn∥2
, 0
}
rmn,

(11)

where tmn = [tmnk] ∈ RK , umn = [umnk] ∈ RK and
zmn = [zmnk] ∈ RK are vectors in T , U and Z .

3) Update U : In the framework of ADMM, the update of
U is simple:

U (l+1) = U (l) + T (l+1) −Z(l+1). (12)

Convergence and efficiency. As aforementioned, the GSOT
problem is a convex optimization problem. Applying our
ADMM framework, each subproblem is convex as well.
Therefore, the convergence of our optimization algorithm is
guaranteed in theory. More specifically, the convergence rate
is O(ϵ−1) in general because we apply first-order optimiza-
tion algorithms to solve the subproblems [Nishihara et al.,
2015].2 Regarding time complexity, the main bottleneck is
solving K QROT problems that involve iterative updates.
Fortunately, these problems are independent. We can solve
them in parallel and accelerate the whole process.

2The L-BFGS is a quasi-Newton method, which applies a first-
order strategy to approximate the second-order strategy.
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Algorithm 1 Oue GSOT method for the SPFD problem

1: Input: A supply vector µ and a set of demand vectors
{νk}Kk=1. The profit matrix P . The hyperparameters α
and ρ. The maximum number of edges L.

2: Output: Top-L edges {(mℓ, nℓ)}Lℓ=1.
3: Initialize T = {Tk = µνT

k }, Z = T , U = 0M×N×K .
4: while Not converge do
5: for k = 1 : K do
6: C = −P +Uk −Zk.
7: if ∥µ∥1 = ∥νk∥1 (Balanced case) then
8: Solve (8) via L-BFGS and get a∗ and b∗.
9: Update Tk as 1

ρ [a
∗1T

N + 1M (b∗)T −C]+.
10: else
11: Solve (9) via FISTA or conditional gradient and

get Tk accordingly.
12: end if
13: end for
14: Update Z via (11).
15: Update U via (12).
16: end while
17: T ∗ ← T , and derive {(mℓ, nℓ)}Lℓ=1 via (13).

3.3 Sparse Network Topology Design
Repeating the above optimization steps till the objective func-
tion converges, we obtain the optimal variable, denoted as
T ∗ = [T ∗

k ]. As aforementioned, the aggregation of the T ∗
k ’s

(i.e., T ∗ := 1
K

∑K
k=1 T

∗
k ) is sparse and indicates the pro-

posed network topology.
Besides automatically designing a sparse manufacturing

network, our GSOT method can also design a network with a
predefined number of edges (e.g., the L in (1)). In particular,
from a statistical viewpoint, each element of T ∗, i.e., t∗mn, ap-
proximates the expected amount of product n made by plant
m. Accordingly, the expected profit created by the network is
approximated as P ⊙ T ∗, where each element pmnt

∗
mn cor-

responds to the expected profit generated by the edge (m,n).
We can take P ⊙ T ∗ as the significance of the edges. As a
result, we can sort the edges according to their significance
and select the top-L significant edges, i.e.,

{(mℓ, nℓ)}Lℓ=1 = TopL(P ⊙ T ∗). (13)

The scheme of our GSOT method is shown in Algorithm 1.

4 Experiments
4.1 Implementation Details
Methods. To demonstrate the feasibility and effectiveness of
our GSOT method, we compare it with representative SPFD
methods on both synthetic and real-world datasets. Accord-
ing to the methodological categories proposed by [Chou et
al., 2008], we consider the following three methods as our
baselines, which represent three different strategies.

• Sampling method in [Lien et al., 2011]: This method
samples edges and updates the significance of the re-
maining edges in an iterative and alternating manner. In
each step, the sampling probability of each edge is esti-
mated based on the solution of a max-flow problem.

• Expander method in [Chou et al., 2011]: This method
applies the theory of graph expander, designing a sparse
process structure by constructing a graph with a good
node expansion ratio. It adds edges iteratively to im-
prove the node expansion ratio in a greedy manner.

• Chaining method in [Jordan and Graves, 1995]: When
the number of plants is equal to that of products and the
supplies and demands are balanced, we further consider
the classic long chain as a baseline.

All the methods, including the proposed method and the base-
lines, are implemented in Python. The Python Optimal Trans-
port (POT) toolbox [Flamary et al., 2021] is used to solve the
QROT problems in our method. Additionally, to verify the
usefulness of our ADMM-based optimization algorithm (i.e.,
GSOT (Ours)), we apply the commercial optimization soft-
ware Gurobi [Gurobi Optimization, 2021] to solve the pro-
posed GSOT problem in (4) (i.e., GSOT (Gurobi)). For our
GSOT method, the comparison between our ADMM-based
algorithm and the Gurobi-based implementation is provided.

Datasets. We consider the symmetry between plants and
products (i.e., whether M = N or not) and the balance be-
tween supplies and demands (i.e., whether ∥µ∥1 = ∥νk∥1
or not), constructing four synthetic datasets accordingly. The
symmetric and balanced case corresponds to an ideal scenario
used in many existing work [Simchi-Levi and Wei, 2012;
Chou et al., 2008]: We set M = N ; The supplies pro-
vided by the M plants are fixed and formulated as a uni-
form vector, while the demands of each product are sampled
from independently a uniform distribution, leading to K N -
dimensional vectors; we then normalize the supply vector and
the demand vectors (i.e., ∥µ∥1 = ∥νk∥1 = 1). In the asym-
metric cases, we set N = round(1.5M). In the unbalanced
cases, we use unnormalized supply and demand vectors. For
each synthetic dataset, we construct a grounding profit matrix
randomly. We set M ∈ {5, 10, 15, 20} and K ∈ {10, 20, 50},
testing the scalability of different methods accordingly.

Besides the synthetic datasets, we consider the real-world
fashion manufacturing dataset [Chou et al., 2014], which con-
tains ten plants and ten products in the fashion industry. There
exists a profit matrix with size 10 × 10, whose element indi-
cates the profit per product generated by a plant.3 The sup-
plies and the mean and variance of demands are predefined,
so we set one normalized supply vector and simulate 100 un-
normalized demand vectors. Fifty demand vectors are used
for training, while the remaining vectors are used for testing.

Evaluation criteria. For each dataset, we split the de-
mand vectors into two sets. A training set is used to de-
sign the manufacturing network, and a testing set is used to
simulate and evaluate the performance of the designed net-
work. Given a dataset, we evaluate the performance of vari-
ous methods in two ways: i) setting the number of edges from
max{M,N} to round(2.5max{M,N}) and comparing the
profits achieved by the networks designed by different meth-
ods; ii) designing a network with 2max{M,N} edges by

3In [Chou et al., 2014], all the plants have the same profit per
product, which is impractical in general. We add random noise to
the rank-1 profit matrix and get a full-rank profit matrix.
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(a) Balanced symmetric case (b) Balanced asymmetric case (c) Unbalanced symmetric case (d) Unbalanced asymmetric case

Figure 2: The comparisons for various methods on their expected profits achieved under different network topologies. In this experiment, we
set M = 15 and K = 20. The fully-flexible scenario corresponds to a complete bipartite manufacturing network.

(a) Balanced symmetric case (b) Balanced asymmetric case (c) Unbalanced symmetric case (d) Unbalanced asymmetric case

Figure 3: The comparisons for various methods on their scalability. In each figure, we change the number of plants (M ) and design a
manufacturing network with 2max{M,N} edges.

different methods and evaluating the performance with the in-
crease of N (or M ). In each experiment, we test each method
in 10 trials and record the average and standard deviation of
its performance. For our GSOT method and its ADMM-based
algorithm, we i) analyze the robustness of the hyperparame-
ters α and ρ, ii) analyze its empirical sample complexity, and
iii) compare it with the Gurobi-based implementation.

4.2 Evaluation on Synthetic Data
Figure 2 shows the performance of different methods on four
synthetic datasets. We can find that with the increase of
edge numbers, the networks designed by different methods
can always increase expected profits. However, our GSOT
method consistently works better than the baselines in all
four datasets. In particular, when designing a network with
L edges, our GSOT method obtains higher expected profits
than the baselines, which quickly approaches the complete-
bipartite network’s performance (with full flexibility).

Figure 3 further shows the comparisons for various meth-
ods on their scalability. In this experiment, we increase M
from 5 to 20 and design a network with 2max{M,N} edges
in each scenario. Similar to Figure 2, we can find that our
GSOT method consistently outperforms the baselines. Note
that our GSOT method works better than the long chain in
the balanced symmetric case. A potential reason for this phe-

nomenon is that we introduce a random price matrix to assign
the edges with different significance. This leads to a compli-
cated scenario ignored by theoretical analysis [Désir et al.,
2016] — even if the supplies and demands are balanced and
the plants and the products have the same amount, the long
chain may not be optimal when the edges are weighted.

4.3 Feasibility of ADMM-Based Algorithm
According to the results in Figures 2 and 3, we can find that
compared to the Gurobi-based implementation, our ADMM-
based algorithm does not perform so well in the balanced
cases. However, in the challenging unbalanced cases, it is
comparable to even superior to the Gurobi-based implemen-
tation — as shown in Figures 2(c, d), our GSOT method con-
verges to the full flexibility situation more quickly when it is
implemented based on our ADMM framework.

Additionally, we find that in the unbalanced cases, the per-
formance of Gurobi and our algorithm is different. Denote
the expected profits achieved by Gurobi and our ADMM al-
gorithm as pG and pA, respectively. Figure 4(a) shows that
when supplies are insufficient (i.e., ∥µ∥1 < ∥νk∥1) Gurobi
often works better (i.e., pG ≥ pA). On the contrary, when
supplies are sufficient (i.e., ∥µ∥1 > ∥νk∥1), our ADMM al-
gorithm often outperforms Gurobi. This result gives us useful
insight into the selection of algorithms in practice.
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(a) ∥µ∥1 − ∥νk∥1 v.s. pG − pA (b) The influence of K

Figure 4: (a) The influence of unbalanced supplies and demands
on our algorithm. (b) The performance of our GSOT method with
respect to K (in the balanced and symmetric case M = N = 10).

α (ρ = 1) 0.01 0.1 1 10
M = 5 1.12 1.14 1.11 1.13

Balanced M = 10 1.10 1.10 1.10 1.06
Symmetric M = 15 1.11 1.11 1.11 0.41

M = 20 1.09 1.10 1.08 0.34
ρ (α = 1) 0.01 0.1 1 10

M = 5 0.97 1.13 1.13 1.12
Balanced M = 10 0.78 1.13 1.13 1.11

Asymmetric M = 15 0.68 0.47 1.06 1.10
M = 20 0.63 0.56 1.09 1.07

Table 1: The influences of hyperparameters on expected profit

Remark. Gurobi is a sophisticated commercial optimiza-
tion software, while our ADMM algorithm is implemented
based on Python. Refactoring our code with professional ac-
celeration and optimization techniques can further improve
the performance of our algorithm, which is left as our fu-
ture work. Compared with Gurobi, our work is more friendly
to developing countries because we will provide open-source
code and make it free for commercial applications.

Additionally, our ADMM-based algorithm is robust to the
data size and hyperparameter settings. As shown in Fig-
ure 4(b), the performance of our algorithm becomes stable
given K = 20 supply-demand pairs. In other words, ap-
plying our algorithm, we merely need to sample a small set
of supply-demand pairs when designing manufacturing net-
works. Table 1 shows the influences of two key hyperparam-
eters (α and ρ) on the performance of our algorithm. We
can find that when α ∈ [0.01, 1] and ρ ∈ [1, 10], our algo-
rithm works well, whose performance is with good stability.
It means that our algorithm is robust to the hyperparameters,
and we can set them in a wide range. Empirically, we set
α = ρ = 1 in our experiments.

4.4 Evaluation on Real-World Data
The real-world data is generated by a fashion manufacturing
company with M = 10 manufacturing plants. The company
aims to design a flexible and sparse manufacturing network
to produce N = 10 different styles of parkas. For the plant
m, the profit of making one product n is denoted as pmn, and

Method Expected Profit
20 Edges 23 Edges 25 Edges

Sampling 0.501±0.009 0.529±0.001 0.520±0.001
Expander 0.522±0.010 0.532±0.008 0.535±0.007

GSOT (Ours) 0.502±0.008 0.535±0.011 0.541±0.005
GSOT (Gurobi) 0.528±0.004 0.543±0.000 0.544±0.002
Full Flexibility 0.548

Table 2: Comparison for various methods on real-world data

all the profits are stored in a profit matrix. Here, the sup-
plies of the plants are fixed, and the demands of the products
obey different independent distributions. This problem corre-
sponds to an unbalanced symmetric SPFD problem.

Table 2 shows the expected profits obtained by different
methods. Following the experiments on synthetic data, for
each method, we set the number of the corresponding net-
work in the range [2M, round(2.5M)], which corresponds to
the networks with edges equal to and more than a long chain,
respectively. The results show that when the network is as
sparse as a long chain, our GSOT method is comparable to
the baselines. When further increasing the number of edges,
our GSOT method outperforms the baselines consistently and
approaches the performance of a complete bipartite network.
Our ADMM-based algorithm is comparable to Gurobi — by
naı̈ve Python implementation, its performance is just slightly
worse than Gurobi, demonstrating its potential for practical
scenarios. In the future, we plan to improve our algorithm by
optimizing and adjusting its hyperparameter setting.

5 Conclusion
In this study, we have proposed a GSOT method for sparse
process flexibility design, which provides a new solution to
this significant OR problem. Instead of applying the tradi-
tional two-stage design strategy, our method constructs and
evaluates the designed network in a joint optimization frame-
work, which applies to unbalanced and asymmetric SPFD
problems. We develop an effective optimization algorithm
to achieve our GSOT method, leading to encouraging experi-
mental results. In the future, we will study the theory of our
method and consider improving its computational efficiency
further. Moreover, we would like to find partners in the in-
dustry and test our method in real-world cases.
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putational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019.

[Schölkopf et al., 2001] Bernhard Schölkopf, Ralf Herbrich,
and Alex J Smola. A generalized representer theorem. In
Proceedings of the 14th Annual Conference on Computa-
tional Learning Theory and and 5th European Conference
on Computational Learning Theory, pages 416–426, 2001.

[Simchi-Levi and Wei, 2012] David Simchi-Levi and Yehua
Wei. Understanding the performance of the long chain and
sparse designs in process flexibility. Operations research,
60(5):1125–1141, 2012.

[Simchi-Levi et al., 2018] David Simchi-Levi, He Wang,
and Yehua Wei. Increasing supply chain robustness
through process flexibility and inventory. Production and
Operations Management, 27(8):1476–1491, 2018.

[Simon et al., 2013] Noah Simon, Jerome Friedman, Trevor
Hastie, and Robert Tibshirani. A sparse-group lasso. Jour-
nal of computational and graphical statistics, 22(2):231–
245, 2013.

[Sinkhorn and Knopp, 1967] Richard Sinkhorn and Paul
Knopp. Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics,
21(2):343–348, 1967.

[Sultana et al., 2022] Nasrin Sultana, Jeffrey Chan, Tabinda
Sarwar, and AK Qin. Learning to optimise general tsp
instances. International Journal of Machine Learning and
Cybernetics, 13(8):2213–2228, 2022.

[Titouan et al., 2019] Vayer Titouan, Nicolas Courty, Ro-
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