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Abstract
Order Transfer from the transfer center to deliv-
ery stations is an essential and expensive part of
the logistics service chain. In practice, one vehi-
cle sends transferred orders to multiple delivery sta-
tions in one transfer trip to achieve a better trade-off
between the transfer cost and time. A key prob-
lem is generating the vehicle’s route for efficient
order transfer, i.e., minimizing the order transfer
time. In this paper, we explore fine-grained deliv-
ery station features, i.e., downstream couriers’ re-
maining working times in last-mile delivery trips
and the transferred order distribution to design a
Prediction-and-Scheduling framework for efficient
Order Transfer called PSOT, including two compo-
nents: i) a Courier’s Remaining Working Time Pre-
diction component to predict each courier’s work-
ing time for conducting heterogeneous tasks, i.e.,
order pickups and deliveries, with a context-aware
location embedding and an attention-based neural
network; ii) a Vehicle Scheduling component to
generate the vehicle’s route to served delivery sta-
tions with an order-transfer-time-aware heuristic al-
gorithm. The evaluation results with real-world
data from one of the largest logistics companies in
China show PSOT improves the courier’s remain-
ing working time prediction by up to 35.6% and
reduces the average order transfer time by up to
51.3% compared to the state-of-the-art methods.

1 Introduction
The popularity of the online-to-offline business has promoted
the rapid development of the traditional logistics industry in
the past few years [Wang et al., 2018]. Generally, a courier
first picks up the order at the source address and takes it to the
source delivery station. Then the order is transported through
some transfer centers to the destination delivery station. Af-
ter that, a courier collects the order and delivers it to the des-
tination. In practice, a transfer center is covered by multiple
delivery stations in an area, e.g., a district. The order trans-
fer from the transfer center to delivery stations may repeat
several times a day if orders arrive at the transfer center in
batches. To achieve a better trade-off between the transfer

cost and time, a state-of-the-practice solution is that a vehi-
cle sends orders to multiple delivery stations with an order
transfer trip. The key problem is to design an efficient ve-
hicle scheduling strategy, i.e., generating the vehicle’s route
to the served delivery stations to minimize the order trans-
fer time. This problem targets efficient logistics services that
impact millions of people’s daily lives and economic growth,
showing its social importance.

Vehicle scheduling in order transfer is a variant of the
traditional traveling salesman problem (TSP), which aims
to find a route to all locations with a minimal travel dis-
tance. TSP is an NP-hard problem, and some methods have
been proposed to solve it in recent years [Bello et al., 2016;
Kool et al., 2018]. Different from TSP, which considers the
distance between different location pairs, in this paper, we
further explore the fine-grained delivery station features to
generate the vehicle’s route with the goal of minimizing the
order transfer time. Specifically, multiple couriers work for a
delivery station in practice, and they have different remaining
working times for current delivery trips when the order trans-
fer starts, which affects the order transfer time of this delivery
station. Besides, the fine-grained transferred order distribu-
tion to each courier also affects the order transfer time.

Designing an efficient vehicle scheduling scheme is not
trivial due to two challenges: i) How to capture each courier’s
remaining working time. Each courier’s remaining working
time in a delivery trip should be predicted before getting
transferred orders. Due to the distinct amounts and desti-
nation address distributions of delivery orders and the real-
time pickup orders, the courier takes different working times
for different trips; ii) How to optimize the vehicle scheduling
with the goal of minimizing the order transfer time consider-
ing complicated factors. Besides considering the distance be-
tween different location pairs in TSP, we also need to focus on
the fine-grained delivery station features, i.e., the downstream
couriers’ remaining working times and the transferred order
distribution to each courier, to generate the vehicle’s route
with the goal of minimizing the order transfer time, which is
more complicated.

In this paper, we design a Prediction-and-Scheduling
framework to address the above challenges in the order trans-
fer process, which consists of two components: i) a Remain-
ing Working Time Prediction component for predicting each
courier’s remaining working time of the current delivery trip;
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ii) a Vehicle Scheduling component for generating the vehi-
cle’s route to all served delivery stations for order transfer. In
summary, the key contributions of the paper are as follows:
(i) To the best of our knowledge, we are the first to explore ve-
hicle scheduling for the efficient order transfer process in lo-
gistics considering the fine-grained delivery station features,
i.e., downstream courier’s remaining working time and the
transferred order distribution to each courier, which is more
challenging compared to traditional TSP.
(ii) We design a Prediction-and-Scheduling framework called
PSOT, for efficient order transfer. Specifically, we first pre-
dict each courier’s remaining working time for the current de-
livery trip in the corresponding delivery area with a context-
aware location embedding and an attention-based neural net-
work when the order transfer process starts. After that,
we propose an order-transfer-time-aware heuristic method to
generate the vehicle’s route by optimizing the order trans-
fer time considering downstream couriers’ remaining work-
ing times, the transferred order distribution, and the distance
between different location pairs.
(iii) We implement PSOT in one of the largest logistics com-
panies in China and conduct experiments based on three-
month real-world order data from 20 delivery stations cov-
ered by a transfer center involving 391 couriers and 5 million
orders. The evaluation results show that PSOT improves the
courier’s remaining working time prediction and reduces the
average order transfer time by up to 35.6% and 51.3%, re-
spectively, compared to state-of-the-art methods.

2 Motivation
2.1 Background
The logistics network shows the hierarchical topology struc-
ture, that is, a transfer center serves multiple delivery stations,
and a delivery station provides the last-mile delivery services
to multiple delivery areas, each of which is covered by a
courier. The order transfer and last-mile delivery processes
are shown in Fig. 1. A set of orders are transferred from the
transfer center to served delivery stations sequentially by a
vehicle. After the transferred orders arrive at a delivery sta-
tion, each courier collects a sub-set of orders destined for one
delivery area and delivers them to customers consecutively.

Location

Time t0

Process Departure Arrival Collection

t1 t2

DS

Delivery

Destination

t3

TC

Travel Time Waiting Time

Figure 1: Order Transfer and Last-mile Delivery Process

Definition 1 (Last-mile Delivery Trip). The process be-
tween the courier departing from and back to the delivery
station is a last-mile delivery trip. During the last-mile de-
livery trip, the courier has to deliver orders collected at the
delivery station to customers. The courier also needs to finish
the real-time order pickup tasks with strict promised service

times. Specifically, after a customer places an order pickup
request at the logistics platform and the courier gets the as-
signed task, he/she has to pick up the order within a given
time, e.g., one hour, to ensure the customer’s experience with
the logistics service.

Order transfer and last-mile delivery processes are gener-
ally conducted several times a day. For example, the orders
are transported from the transfer center to all served deliv-
ery stations in two batches, i.e., the morning and afternoon
batches. As a result, to provide timely order delivery, each
courier needs to conduct two last-mile delivery trips for two
batches of orders. During the order transfer process of the
first batch of orders, each courier is with the same status,
i.e., stays at the delivery station and without the assigned
task. In this paper, we mainly focus on the order transfer
process of the non-first batch of orders, where couriers have
been assigned the former batch of delivery tasks and started
the last-mile delivery trips with different remaining working
times when we need to generate the vehicle’s route for order
transfer of the current batch of orders.

Definition 2 (Remaining Working Time). The courier’s
remaining working time is the time for conducting remaining
heterogeneous tasks, i.e., order pickups and deliveries, and
back to the delivery station, which is real-time updated with
the courier’s status.

Definition 3 (Order Transfer Time (OTT)). As shown in
Fig. 1, given the order departure time from the transfer center
t0, the order arrival time to the delivery station t1, and the
order collection time by the courier t2. Order transfer time
is defined as t2 − t0, which includes the travel time t1 − t0,
and the waiting time t2 − t1. If the courier has finished the
former last-mile delivery trip and is waiting for the collection
of newly transferred orders at the delivery station before t1,
which means that the courier can collect and deliver orders
destined for his/her delivery area when the transferred orders
arrive right away, then the order waiting time is 0. Otherwise,
the order waiting time equals the courier’s back time to the
delivery station minus t1.

2.2 Problem Formulation

In this work, we focus on the vehicle’s route generation prob-
lem in the order transfer process, which includes the follow-
ing two tasks: (i) The first task of this work is to predict each
courier’s remaining working time in a last-mile delivery trip
when the order transfer starts, given the destination distribu-
tion of delivery orders and the generation and the promised
service times of the pickup orders. Based on the predicted
courier’s remaining working time and the current time, we
get the courier’s back time to the delivery station, which is
then used as the input for vehicle scheduling; (ii) The second
task of this work is to design an effective vehicle scheduling
scheme in the order transfer process with the goal of minimiz-
ing the average OTT (AOTT) for all transferred orders con-
sidering the downstream couriers’ remaining working times,
the transferred order distribution to each courier, and the dis-
tance between different delivery station pairs.
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Figure 2: An Example of the Impact of Couriers’ Remaining Work-
ing Times and the Transferred Order Distribution on the Order
Transfer Time

2.3 Observations
Opportunity
As shown in Fig. 1, the order waiting time at the delivery
station is a part of the order transfer time, which is corre-
lated with the downstream couriers’ remaining working times
and the transferred order distribution of the last-mile delivery
trips. Fig. 2 shows an example of how couriers’ remaining
working times and the transferred order distribution affect the
order waiting time and the order transfer time. One courier c1
serves the delivery station DSA, and two couriers c2 and c3
serve DSB . Transferred orders to c1, c2, and c3 are 2, 1, and
1, respectively. The vehicle travel time between arbitrary two
locations of TC, DSA, and DSB is set as 10 min. Assume
that when the order transfer process starts at 13 : 00, c1, c2,
and c3 are back to the delivery station at 13 : 20, 13 : 10,
and 13 : 20, respectively, based on the predicted remaining
working times.

There are two kinds of vehicle routes for order transfer: i)
If the vehicle’s route is TC → DSA → DSB , the total travel
time for orders to DSA is 20 min (2×10 min). c1 is back to
DSA 10 min later than the orders’ arrival, so the total waiting
time for orders to DSA is 20 min. For orders to DSB , the to-
tal travel time and waiting time are 40 min (2×20 min) and 0
min, respectively. As a result, for transferred orders, the total
waiting time and order transfer time are 20 min and 80 min;
ii) If the vehicle’s route is TC → DSB → DSA, the total
travel time and waiting time for orders to DSB are 20 min
and 10 min, respectively. The total travel time and waiting
time for orders to DSA are 40 min and 0 min, respectively.
As a result, for transferred orders, the total waiting time and
order transfer time are 10 min and 70 min, respectively. The
route TC → DSB and DSA is better because of the smaller
order transfer time. The waiting time for orders to DSA is
the same with two routes, but the value is different for orders
to DSB because of the different courier’s remaining working
time and back time to the delivery station. It is necessary and
effective to utilize the couriers’ remaining working times and
the transferred order distribution as the input information to
design the vehicle scheduling algorithm for order transfer to
minimize the order transfer time.

Challenges
The first challenge of generating the vehicle’s route is to cap-
ture each courier’s remaining working time for the current
last-mile delivery trip when the order transfer process starts.
In practice, due to the different amount and destination dis-

tribution of the delivered orders and the uncertainty of the
pickup requests’ generation during a last-mile delivery trip,
couriers need to take different times to finish the tasks and
back to the delivery station. We analyze the order data from a
delivery station, and the results in Fig. 3 show that pickup
and delivery orders are significantly different for different
couriers’ last-mile delivery trips, which causes the varying
working times. Besides, the correlation between the courier’s
working time and the number of heterogeneous tasks, i.e.,
pickup and delivery orders, are complicated and can’t be cap-
tured by a simple linear regression model. The second chal-
lenge is to generate the vehicle’s route with the goal of mini-
mizing the order transfer time, which is an NP-hard problem.
We need to take both the couriers’ remaining working time
prediction results, the distribution of the transferred orders,
and the distance between different delivery station pairs to
generate an efficient vehicle route for the order transfer pro-
cess.
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Figure 3: Heterogeneous Order Distribution and Courier Working
Time Analysis

3 Design
3.1 Design Overview
The Prediction-and-Scheduling framework PSOT is shown in
Fig. 4, including two main components:

Courier’s Remaining Working Time Prediction 
(Sec. 3.2)

Pre-processing
Training

Pre-
processing

Prediction
Trained
Model

Context-aware 
Embedding

Attention-based 
Route Encoding 
and Decoding Prediction

Remaining 
Working 

Time 
Prediction

Courier’s
Remaining 

Working Time

Vehicle Scheduling 
(Sec. 3.3)

OTT-aware 
Heuristic Algorithm 

Swap

Insertion

Inversion

Route

Figure 4: Framework of PSOT

(i) Courier’s Remaining Working Time Prediction. This com-
ponent aims to predict the courier’s remaining working time
in a last-mile delivery trip when the order transfer starts. The
locations are first embedded through a context-aware embed-
ding layer. Then an attention-based route encoding and de-
coding and a prediction part are designed to get the remaining
working time. The output is utilized to get the courier’s back
time to the delivery station.
(ii) Vehicle Scheduling. This component aims to generate the
vehicle’s route to served delivery stations by minimizing the
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order transfer time with an OTT-aware heuristic algorithm
considering downstream couriers’ remaining working times
and the transferred order distribution.

3.2 Courier’s Remaining Working Time
Prediction

Pre-processing
Each order delivery or pickup task has a service address,
which can be represented as a GPS point, including the lati-
tude and the longitude. We divide the delivery area into dif-
ferent area-of-interests (AoIs) and map each order in an AoI,
e.g., a community, based on comparing the order’s GPS point
and the AoIs’ boundaries. compared to the grid-based parti-
tion [Liang et al., 2019], the AoI-based partition can capture
the semantic information [Wu and Wu, 2019]. Each AoI is
regarded as one location, which is the finest granularity used
in this work. Generally, the courier finishes tasks, e.g., the
pickup and delivery orders, in a location sequentially and then
continue the trip to other locations.
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Figure 5: Remaining Working Time Prediction

Features for Representing a Location
In this work, we extract the following four features from het-
erogeneous orders and locations to represent a location: (i)
Number of Delivery Orders. A location may have some deliv-
ery orders, affecting the courier’s route and working time. (ii)
Number of Pickup Orders. Similar to the above feature, a lo-
cation may also have some order pickup requests. (iii) Earli-
est Promised Service Time. Each order pickup request is with
a promised service time. We choose the earliest promised
service time for pickup orders at a location as one feature
for prediction. (iv) Distance to the Current Location. The
courier’s route is correlated to the courier’s current location,
which affects the prediction of the remaining working time.

Remaining Working Time Prediction Model
The courier’s remaining working time prediction model is
shown in Fig. 5, which includes three parts: i) a context-
aware embedding to represent locations; ii) an attention-
based route encoding and decoding to get the vehicle’s route
for the order transfer process; iii) a Long Short-Term Mem-
ory (LSTM) layer and a Feed Forward (FF) layer to output
the predicted courier’s working time.

The features of locations are taken as the input to a feed-
forward layer to get the location representations:

h0
i = W 0xi + b0 (1)

where xi is the 4-dimensional input features, and h0
i is the

node embedding.
The attention-based route encoding includes N trans-

former blocks with the same structure. Each block includes
two sub-layers, i.e., a Multi-Head Attention (MHA) layer and
a FF layer. The message-passing process is formulated as:

ĥi = BN l(hl−1
i +MHAl

i(h
l−1
1 , ..., hl−1

n )) (2)

hl
i = BN l(ĥi + FF l(ĥi)) (3)

Specifically, we first calculate the single-head attention as

headi = Attention(WQhi,W
Khi,W

V hi)

= softmax(
WQhi(W

Khi)
T

√
dk

)WV hi

(4)

where WQ, WK , and WV are the parameters for the query,
key, and value, respectively. dk is the dimension of the key
and query vector. After that, the multi-head attention value
for a node i is calculated as

MHAi(h1, h2, ..., hn) =

M∑
m=1

headmWO (5)

where headm is the single-head attention. WO is the param-
eter matrix. The MHA layer executes headm in parallel with
the same input vector and then combines all the output vectors
from all single-head attention to generate the final output.

In the FF sub-layer and BN, we have

FF (ĥi) = W 1
ff ×ReLu(W 0

ff × ĥi + b0ff ) + b1ff (6)

BN(hi) = Wbn ⊙BN(hi) + bbn (7)
where W 0

ff , W 1
ff , b0ff , b1ff , Wbn and bbn are parameters.

ReLu is the ReLu activation. ⊙ is the element-wise prod-
uct and BN represents the batch normalization.

After getting the embedding of different locations hl, we
further adopt attention-based decoding to get the vehicle’s
route of the order transfer process. Specifically, at each time
step t, the decoder outputs a location based on the encoding
embeddings and the output generated before t. We utilize the
similar decoding structure presented in [Kool et al., 2018],
which iteratively outputs the probabilities of the unvisited lo-
cations and selects the location with the largest probability as
the next visiting location to generate the route. We add the
LSTM and FF layers to get the courier’s remaining working
time with the route output by the attention-based route encod-
ing and decoding. The loss function for training is

l =
1

n

n∑
i=1

(yi − ypredi )2 (8)

where yi and ypredi are the actual and predicted courier’s re-
maining working time, respectively. n is the number of train-
ing samples. Given the predicted courier’s remaining work-
ing time and the start time of the order transfer process, we
can get the courier’s back time to the delivery station, which
is further utilized for the vehicle scheduling algorithm design
in the order transfer process.
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3.3 Vehicle Scheduling
In the Vehicle Scheduling component, we generate the ve-
hicle’s route to served delivery stations for order transfer.
Specifically, we first initialize the vehicle’s route and then uti-
lize an OTT-aware heuristic algorithm to improve the route,
i.e., reduce the Average OTT for transferred orders. We
choose a distance-based greedy algorithm to initialize the ve-
hicle’s route. Specifically, the transfer center is selected as
the start location, and we choose the nearest delivery station
as the next visit location iteratively to get the initialized route.

Based on the generated route, we calculate the average or-
der transfer time. Specifically, given the vehicle’s departure
time from the transfer center tstart and the vehicle’s route
route, we first calculate the vehicle’s arrival time to a de-
livery station DSi as tarri based on the vehicle’s speed and
the distance between different pair of locations, i.e., delivery
stations and the transfer center. Assume there are j couriers
working for the delivery station DSi. With each courier’s re-
maining working time prediction as described in Section 3.2,
we can get all j couriers back time to DSi as [t1i , t

2
i , ..., t

j
i ].

The number of transferred orders to j couriers is represented
as [n1

i , n
2
i , ..., n

j
i ]. As a result, the total travel time for orders

to DSi is represented as:

ttraveli = ni × (tarri − tstart), ni =

j∑
k=1

nk
i (9)

The total waiting time for orders to DSi is represented as:

twaiting
i =

j∑
k=1

max{0, tki − tarri } × nk
i (10)

As a result, the total transfer time for orders to DSi is
ttraveli + twaiting

i . Assume there are N delivery stations and
the total amount of transferred orders is M , then the average
order transfer time is calculated as:

AOTT route =

∑N
i=1(t

travel
i + twaiting

i )

M
(11)

The main idea of the OTT-aware heuristic algorithm is to
conduct mutation operations to improve the vehicle’s route
with a smaller average order transfer time by considering the
downstream couriers’ remaining working times and the trans-
ferred order distribution. The mutation operations in the OTT-
aware heuristic algorithm include the following three cate-
gories: (i) Swap: Randomly exchanges the positions of two
delivery stations in the vehicle’s route; (ii) Insertion: Ran-
domly extracts one delivery station from the vehicle’s route
and re-inserts it into the random position in the route; (iii) In-
version: Randomly selects the start and end delivery stations
in the route to get a sequence and then reverses this sequence
in the route. The detailed operation process of the OTT-aware
heuristic algorithm is shown in Algorithm 1. If AOTT is re-
duced after a mutation operation, the operation is success-
ful and we adopt the new route. Otherwise, the operation is
failed. The algorithm stops when the number of consecutive
failed mutation operations num equals the threshold S.

Algorithm 1: OTT-aware Heuristic Algorithm

Input:
route: The initialized vehicle’s route;
S: The threshold for stopping the algorithm;
AOTT route: Average OTT of transferred orders

with route route;
Output:
route: The optimized relay route;

num← 0;
while num < S do

Randomly select one from three mutation
operations;

Mutate the vehicle’s current route route to
generate new route new route;

Calculate the average OTT with new route as
AOTTnew route;

if AOTTnew route < AOTT route then
AOTT route ← AOTTnew route;
route← new route;
num← 0;

else
num← num+ 1;

4 Evaluation
4.1 Methodology
Data. The data used for evaluation include order data,
couriers’ reporting data, and couriers’ trajectory data col-
lected from one of the largest logistics companies in China,
involving 20 delivery stations covered by one transfer center,
391 couriers, and 5 million orders in three months.

Implementation. The courier’s remaining working time
prediction is based on the morning batch of orders’ deliv-
ery. We utilize two-month data as the training data, and
the remaining data are used for testing the model’s perfor-
mance. The dimension of the node embedding is 64. The
FF layer includes one layer with 256 dimensions and ReLu
activation, and the MHA layer includes 8 heads. Note that
couriers don’t need to report their back time to the deliv-
ery station. As a result, we get the ground truth data,
i.e., the couriers’ remaining working times, from their tra-
jectory data with the stay-point detection [Li et al., 2008;
Ruan et al., 2020] and the comparison of the GPS coordi-
nates, i.e., latitudes and longitudes, of delivery stations. The
afternoon batch of orders is regarded as the transferred orders,
which are transported by the vehicle traveling from the trans-
fer center to all served delivery stations sequentially based on
the generated vehicle route.

Metrics. For the courier’s remaining working time predic-
tion, we use Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) as metrics. For vehicle
scheduling, our goal is to minimize the average order transfer
time of the transferred orders, which can be used as the metric
to show the effectiveness of PSOT. We also show the vehicle’s
total travel distance as a metric to show the cost of the vehicle
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scheduling for order transfer. Given a route route, the total
travel distance is the sum of the distance between any two ad-
jacent nodes in route. Note that the first node is the transfer
center, and the last node is the final visited delivery station by
the vehicle before returning back to the transfer center.
Baselines. For the courier’s remaining working time pre-
diction, we choose the following three methods as the base-
lines: (i) MLP: This method considers the number of orders
at each location as the input to get the remaining working
time with a multi-layer neural network. (ii) Distance-aware
method+SB-TTE [Wang et al., 2019] (DS): This method
first utilizes the distance-based greedy algorithm, i.e., select-
ing the nearest delivery station as the next location iteratively
to generate the route. Then it predicts the travel time be-
tween any adjacent two delivery stations in the route based
on a historically similar trip. To improve the prediction re-
sults, we add the courier’s stay time prediction at a location
considering the number of orders with MLP. (iii) OSquare
Route [Zhang et al., 2019] + SB-TTE [Wang et al., 2019]
(OS): This method first utilizes the XGBoost model to pre-
dict the courier’s route and then predicts the remaining work-
ing time with the same way as the above baseline. For ve-
hicle scheduling, we choose the following three methods as
the baselines for comparison: (i) Amount-based Greedy Al-
gorithm (AGA): The transfer center is selected as the start
location, and the delivery station with the most amount of
transferred orders is selected as the next location iteratively
to generate the vehicle’s route. (ii) Distance-based Greedy
Algorithm (DGA) [Nilsson, 2003]: The transfer center is se-
lected as the start location, and the nearest delivery station is
selected as the next location iteratively to generate the ve-
hicle’s route. (iii) DGA+Distance-based Mutation Algo-
rithm (DGMA): This method first initializes the vehicle’s
route with DGA, and then the vehicle route is improved by
optimizing the vehicle’s travel distance with the mutation op-
erations and threshold similar to PSOT.
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Figure 6: RMSE of the Courier’s
Remaining Working Time Pre-
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Figure 7: MAPE of the Courier’s
Remaining Working Time Pre-
diction

4.2 The Performance of the Courier’s Remaining
Working Time Prediction

We first show the performance of the courier’s remaining
working time prediction in PSOT. As shown in Fig. 6 and Fig.
7, MLP achieves the worst performance compared to other
baselines. OS performs better than DS because the courier
generally has his/her own preference for the visit sequence to
different locations in the corresponding delivery area. PSOT
performs best compared to other baselines because the con-
text information of each location is considered in an end-to-

Methods
Number of Delivery Stations
15 20

AOTT (%) TD (%) AOTT (%) TD (%)
AGA 74.97 79.45 100 100
DGA 44.38 38.77 51.47 42.03

DGMA 62.28 36.34 53.62 41.74
PSOT 43.03 39.03 48.70 42.14

* TD means travel distance. The values of AOTT and the
travel distance are normalized based on the largest value

Table 1: Overall Performance with Different Number of Delivery
Stations

end learning manner. Specifically, PSOT improves RMSE by
22.3% and 35.6% compared to MLP and OS, respectively.

4.3 The Performance of the Vehicle Scheduling
Overall Performance. We first show the overall perfor-
mance of different vehicle scheduling schemes. The default
value of the vehicle’s speed and the threshold S in the OTT-
aware heuristic algorithm are set as 60 km/h and 300, respec-
tively. The start time of the order transfer process is set as
13:30:00. As shown in Table 1, AGA achieves the worst per-
formance, i.e., the largest AOTT, because it is a time-agnostic
method and always serves the delivery station with the most
number of transferred orders. DGA and DGMA try to find
a route with the shortest total travel distance for the order
transfer process. A route with a shorter travel distance pro-
duces shorter travel time, which generally may reduce AOTT.
PSOT achieves the smallest AOTT compared to other vehi-
cle scheduling schemes because it considers AOTT, the trans-
ferred order distribution, and the distance with an OTT-aware
heuristic algorithm. We also show the cost of different meth-
ods for order transfer. compared to DGMA, PSOT doesn’t
increase much vehicle’s travel distance as shown in Table 1.

AGA DGMA DGA PSOT

A
O

TT

0
0.3
0.6
0.9

Vehicle's Speed (km/h)
30 40 50 60

(a) 15 Delivery Stations

AGA DGMA DGA PSOT

A
O

TT

0
0.3
0.6
0.9

Vehicle's Speed (km/h)
30 40 50 60

(b) 20 Delivery Stations

Figure 8: The Impact of the Vehicle’s Speed

The Impact of the Vehicle’s Speed. The vehicle’s speed
affects the vehicle’s arrival time at delivery stations, which
further affects the order transfer time because the order wait-
ing time at the delivery station is affected. As a result, we
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show the impact of the vehicle’s speed on AOTT. As shown
in Fig. 8, the larger vehicle’s speed, the smaller AOTT be-
cause of the smaller vehicle’s travel time for order transfer.
PSOT achieves the best performance with different vehicle
speeds compared to other methods. Specifically, PSOT re-
duces AOTT by 50.9%∼51.3% and 9%∼14.5% compared to
AGA and DGMA, respectively, with 20 delivery stations.
The Impact of the Order Transfer Start Time. The start
time of the order transfer process from the transfer center af-
fects the order transfer time. As shown in Fig. 9, the later
the start time, the smaller AOTT because more couriers have
finished their last-mile delivery trips and waiting for the trans-
ferred orders at delivery stations, which reduces the waiting
time of transferred orders at delivery stations. PSOT achieves
the best performance with varying order transfer start times.
Specifically, PSOT reduces AOTT by 36.5%∼42.6% and
47.6%∼51.3% compared to AGA with 15 and 20 delivery
stations, respectively.
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(a) 15 Delivery Stations
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(b) 20 Delivery Stations

Figure 9: The Impact of the Order Transfer Start Time

The Impact of the Threshold S. We evaluate the impact
of the threshold S of the OTT-aware heuristic algorithm on
AOTT. As shown in Fig. 10, the larger value of S, the smaller
AOTT because more mutation operations are conducted to
generate a better vehicle’s route.
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Figure 10: The Impact of S

5 Related Work
5.1 Order Transportation in Logistics
Order transportation in logistics has become a hot research
topic in recent years with the popularity of the online-to-

offline business. Gao et al. [Gao et al., 2022] leverage public
buses to relay UAVs for on-demand delivery with the stochas-
tic mission time and location. Zong et al. [Zong et al., 2022]
solve the large-scale vehicle routing problem hierarchically in
the logistics delivery systems with reinforcement learning. Li
et al. [Li et al., 2022] design a time-aware batch-matching al-
gorithm with theoretical matching approximation bound anal-
ysis for efficient courier-task matching for real-time city lo-
gistics systems. Ma et al. [Ma et al., 2021] propose a hi-
erarchical reinforcement learning framework to optimize the
order pickup and delivery process in the logistics domain.
Some works focus on the collaboration among multiple lo-
gistics companies, e.g., the delivery station sharing [Zibaei et
al., 2016; Zhang et al., 2022] for improving the delivery ef-
ficiency, and the delivery area sharing [Ko et al., 2020] for
reducing the delivery cost.

5.2 Courier Mobility Prediction
Couriers’ mobility prediction has been studied in recent
works. Zhang et al. [Zhang et al., 2019] predict the courier’s
route for picking up and delivering orders in instant delivery
with an XGBoost-based model. Wen et al. [Wen et al., 2022]
predict the order pickup and delivery route with a dynamic
spatial-temporal graph neural network. Ruan et al. [Ruan
et al., 2022] predict the courier’s stay time at a location for
delivering orders in last-mile logistics delivery via a spatial
metal-learning-based neural network. Wu et al. [Wu and Wu,
2019] predict the order delivery time in the logistics deliv-
ery system with a spatial-temporal sequential neural network
model. Wu et al. [Wu and Wu, 2019] predict the courier’s
arrival time to each location for last-mile order delivery with
a spatial-temporal sequential neural network.

6 Conclusion
In this paper, we design a Prediction-and-Scheduling frame-
work PSOT for efficient order transfer from the transfer cen-
ter to multiple delivery stations including: i) a Courier’s Re-
maining Working Time Prediction component to predict each
courier’s remaining working time for conducting heteroge-
neous tasks when the order transfer starts with context-aware
location embedding and an attention-based neural network;
and ii) a Vehicle Scheduling component to generate the ve-
hicle’s route to served delivery stations with an OTT-aware
heuristic method by minimizing the average order transfer
time considering downstream couriers’ remaining working
times, the transferred order distribution, and the distance be-
tween different location pairs. The evaluation results show
that PSOT improves the courier’s remaining working time
prediction and reduces the average order transfer time by up
to 35.6% and 51.3%, respectively, compared to state-of-the-
art methods.
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