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Abstract

Medical insurance plays a vital role in modern so-
ciety, yet organized healthcare fraud causes bil-
lions of dollars in annual losses, severely harm-
ing the sustainability of the social welfare system.
Existing works mostly focus on detecting individ-
ual fraud entities or claims, ignoring hidden con-
spiracy patterns. Hence, they face severe chal-
lenges in tackling organized fraud. In this pa-
per, we proposed RDPGL, a novel Risk Diffusion-
based Parallel Graph Learning approach, to fight-
ing against medical insurance criminal gangs. In
particular, we first leverage a heterogeneous graph
attention network to encode the local context from
the beneficiary-provider graph. Then, we devise
a community-aware risk diffusion model to infer
the global context of organized fraud behaviors
with the claim-claim relation graph. The local and
global representations are parallel concatenated to-
gether and trained simultaneously in an end-to-end
manner. Our approach is extensively evaluated on
a real-world medical insurance dataset. The exper-
imental results demonstrate the superiority of our
proposed approach, which could detect more or-
ganized fraud claims with relatively high precision
compared with state-of-the-art baselines.

1 Introduction
In recent years, fraudulent insurance claims of medical in-
surance have become a serious concern in the healthcare and
social welfare system [Liang et al., 2019]. According to the
report from the U.S. National Health Care Anti-Fraud As-
sociation (NHCAA), at least $300 billion, about more than
10% of the nation’s $3.6 trillion healthcare expenditure, was
lost annually due to healthcare fraud [NHCAA, 2021]. For
employers, healthcare fraud inevitably translates into higher
premiums and increases the overall cost of doing business.
More importantly, financial losses caused by healthcare fraud
have led to more out-of-pocket expenses for consumers [Rud-
man et al., 2009]. There is no doubt that healthcare fraud can
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have devastating effects on healthy lives, social well-being,
as well as sustainable economic development.

Unfortunately, these large-scale healthcare frauds are not
just committed by individual dishonest healthcare providers
or consumers. An increasing number of criminals are orga-
nized like enterprises, which can be far-reaching and move
quickly from place to place, to conduct conspiracy frauds
to covet the enticing pool of health care money [Timofeyev
and Jakovljevic, 2022]. In the year 2018 alone, investiga-
tive efforts of the Federal Bureau of Investigation resulted in
over 812 operational disruptions of criminal fraud organiza-
tions and the dismantlement of the criminal hierarchy of more
than 207 healthcare fraud criminal enterprises [Stowell et al.,
2018; NHCAA, 2021]. As a result, it is crucial now more
than ever to develop a more powerful and flexible approach
for combating organized fraudsters.

The healthcare industry has developed anti-fraud ap-
proaches for medical insurance since the early 1980s
[Hearn Jr, 1989], from the statistical rules [Major and
Riedinger, 1992] to classical machine learning methods [Dua
and Bais, 2014; Bauder and Khoshgoftaar, 2017]. Later, deep
neural networks were introduced to learn the latent fraud pat-
terns [Pandey, 2017; Pumsirirat and Liu, 2018], which uncov-
ers the power of deep architecture in fraud detection. Mean-
while, the cheating methods are also upgraded, becoming too
deceptive and concealing for a classical deep model to de-
tect, because the model treats each fraud action as isolated.
Recently, graph neural network (GNN) has been employed
for fraud detection and achieved remarkable success [Cheng
et al., 2020b; Xu et al., 2021; Cheng et al., 2023], as GNN
could effectively learn latent features from historical inter-
connected behavior [Cheng et al., 2020a]. In other words,
GNN could more accurately infer the fraud probability by
learning the fraud action from relation graphs.

However, existing graph-based fraud detection methods
mostly learn one or multiple relation types only from entity
graphs [Ma et al., 2018; Dou et al., 2020; Xu et al., 2021;
Zhang et al., 2022], which will inevitably lead to subopti-
mal detection performance. Because entity relation graphs
only represent the local context of a suspicious claim. In
contrast, a wider global context can be constructed by ac-
tion relation graph [Weber et al., 2019], in which a node
means an action, like an insurance claim in this paper. Re-
search [Li et al., 2019] has shown that combining the en-
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tity and action-level relations could improve the model per-
formance in spam review detection. However, we still face
two significant challenges in detecting organized healthcare
fraud claims: 1) Conspiracy fraudsters are very cunning, can
be far-reaching and move quickly from place to place. 2) The
patterns of conspiracy fraud are updated frequently.

Therefore, we propose a novel risk diffusion-based paral-
lel graph learning approach, named RDPGL, for organized
healthcare fraud detection. In particular, we construct the
beneficiary-provider relations as local heterogeneous entity
graphs (in which a node means a service provider or a bene-
ficiary) and the claim-claim relations as global action graphs
(in which a node denotes a medical insurance claim). Then,
we devise a community-aware risk diffusion graph neural
model and graph attentional mechanism to learn from action
and entity graphs in parallel to better extract quickly changing
behavior patterns of conspiracy fraudsters. The learned repre-
sentations are then concatenated in the claim level for jointly
optimizing by the detection network. Extensive experiments
on a real-world medical insurance dataset demonstrate the su-
perior performance of our proposed approach compared with
state-of-the-art baselines. In a nutshell, the main contribu-
tions of this paper can be summarized:

• To the best of our knowledge, this is the first work
that addresses organized healthcare fraud by proposing a
novel parallel graph learning approach that could jointly
learn from both the local beneficiary-provider relation
and the global claim-claim relations.

• We devise a community-aware risk diffusion graph neu-
ral model to encode the quickly changing fraudster be-
havior’s global representations and graph attentional
mechanism to learn local entity features. They are
jointly optimized in the prediction network to better ex-
tract constantly-updated organized conspiracy patterns.

• We validate the effectiveness of the proposed method
on a real-world medical insurance dataset, which was
manually annotated by healthcare insurance domain ex-
perts. Our source codes and the dataset will be available
at Github1.

2 Preliminary
2.1 Healthcare Fraud Backgrounds
Healthcare fraud is a financial crime in which medical in-
surance claims are dishonestly filed to profit illegally from
the payments received [Villegas-Ortega et al., 2021]. It will
not only cause substantial financial losses each year but also
raise health insurance premiums, deplete valuable medical re-
sources, and increase business costs. Fraud can be commit-
ted by medical service providers, patients, and others who
intentionally deceive the healthcare system to receive unlaw-
ful benefits or payments. The most common types of fraud by
providers are billing for services that were not provided, mis-
representing the service provided, and charging for a more
complex or expensive service than was provided [NHCAA,

1https://github.com/finint/antifraud

2021], while dishonest beneficiaries usually claim fake re-
imbursements or misrepresent service statements [Waghade
and Karandikar, 2018]. However, in recent years, conspiracy
fraud has appeared in real business, which means organized
gangs are involved in the crime, and fraudulent activities may
include various deceptive patients and providers. This kind of
fraud contains the human brain-armed organized behavioral
patterns, causing significant challenges for existing methods
to detect. Therefore, this paper addresses this critical task in
the healthcare industry, aiming to detect both individual-level
and gang-level fraud claims.

2.2 Problem Formulation
In the business procedure of medical insurance, two groups of
entities are involved in the commission of healthcare claims.
They are (a) service providers, including doctors, hospitals,
ambulance companies, and laboratories; (b) insurance bene-
ficiaries, including patients and patients’ employers.

In this paper, we denote the beneficiary-provider relation
graph as G(B,P, E) where B = {vb1, ..., vbNB

} is the set of
insurance beneficiary nodes, P = {vp1 , ..., v

p
NP
} is the set

of medical service provider nodes, and E = {e1, ..., eNC
}

denotes the set of edges in the graph, which represents the
claims of medical treatment between the beneficiary and
provider. We denote the number of beneficiaries, providers,
and claims as NB , NP , and NC , respectively. As for neigh-
bors in the graph, let Nv be the set of nodes in node v’s
one-hop neighbors, so Nvb

i∈B ⊆ P and Nvp
j∈P ⊆ B in

our network. Each beneficiary node vbi is represented by
a dB-dimensional feature vector h0

b,i ∈ RdB

,while each
provider node vpj can be described by a dP -dimensional vec-

tor h0
p,j ∈ RdP

. At the same time, for edge ek we define

h0
e,k ∈ RdC

as its attribute vector and let Yc = {0, 1}NC as
the set of fraud labels, where 0 represents normal and 1 rep-
resents fraud.

Meanwhile, we also construct the claim-claim graph
Gc(Vc, Ec), in which a node represents a claim. For two
claims vci , v

c
j ∈ Vc, there will be an edge eci,j linked be-

tween them if both transactions share the same beneficiary
or provider. For each claim record, we aim to infer the pos-
sibility of whether it is a fraud event, and our task can be
formulated as an edge classification problem in a beneficiary-
provider graph, and a node classification problem in the
claim-claim graph. In this paper, we study two detection
problems: individual-level fraud claims detection and gang-
level fraud claims detection. Briefly, it is a pattern discovery
and classification problem in graphs. In particular, the model
needs to discover the groups of fraudulent entities in medical
insurance claims.

3 Methodology
In this section, we present each component of our proposed
fraud detection method in medical insurance claims in detail.
We first introduce the learning approach in the heterogeneous
entity bipartite graph. Then, we present the construction of
the claim-claim relation graph and the representation learn-
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Figure 1: The model architecture of our proposed risk diffusion-based parallel graph learning (RDPGL) method. It contains three components:
(a) the heterogeneous graph attentional network for local context learning on the beneficiary-provider graph; (b) the community-aware risk
diffusion graph model for the learning of the quickly changing fraudster behavior’s global context on the claim-claim graph; (c) The detection
network with latent feature aggregation and joint optimization in parallel to better extract constantly-updated organized fraud patterns.

ing process. Lastly, we introduce the detection network and
optimization strategy of the proposed methods.

3.1 Local Entity Graph Learning
The interconnectedness of medical insurance transactions is
significant, and the goal of the beneficiary-provider bipartite
graph is to mine knowledge hidden in the interaction network
topology among distinct insurance entities. In consideration
that the beneficiary nodes and provider nodes share a simi-
lar information aggregation phase, we choose the beneficiary
entities here to report the operation procedure.

We first utilize the attention mechanism to indicate the im-
portance of local neighboring node vpj ’s features to a node vbi
where vpj , v

p
k ∈ Nvb

i
. For the hidden state of nodes in the l-th

layer, the attention coefficients can be computed as:

αl
ij =

exp
(
σ(uT

[
Wbh

l−1
b,i ‖Wph

l−1
p,j

]
)
)

∑
vp
k
exp

(
σ(uT

[
Wbh

l−1
b,i ‖Wph

l−1
p,k

]
)
) , (1)

where Wb ∈ RdB×dB

, Wp ∈ RdP×dP

are weight ma-
trices of the beneficiary and provider entities, respectively,
and u ∈ RdB+dP

is the weight vector. We choose σ as the
LeakyReLU nonlinearity activation function and let || be the
concatenation operation. Then, we generate the message rep-
resentations passed from neighboring nodes and edges. We
assume that the edges (claims) between the two nodes con-
tain the same amount of information and their sum of mes-
sages will be weighted by node attention coefficients com-
puted above. We denoteNij(e) as the set of edges connected
between beneficiary node i and provider node j, and Ne

ij
refers to the number of edges connecting them. The neigh-
borhood message construction phase can be formulated as:

ml
vb
i←vb

i
= σ

(
W1h

l−1
b,i

)
,

ml
vb
i←N (eb

i)
= σ

( ∑
vp
k∈Nvb

i

αl
ik(

1

Ne
ik

∑
es∈Nik(e)

W2h
l−1
e,s )

)
,

ml
vb
i←N (vb

i )
= σ

( ∑
vp
k∈Nvb

i

αl
ikW3h

l−1
p,k

)
, (2)

where ml
vb
i←N (vb

i )
, ml

vb
i←N (eb

i)
, ml

vb
i←vb

i

represent the

aggregation message from adjacent nodes, edges of vbi , and
the hidden state of the node in the last layer, respectively, and
W1 ∈ RdB×dB

,W2 ∈ RdB×dC

,W3 ∈ RdB×dP

are trans-
formation matrices. We incorporate the propagated message
above and formulate the updating paradigm as:

hl
b,i = ml

vb,i←vb,i
+ml

vb,i←N (vb,i)
+ml

vb,i←N (eb,i)
.

(3)
The generation of hidden vector hl

p for provider nodes shares
similar operation illustrated above. With aggregation sub-
layers, the model has the sufficient expressive power to map
input features of node entities into high-level representations
and capture deep structural relationships among them.

Afterward, different from the traditional graph neural net-
work only processing nodes, we also need an update function
for edge attributes to generate claim embedding, which con-
tains high-order information from node entities. For ∀e ∈ E ,
let hl−1

e ,hl−1
B(e),h

l−1
P (e) be the hidden states of claim and

its corresponding beneficiary and provider output from layer
l − 1, respectively. We define the aggregation function as:

hl
e = σ

(
We

[
hl−1
e ||hl−1

B(e)||h
l−1
P (e)

] )
, (4)

where We is a learnable matrix for edge update. Here, we
use a concatenation operation to aggregate messages. By
stacking multiple layers, the network can learn more com-
plex features from input spaces and better encode the local
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structural information. The final output embeddings for the
beneficiary, provider, and claim are denoted as zb, zp and zc,
respectively. They will further be used in the downstream
classification task.

3.2 Global Claim Graph Learning
To inject claim-wise inter-dependent knowledge into our de-
tection model and measure the global gang-level risk for each
claim behavior, we construct a claim-claim graph Gc(Vc, Ec).
In particular, for claim event nodes vci , v

c
j ∈ Vc, there will be

an edge eci,j linked between them if both transactions share
the same beneficiary or provider. We devote our efforts to uti-
lizing this relation graph to model a behavior-level network
that is far more large and complex than the entity bipartite
graph to better learn quickly changing organized conspiracy
fraud patterns.

Community-aware Risk Diffusion
To effectively learn the far-reaching and quickly changing
conspiracy fraud patterns, we propose a risk diffusion graph
neural model in the global claim-claim graph. It is natural
to employ the fraud classification labels of known nodes as
the risk rating targets and use a label propagation algorithm
to calculate the passed risks. However, this method has two
limitations to our task. On the one hand, the traditional label
propagation (LP) algorithm [Raghavan et al., 2007] is based
on an adjacency matrix that only considers the 1-hop neigh-
borhood of the starting node and it is infeasible for risk infor-
mation to reach remote nodes in a large criminal group. On
the other hand, the traditional LP algorithm only manages the
distance between two nodes in the graph and ignores the im-
portance of node attributes. To better represent the risk rating
of each node by combing the knowledge of a larger behavior
community, we propose an improved risk diffusion algorithm
based on a well-designed risk matrix (RM) Rc, which is ex-
tended from the original adjacency matrix Ac.

In a graph structure, the effect of multiple indirect diffu-
sion is the same as direct information diffusion [Dong et al.,
2021]. This means if we have access to the multi-hop neigh-
borhood of node v and approximate their direct risk diffusion
degree, the diffusion range can be scaled during the iteration.
Thus, in the implementation, we sample a subset of known
fraud claim nodes in the training set as sources of risk infec-
tion Sc [Niu et al., 2020]. The nodes chosen will be treated
as starting nodes to build contagion links. Formally, given
source nodes, we utilize a biased random walk [Grover and
Leskovec, 2016] to explore their neighborhoods in depth-first
traversal, taking into account the mixture of two notions of
equivalence in a real-world network. Furthermore, we build
direct links between source nodes and their multi-hop neigh-
borhoods to extend the adjacency matrix as A

′

c and record
their original hop distance. After that, for ∀ vci , vcj ∈ Vc those
have a link in A

′

c, we measure the degree of risk transmission
from vcj to vci as below:

Riskij =
sim(vci , v

c
j)

γ · hopij
, (5)

where sim(u, v) denotes the cosine similarity of nodes u and
v’s attributes, hopij refers to the hop number between them,

and γ is a hyper-parameter that controls the relative impor-
tance of two criteria. We replace the link record in A

′

c with
the risk diffusion degree computed above and normalized it
by row to form our Rc. Finally, we introduce the technique
in personalized PageRank [Brin, 1998] to propagate the risk.
We denote initial risk labels as Y

(0)
r , which assigns 1 to the

known fraud nodes in the training set and a small constant
ε > 0 to other nodes since the normal or unknown claims
may be the camouflage of criminals and still have potential
risk. The diffusion process can be expressed as:

Y(k)
r = (1− α)RcY

(k−1)
r + αY(0)

r , (6)

YRisk = Y(K)
r , (7)

where YRisk is the risk rating label matrix which incorpo-
rates community-aware risk information, K is the iteration
number, and α ∈ (0, 1) represents a propagation hyper-
parameter. The labels will be used in the pre-training task.

Pre-training for Risk Representation Learning
As mentioned before, we aim to incorporate gang-level risks
into the healthcare fraud detection task. Inspired by recent
advances in multi-task learning [Zhang and Yang, 2021], we
devise an auxiliary pre-training prediction task to better learn
the global pattern in a claim-level relation graph. Let YRisk

be the soft labels of the regression task, and we leverage a
vanilla GCN [Kipf and Welling, 2016] to learn community-
aware risk representation for each claim node. We denote
H

(l)
c as the input for the layer l in the network, and the layer-

wise aggregation rule can be formulated as:

H(l+1)
c = σ

(
D̃c
− 1

2 ÃcD̃c
− 1

2H(l)
c W(l)

c

)
, (8)

where Ãc = Ac + Ic is the adjacency matrix with self-loops
and D̃c is the diagonal matrix of Ãc representing the node de-
grees. The final result Hc through multi-layer transformation
can be denoted as the risk representation zr . Then, a fully-
connected neural layer is applied to predict the risk labels and
we use back-propagation of mean squared error (MSE) loss
to update the network in the pre-training stage.

3.3 Detection Network and Optimization
In the downstream detection task, after the concatenation of
learned embeddings of beneficiary zb, provider zp, claim zc
and group-level risk attributes zr , we utilize a multi-layer
perceptron (MLP) as the detection network to infer the fraud
probability of a claim as:

p̂c = MLP
(
[zb||zc||zp||zr]

)
. (9)

For the edge classification task, we adopt the cross-entropy
loss function for optimization, which can be formulated as:

L = −
∑
i

[yc,i log (p̂c,i) + (1− yc,i) log (1− p̂c,i)] , (10)

where yc,i ∈ Yc is the ground-truth fraud label of the i-th
claim edge and p̂c,i denotes its predicted fraud probability.
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Dataset Type Claim Beneficiary Provider

Training (Jan-Sep) Outpatient 399,508 122,797 4,956
Test (Oct-Dec) Outpatient 118,229 70,080 4,512

Training (Jan-Sep) Inpatient 31,329 24,843 2,038
Test (Oct-Dec) Inpatient 9,145 8,484 1,570

Table 1: The statistics of the dataset.

The proposed method can be optimized through the standard
stochastic gradient descent-based algorithms. In this paper,
we used the Adam optimizer [Kingma and Ba, 2014] to learn
the parameters. We set the initial learning rate to 10−3 and
the weight decay to 10−5 by default.

4 Experiments
4.1 Experimental Settings
Datasets
The dataset was collected from real-world medicare claims
[Gupta, 2020], which include inpatient claims, outpatient
claims, and beneficiary details. It contains more than 0.55
million claims (38.1% are labeled as fraudulent, according
to the ground truth reported by the healthcare system) and
over 0.2 million beneficiaries. After a thorough analysis of
the dataset with our collaborating domain experts of the Na-
tional Healthcare Security Administration (NHSA), we ob-
served that many fraudulent activities involve multiple orga-
nized parties, known as conspiracy fraud. Then, the orga-
nized fraud labels are elaborately annotated by the anti-fraud
experts of NHSA. They judge whether a claim is involved
in organized fraud by their domain expertise in combating
fraudsters over multiple years. According to the criterion of
organized fraud in medical insurance procedures and existing
fraud labels in the dataset, each record is annotated with two
fraud labels indicating whether it is individual or organized
fraud. In the experiment, we train the model on the dataset of
the first nine months (from January to September) and detect
on the rest three months for testing (from October to Decem-
ber). Table 1 reports detailed statistics of the dataset, includ-
ing both the inpatient and outpatient claims. We train and
evaluate our proposed model by individual-level and gang-
level label settings for organized fraud detection tasks. We
will contribute the annotated labels of the dataset for the re-
search community to inspire more work in the future.

Baseline Methods
We compare our proposed techniques with the baselines as
shown below:

• RF [Bauder and Khoshgoftaar, 2018]: A widely-used
random forest-based fraud detection method.

• DNN [Kazemi and Zarrabi, 2017]: A typical deep neural
network that includes three hidden layers.

• GCN [Kipf and Welling, 2016]: A well-known graph
neural network that performs similar operations as CNN
to learn the features by inspecting neighboring nodes.

• GAT [Liu et al., 2021]: A powerful model with the at-
tention mechanism for graph learning. We set the atten-
tion head to 4 and the number of stacked layers to 2.

• DCI [Wang et al., 2021]: A simple yet effective graph
self-supervised learning scheme for node representation
learning, which captures the intrinsic graph properties in
more concentrated feature spaces by clustering the entire
graph into multiple parts.

• AMNet [Chai et al., 2022]: A GNN-based model aim-
ing to capture both low-frequency and high-frequency
signals, and adaptively combining signals of different
frequencies to detect fraud samples that are dissimilar
to their neighboring normal nodes.

• BWGNN [Tang et al., 2022]: A popular GNN approach
for mining structural data with spectral and spatial local-
ized band-pass filters to better detect fraud patterns.

Parameter Settings and Evaluation Metrics
In our implementation, we first pre-train a two-layer GCN
for generating risk embedding, which has a dimension of 32.
The number of attentional layers in the entity graph is set as 2
and the dimensions of output representation zb, zc, zp are 16,
32, 16, respectively. In the parallel training phase, the max-
imum number of epochs is set to 100. We adopt a dropout
mechanism with the rate of 0.6. Our method is implemented
using PyTorch 1.12.1 with CUDA 11.3 and Python 3.7 as the
backend. The model is trained on a server with two 32GB
NVIDIA Tesla V100 GPUs. In the experiment, we leverage
three commonly-used metrics: area under curve (AUC), re-
call, and F1 score to evaluate the effectiveness of our model
comprehensively. For all three metrics, the higher score indi-
cates the higher performance of the methods.
4.2 Overall Performance Comparison
We evaluate our method and all compared baselines in two
healthcare fraud detection tasks: individual-level and gang-
level (organized) fraud. Table 2 shows the model perfor-
mance in terms of three metrics. It can be seen that our
proposed RDPGL consistently obtains better results across
different fraud types, which proves the effectiveness of the
proposed method.

Compared with traditional approaches, GNN-based meth-
ods achieve better performance due to the modeling of high-
order interactions among different behaviors. We observe that
GCN and GAT perform inadequately w.r.t. RDPGL, which
confirms the necessity of learning representations from the
heterogeneous beneficiary-provider relation graph. In addi-
tion, different from state-of-the-art models proposed in recent
years, our RDPGL could also incorporate risk diffusion in the
action-level claim-claim graph and generates more effective
fraud risk features based on global claim interactions, leading
to more accurate prediction performance.

As we can see, the proposed RDPGL obtains significant
improvements in organized fraud detection. It outperforms
DCI and BWGNN, which are two of the strongest baselines,
by 3%-5% in terms of AUC in both inpatient and outpatient
scenarios. The model achieves the highest F1 score and also
the highest recall, which means that RDPGL can significantly
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Individual Healthcare Fraud Organized Healthcare Fraud
Model I-Outpatient I-Inpatient O-Outpatient O-Inpatient

AUC Recall F1 AUC Recall F1 AUC Recall F1 AUC Recall F1
RF (2018) 0.7337 0.5719 0.5852 0.7022 0.5669 0.5847 0.7327 0.5256 0.4924 0.6921 0.5349 0.4881
DNN (2017) 0.7425 0.5913 0.6076 0.7085 0.5819 0.5523 0.7181 0.5311 0.4858 0.6813 0.5157 0.4896
GCN (2021) 0.7743 0.5986 0.6417 0.7557 0.6036 0.6369 0.7598 0.5472 0.6189 0.7245 0.5584 0.6332
GAT (2021) 0.7822 0.6886 0.7126 0.7437 0.6348 0.6581 0.7719 0.5912 0.6542 0.7415 0.6018 0.6356
AMNet (2022) 0.7819 0.7532 0.7953 0.7577 0.7236 0.6847 0.7583 0.6456 0.6132 0.7129 0.6253 0.6339
BWGNN (2022) 0.8512 0.8471 0.7582 0.8129 0.8176 0.7312 0.8258 0.8098 0.6375 0.7983 0.7349 0.6353
DCI (2021) 0.8679 0.8536 0.8472 0.8361 0.8083 0.7754 0.8353 0.7994 0.7486 0.8195 0.7719 0.6658

RDPGL 0.9086 0.8553 0.8319 0.8858 0.8311 0.8032 0.8713 0.8302 0.7982 0.8415 0.8022 0.7317

Table 2: The performance comparison of our proposed method with seven state-of-the-art baselines in individual(“I-”) and organized(“O-”)
healthcare fraud detection tasks. The result proves that our method significantly outperforms recent baselines in most metrics.

Figure 2: Ablation studies for different RDPGL framework variants,
in terms of AUC and F1.

reduce the false-negative rate and accurately detect real fraud
activities, demonstrating its superiority in extracting compli-
cated behavior patterns from gang fraud. Additionally, we
see that the model performance on inpatient data is generally
worse than that on outpatient data, possibly due to the oc-
currence of data imbalance and the distinct hidden patterns
between inpatient and outpatient records. In particular, DCI
is the only baseline that can achieve over 0.7 F1 score in the
inpatient data and it is significantly superior to other baseline
models, while our RDPGL can achieve near 0.8 F1 score. Be-
sides, only RDPGL reaches over 80% recall and over 0.7 F1
score in terms of organized fraud detection on inpatient data,
proving its effectiveness in capturing gang-level fraud claim
behaviors. In summary, our method retains its effectiveness
for two different detection tasks in both inpatient and outpa-
tient settings, exhibiting its robustness trait.

4.3 Ablation Study
We further investigate two variants of RDPGL to explore the
effectiveness of each component of our proposed approach:

• RDPGL w/o Local Context: Removing the heteroge-
neous attentional graph neural network during parallel
learning which only employs the risk embedding learned
from the claim relation network.

• RDPGL w/o Global Context: Removing the original
community-aware risk diffusion model and replacing it
with the traditional label propagation algorithm for the
pre-training task.

We report the comparisons of detection performance in
terms of AUC and F1 score for the above-described model

(a) I-Outpatient (b) I-Inpatient

(c) O-Outpatient (d) O-Inpatient

Figure 3: The precision@k for individual and organized fraud de-
tection in both inpatient and outpatient settings.

configurations in Figure 2. RDPGL outperforms both coun-
terparts on different fraud detection tasks. Specifically, the
RDPGL w/o Global Context performs worst on different
datasets, indicating that local and global context in risk em-
bedding learned by the parallel pre-trained graph learning
module plays an important role in detecting both individual-
level and gang-level fraud. The RFPGL performs better
than the RDPGL w/o Local Context, especially in organized
fraud detection. The reason is that the variant fails to prop-
agate community-level risk messages and incorporate node
attributes in the diffusion process as RDPGL does, thus gen-
erating a less representative risk embedding vector and result-
ing in suboptimal performances in both metrics. This experi-
ment validates the essential and effectiveness of each compo-
nent of our proposed method in healthcare fraud detection.

4.4 Ranking Performance for Detection
Due to the humongous quantity of medical insurance claim
data, it is almost impossible to annotate the whole dataset in
a real industrial scenario. The accuracy of a fraud detection
algorithm is usually evaluated with the precision of the top re-
turned fraud detection results, in which experts only need to
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Metric F1-Score

α
ε 0.05 0.1 0.15 0.2 0.25

0.1 0.7398 0.7458 0.7510 0.7426 0.7305
0.2 0.7533 0.7620 0.7649 0.7593 0.7421
0.3 0.6879 0.7012 0.7245 0.7119 0.7023

Table 3: Impact of the propagation coefficientα and the initial po-
tential riskε on organized fraud detection.

check those high-risk candidates (a tiny portion of the whole
dataset). In the following experiment, we utilize the preci-
sion of the predicted top k percentage of fraud claims with
the highest confidence to evaluate the detection performance.
In particular, we select the top 1%–10% of most confident
fraud claims predicted by RDPGL and other GNN-based ap-
proaches for individual-level fraud, while for organized fraud,
we choose the range of 0.5%–5% because the positive sam-
ples of this fraud type are relatively small. As shown in Fig-
ure 3, the precision of baselines gradually decreases with the
increase of k for the reason that the more samples predicted,
the less reliable the result is. We observe that the precision
of GCN is not comparable with other methods and the lat-
est deep graph methods, such as BWGNN and DCI, achieve
the best performance among these baselines. Our RDPGL
performs better than other models in all settings of k on all
datasets. It achieves an average of over 95% precision for the
top 1% of predictions on both detection tasks, which is better
than the performances of compared baselines. Specifically,
for organized fraud detection in an inpatient scenario, the im-
provements vary from 1% to 9%. The improvements are more
remarkable in the top 3% predictions. These results strongly
prove the superiority of RDPGL in real industrial scenarios.

4.5 Parameter Sensitivity
We further investigate the model generalization performance
on hyper-parameters of initial potential risk ε and propaga-
tion parameter α. Specifically, we evaluate their influence on
risk diffusion on organized fraud detection tasks and present
averaged F1 score of performance on inpatient and outpatient
test data in Table 3. We vary the initial potential risk ε for
the normal node from 0.05 to 0.25 with an incremental step
of 0.05 and the propagation coefficient α is searched from
the set of {0.1, 0.2, 0.3}. We can observe that our RDPGL
performs better when increasing ε from 0.05 to 0.15, and the
average F1 score reaches the peak when ε = 0.15 and α = 0.2.
The performance degrades if we keep increasing the ε value.
We suspect that the overestimation of risk diffused by legal
behavior may lead to the over-sensitivity of the model on dis-
criminating fraud claims. As the α increases from 0.2 to 0.3,
we can find the performance decreases even quicker. This is
probably due to the higher α restricting the diffusion breadth
and later deteriorating the learning capacity of community-
level risk representation.

4.6 Case Studies
In RDPGL, the learned representation is utilized to indicate
the risk information diffused across the community and help
improve the performance of organized fraud detection.

Figure 4: The layout of a typical medical service provider graph.
There are six criminal groups marked as A, B, C, D, E and F. Our
method successfully detects most of these organized fraud claims
where the color of the edges denotes the detected fraud probability.

Figure 4 presents a typical case of a medical service
provider network with 663 providers. Edges between two
providers denote that they have claims with the same benefi-
ciaries and the color and thickness show the fraud probability,
which is produced by our proposed method, of these claims.
We denote the provider with claims of higher fraud probabil-
ity as a high-risk provider and others as low-risk providers.
There are six organized fraud gangs annotated by domain ex-
perts, which are marked as A, B, C, D, E and F. It is apparent
that the fraud gangs have a cluster-like pattern and our method
successfully detects most claims in these criminal groups. To
further analyze the organized fraud pattern, we zoom in on
group B with red squares and it shows that most neighbor-
ing nodes are involved in organized fraud and form a cluster
structure, which reveals that our well-designed community-
aware risk diffusion method is suitable for detecting this fraud
pattern. From high-risk providers and their neighboring sus-
picious nodes, we can observe that the claims’ fraud proba-
bility is relevant to its behavior entities, and the integration of
information from the heterogeneous entity is essential.

5 Conclusion
In this paper, we proposed a novel risk diffusion-based par-
allel graph learning system for organized fraud detection
in medical insurance claims. To better extract constantly-
updated organized fraud patterns, we devised the hetero-
geneous graph attentional network for local context learn-
ing on the beneficiary-provider graph and the community-
aware risk diffusion graph model for quickly changing fraud-
ster behavior’s global context learning on the claim-claim
graph, which is then jointly optimized in the downstream
detection network. Extensive experiments on the real-world
dataset demonstrated the advantages of our method over ex-
isting state-of-the-art baselines. The superior performance of
RDPGL also exposes the vulnerabilities of organized fraud-
sters and safeguards our healthcare insurance system.
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