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Abstract
Combating an epidemic entails finding a plan that
describes when and how to apply different inter-
ventions, such as mask-wearing mandates, vacci-
nations, school or workplace closures. An optimal
plan will curb an epidemic with minimal loss of
life, disease burden, and economic cost. Finding an
optimal plan is an intractable computational prob-
lem in realistic settings. Policy-makers, however,
would greatly benefit from tools that can efficiently
search for plans that minimize disease and eco-
nomic costs especially when considering multiple
possible interventions over a continuous and com-
plex action space given a continuous and equally
complex state space. We formulate this problem
as a Markov decision process. Our formulation is
unique in its ability to represent multiple continu-
ous interventions over any disease model defined
by ordinary differential equations. We illustrate
how to effectively apply state-of-the-art actor-critic
reinforcement learning algorithms (PPO and SAC)
to search for plans that minimize overall costs. We
empirically evaluate the learning performance of
these algorithms and compare their performance
to hand-crafted baselines that mimic plans con-
structed by policy-makers. Our method outper-
forms baselines. Our work confirms the viabil-
ity of a computational approach to support policy-
makers.

1 Introduction
Public health policymakers face a myriad of challenges when
designing and implementing intervention plans to curb the
spread of an epidemic. First, each disease is unique: what
works to contain an Ebola outbreak — a disease spread
through direct contact with infected bodily fluids — is dif-
ferent from what works to contain a flu outbreak. Second, the
efficacy and effectiveness of interventions may vary widely
even for similar diseases: the flu vaccine’s effectiveness can
vary from 40% to 60% depending on how well the vaccines
are matched to the current season’s flu strains [Price et al.,
2022]. Third, the disease or our understanding of its dynam-
ics may evolve as new disease variants arise. The new vari-
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Figure 1: The agent-environment interaction in the Markov decision
process formalizing the epidemic planning problem.

ants may entail changes in intervention plans to reflect the
changes in the disease’s transmissibility or severity [Karim et
al., 2021]. Finally, quantifying the cost and benefit of a com-
bination of interventions is difficult even after an extensive
post-hoc analysis [Lee et al., 2019] In short, there are no tem-
plate intervention plans that can be universally and directly
applied across all disease outbreaks, regions and populations.

Nevertheless, in practice, research supporting policy mak-
ers often consists of the simulation of a small set of prede-
fined and relatively coarse intervention plans on a carefully-
calibrated epidemiological model to assess and compare the
economic cost and disease burden of each plan [Ferguson et
al., 2020]. While this approach has the virtue of simplicity, it
disregards the large space of potential policies.

In contrast to the approach of choosing a plan from a set of
predefined ones, we consider the following algorithmic chal-
lenge: can we automatically and efficiently search for an
optimal schedule of interventions that minimizes overall dis-
ease burden and economic cost? An exact solution to this
combinatorial search problem is intractable. With a one-year
planning horizon of week-long timesteps, and only three bi-
nary interventions (e.g. close or open schools; close or open
borders; enforce or relax mask-wearing mandates), there are
852 plans to consider! Furthermore, many interventions have
inherently continuous parameters (e.g. the number of vac-
cines to administer daily ranges from 0 to the available num-
ber of doses, or the distance between individuals in a physical
distancing intervention may range from 0 to 10 meters) and
policy-makers may disagree on how to discretize them.
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Theoretical approaches that rely on dynamic programming
techniques [Littman et al., 2013] or Pontryagin’s maximum
principle [Perkins and España, 2020; Obsu and Balcha, 2020]
neither scale nor generalize to complex disease models (i.e. a
large continuous state space) with a diverse set of candidate
interventions. Recent works have examined the application of
reinforcement learning (RL) to intervention planning. We can
classify these works into ones that built disease simulators
that enable control by an RL agent [Kompella et al., 2020;
Libin et al., 2020], or programmable optimization tool-
boxes [Colas et al., 2020]. None of these works allows a large
continuous disease state space, a multi-intervention continu-
ous action space, and the ability to simulate different diseases
and interventions as shown in Table 5.

By contrast, we rely on an existing framework, EPIPOL-
ICY [Tariq et al., 2021], that can simulate (i) disease-
spreading interactions across regions for a given disease
model and population and (ii) programmatically-defined in-
terventions with free parameters that determine their effects
and costs. This allows us to empirically examine the rich
problem of controlling multiple interventions with RL that
none of the prior works have examined.

Contributions & Paper Outline. We present two main
contributions:
(i) A demonstration of how to use reinforcement learning to
construct epidemic intervention plans over complex contin-
uousdisease and population models, with multiple interven-
tions. To achieve this, we formulate the problem as a Markov
Decision Process (MDP) in Section 2. We explore the space
of possible RL approches in Section 2.2, to select two algo-
rithms (PPO, SAC) that fit our problem and we empirically
tune them (Section 3). We present promising empirical re-
sults on a wide range of epidemic planning problems of vary-
ing complexity both in terms of the state space and action
space (Section 3.2).
(ii) A benchmark for reinforcement learning and epidemi-
ology researchers (Section 3.1). The environments in our
benchmark represent real disease models and interventions.
Moreover, the benchmark can be easily extended to include
other disease models or interventions. The code, data, and
experiments can be found in our GitHub repository1. The
benchmark was motivated by and built in consultation with
public health officials, so it should be useful to computational
epidemiology researchers. In addition, the benchmark pro-
vides a testing point for RL algorithms allowing further re-
search into improving their performance.

2 Problem Formulation
We frame the epidemic plan optimization problem as a
Markov Decision Process (MDP), where an agent learns an
(approximately) optimal policy or plan by interacting with
a simulator of the natural disease environment. Figure 1 il-
lustrates the agent-environment interaction in our application.
The MDP formalizes the sequential decision-making process
of epidemic planning, where an action — a full parameteri-
zation of the set of interventions — at each time step (e.g.,

1https://github.com/huda-lab/RL-Epidemic-Benchmark

a week) influences the immediate costs (e.g., the costs asso-
ciated with vaccinating a certain number of individuals) and
rewards (e.g.,the avoidance of the cost of sick days due to
increases in the infectious populations). Thus, each action
influences both the subsequent state and future costs and re-
wards.

2.1 The Markov Decision Process
An MDP is a 4-tuple ⟨S,A, p(st+1|st, at), r(st, at, st+1)⟩:
▶ State: S is the state space. In our application, a state st
is the distribution of the population across different disease
compartments (e.g., infected, recovered, hospitalized, etc.)
including their regional (e.g, a particular state or province)
and group subdivisions (e.g., adult, senior, child, male, fe-
male, etc.).
▶ Action: A is the action space. An action at is the set of
applied interventions at time t and their parameter values (e.g.
82% school closure).
▶ State-transition: p(st+1|st, at) is a function p : S × S ×
A → [0, 1]. The probabilities given by p characterize the
dynamics of the environment. In our setting, this function
is evaluated by executing a deterministic simulator with the
state st and action at as inputs for a single time step. Since
the future state st+1 depends only on the current state st and
the applied action at, the Markov property is satisfied.
▶ Reward: r(st, at, st+1) is a function r : S ×A×S → R.
The reward of applying action at to state st to reach state st+1

is simply the negative of the sum of the costs associated with
implementing the interventions in the action at and the costs
associated with being in a certain state st to state st+1 for the
time step.

The Simulator
An epidemic simulator for compartmental disease models ap-
proximates the progression of the disease in the face of the
interventions. Concretely, it defines the behavior of the state-
transition function, p, of the MDP.

For our application, we require a simulator that:
(i) uses a deterministic compartmental disease model. Typ-
ical compartments will be susceptible (S), infected (I), and
recovered (R), with known transition rates such as recovery
rate and infection rate. The compartmental model describes
how disease spreads in a population with predefined demo-
graphic and geographic characteristics using ordinary differ-
ential equations (ODEs).
(ii) simulates the results of programmatically-defined and pa-
rameterized interventions (the actions) in terms of their ef-
fects on the transition rates and on the distribution of the pop-
ulation across the compartments. The behavior (effects and
costs) of an intervention should be modifiable by its control
parameters.
(iii) exposes the simulator’s internal state in terms of the dis-
tribution of the population across the different compartments,
its incurred costs as a function of the cost of each state (e.g.,
the estimated dollar cost of x individuals being sick), and the
cost of interventions applied (e.g., each vaccine administered
costs y dollars).

The first requirement follows from scalability considera-
tions. Stochastic population models better capture random-
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Figure 2: The compartmental SIRV model with five compartments:
susceptible (S), infectious (I), recovered (R) and two vaccinated
compartments (V1, V2) for a disease with a two-dose vaccination
regiment. Note the model has a transition edge from R to S anno-
tated with the immunity loss transition rate ν indicating the possi-
bility of reinfection in this model.

ness but their differential equations are more expensive to
solve. In addition, they are not as scalable as deterministic
models for RL training where many experiences need to be
simulated. Agent-based models are also difficult to scale and
are often limited to population sizes of at most one million.

Figure 2 illustrates a compartmental disease model with
four compartments: susceptible (S), infectious (I), recov-
ered (R) and two vaccinated compartments (V1, V2) one
for each dose in a disease with a two-dose vaccination reg-
iment. Transition rates are the ODE parameters that control
the progression of the population from one compartment to
another. For example, three parameters in Figure 2: β the
transmission rate, ν the loss of immunity rate, and v1 the first-
dose vaccination rate, together control the rate of change in
the susceptible (S) compartment through the following ODE:
dS
dt = −βIS

N +νR−v1S. Here N is the total population count
and S, I,R are the number of individuals in their respective
compartments at a given time.

We assume that the transition rates are known and provided
a priori. Inferring their values, sometimes called model cal-
ibration, is its own sub-field within epidemiology [Hazelbag
et al., 2020].

The second requirement enables the RL agent to explore
and control how each intervention is applied by setting its
control parameters.

Finally, the third requirement (exposure to a simulator’s
internal state) enables the RL agent to evaluate the rewards of
an intervention plan.

We use EPIPOLICY as our epidemic simulator because it
satisfies the above requirements [Tariq et al., 2021; Mai et
al., 2022].

We note that in our formulation both the action space and
the state space are continuous and bounded. For example,
interventions like school closures are controlled by a degree
of the school closure parameter that ranges from 0 to 1. Given
a fixed population size N , the number of individuals across
the compartments and their regional or demographic subdivi-
sions (e.g. male/female or child/adult/senior) range from 0 to

N 2

▶ Plan or Schedule. An epidemic intervention plan is
simply the sequence of actions a0, ...aT applied over a fixed
time horizon T . Given an initial state s0, the MDP, and
the plan enacted by the agent, we can construct a trajectory:
s0, a0, r0, s1, a1, r1, ...sT , aT , rT . The cumulative reward of
the plan is simply the (discounted) sum of all the rewards
from r0 to rT : r0+r1γ+r2γ

2+...+rT γ
T where γ ∈ [0, 1] is

the discount factor. In epidemic modelling, an action can have
significant long-term consequences (like uncontrolled disease
spread). For that reason, we set the discount factor at 0.99 to
reflect the importance of mitigating the costs of an epidemic
not only in the short term but also toward the end of the time
horizon.

2.2 The Agent & Solution Strategies
The goal of the agent is to find an optimal epidemic interven-
tion plan that minimizes overall cost. While formulating epi-
demic planning as an MDP problem is straightforward, solv-
ing the MDP problem is not. We found that only Actor-Critic
methods efficiently solve MDPs for planning epidemic inter-
ventions: analytical approaches do not extend beyond sim-
ple epidemiological models and tree search approaches suffer
from inefficient sampling which require significant computa-
tional resources.
Analytical Approaches. An MDP with a continuous action
space and a continuous state space can sometimes be solved
via the partial derivatives of the Bellman Optimality Equation
with respect to the action space [Rao and Jelvis, 2022]. This
requires that the reward function be expressable as a closed-
form function of the current state st and action at, which in
turn requires an analytical solution of the ODE system. An
analytical solution may be possible when the ODE system is
simple enough such as in the three-compartment SIR model
of Barlow and Weinstein [2020], but it is not possible in gen-
eral. Dynamic programming approaches as well as Pontrya-
gin’s maximum principle have also been used in the optimal
control of simple epidemiological models in Perkins and Es-
pana [2020] and Obsu and Balcha [2020].
Tree Search. Natively, Monte Carlo Tree Search
(MCTS) [Kocsis and Szepesvári, 2006] requires both
the state space and the action space to be discrete.

Discretization of the action space requires domain knowl-
edge, however. In our work with public health officials, we
often found disagreement regarding the granularity and the
values of such discretizations.

Moreover, MCTS suffers from low sampling efficiency. At
each time step, MCTS estimates the value of a certain action
through many Monte Carlo random plan simulations. The
more simulations, the more accurate the estimate. This trade-
off implies that as the action space grows (with more interven-
tions or with finer-grained discretizations), the computational
resources have to increase exponentially in order to obtain
reasonable coverage. Without good coverage, plans gener-
ated by MCTS will be much more costly than simple hand-
crafted plans.

2ODEs may result in real, non-integer, individual counts within
compartments.
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Actor-Critic Methods. In contrast to the planning ap-
proaches discussed above, we consider an agent that produces
a policy.
▶ Policy: π : S × A → [0, 1] is a probability distribution on
the actions given a state s.

In actor-critic methods, the agent is both a critic that learns
the value of a specific state or an action, often with a neu-
ral network, and an actor, that learns a policy, also through
a neural network, as guided by the critic. The agent gen-
erates an intervention plan or schedule for an initial state
s0, by sequentially sampling actions at ∼ π(st), simulat-
ing the next state st+1 ∼ p(st, at), and computing the reward
rt = r(st, at, st+1), repeatedly until the time horizon T .

Actor-Critic methods theoretically converge to the local
maximum of the reward function [Konda and Tsitsiklis,
1999]. They inherently support continuous state and ac-
tion spaces as the neural networks representing the actor
and the critic support continuous input and output values.
State-of-the-art actor-critic methods such as Soft Actor-Critic
(SAC) [Haarnoja et al., 2018] or Proximal Policy Optimiza-
tion (PPO) [Schulman et al., 2017] have been shown to have
good learning performance in a wide range of reinforcement
learning tasks [Wang et al., 2019]. These methods, however,
are sensitive to the setting of their hyperparameters, requir-
ing extensive experimentation and benchmarking to appro-
priately tune them. In the following section, we test these
methods on a new benchmark consisting of six different epi-
demic environments.

3 Empirical Evaluation
3.1 The Benchmark
The benchmark described here is largely inspired by a collab-
oration with a public health entity through a non-disclosure
agreement that preserves their anonymity. Our public health
colleagues wanted guidance on multiple interventions for
mitigating different diseases. These interventions had control
parameters that described the degree of their application.

State Spaces. We consider three compartmental models of
increasing state-space complexity:

1. SIR: The classic and basic three-compartment Suscepti-
ble (S), Infectious (I), and Recovered (R) model.

2. SIRV: A modified SIR model with two vaccinated com-
partments for diseases having two-dose vaccination reg-
imens. See Figure 2.

3. C15: A 15-compartment model [Tariq et al., 2021],
which includes compartments for capturing different
disease severity and symptoms, hospitalization and iso-
lation or quarantine. See Figure 5 in [Mai et al., 2023].

Both the SIRV and the C15 models capture reinfection
by introducing a transition from the recovered (R) compart-
ment to the susceptible (S) compartment. The C15 model
also captures hospitalization and quarantine, which incurs an
additional cost for states with hospitalized or quarantined in-
dividuals, while SIRV and SIR do not. The total population
size is 2 million people with an initial infectious population
of 0.005% (100 infected individuals).

Action Spaces. For the action space, we consider four inter-
ventions, each of which has a continuous control parameter.
Table 1 describes these interventions and their control param-
eters. The table also describes two ”action spaces” A and B,
each of which consists of certain interventions. A Reinforce-
ment Learning agent learns a policy, which sets the values for
each intervention’s control parameters for a given state.

Environments. We combine the three state spaces (SIR,
SIRV, C15) and the two action spaces (A, B) to form six
different benchmarking environments of varying disease and
intervention complexity (SIR-A, SIR-B, SIRV-A, SIRV-B,
C15-A, C15-B). The planning time-horizon is one year or
52 weeks with a one week timestep.

Baselines. Table 2 describes plausible handmade baseline
polices in terms of their intervention parameter settings. The
Agressive policy mimics plans where officials react early (first
120 days) and aggressively with school and workplace clo-
sures in the hopes of quickly curbing an epidemic and then re-
laxing these interventions. The Lax policy mimics plans that
favor less costly interventions such as mask-wearing man-
dates and a relaxed schedule of vaccinations [Hale et al.,
2021]. The Random policy is one that chooses each control
parameter value uniformly at random from its range.

RL Implementations. We use Stable-Baselines3’s imple-
mentations of SAC [Raffin et al., 2021] and a well-known
PPO implementation [Huang et al., 2022].

Reward & State Normalization. As [Andrychowicz et al.,
2020] suggest, reward and state normalization are essential to
achieve learning stability and convergence, especially when
rewards or states can fluctuate by orders of magnitude across
experiences. Thus, we normalize as follows: If x is the cur-
rent value for reward or for a state variable, then the normal-
ized x̃ is the z-score, viz. x−µ

σ where µ, σ are the running
mean and standard deviation of x.

Hyperparameter Tuning. For SAC, we use grid-search to
find the best hyperparameter settings for the simplest environ-
ment (SIR-A). We then apply these settings to the other en-
vironments. Certain hyperparameters are set to their default
values in the SAC implementation of Stable-Baseline3. For
PPO, hyperparameters follow [Huang et al., 2022]’s recom-
mendations as the default Stable-Baseline3 PPO implemen-
tation failed to converge.

Table 6 in [Mai et al., 2023] lists all our hyperparameter
values for PPO and SAC.

Training. We train both algorithms for 30,000 timesteps on
four random seeds: learning convergence occurred around
20,000 timesteps in all environments.

Hardware. We conduct our experiments on Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10GHz with 80 cores.

3.2 Results
Figure 3 illustrates the learning performance of PPO and SAC
over 30,000 timesteps on four different random seeds. Ta-
ble 4 presents the highest cumulative rewards, averaged over
the four seeds. We find that PPO significantly outperforms
SAC and the baseline policies in all six environments. SAC

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6150



Intervention Control Parameter Action Spaces

Range Description of control parameter’s effect A B

1 Mask-wearing Compliance
Degree

m [0, 1] Affects the transition from S to I by
modifying the transmissibility β rate.
Higher compliance reduces the transmissibility rate
as follows: (1−Rm)β, where R ≈ 0.8 is the
reduction in transmission rate at full compliance (m = 1).

Y Y

2 Vaccination Administration
Rate

v [0, 1] Moves vC individuals from S to R in SIR,
S to V1 in SIRV and S to V in C15.
C ≈ 10, 000 is the maximum number of doses available.

Y Y

3 School closure Remote learning
proportion

s [0, 1] Higher proportions lower infectious interactions within
school facilities;
s = 0 means no remote learning/school closure.

Y

4 Workplace closure Remote working
proportion

w [0, 1] Higher proportions lower infectious interactions within
workplace facilities;
w = 0 means no workplace closures.

Y

Table 1: The four interventions in the different action spaces A,B. The costs associated with each intervention can be found in table 3.

Baseline Policies
Aggressive Lax Random

m 0.8 1 ∼ U(0, 1)

v
85% population in

9 months
70% population in

12 months ∼ U(0, 1)

s
if t ∈ [0, 120] then 1,

0.5 otherwise; 0 ∼ U(0, 1)

w
if t ∈ [0, 120] then 1,

0.5 otherwise; 0 ∼ U(0, 1)

Table 2: The Aggressive and the Lax baseline policies have set con-
trol parameter settings for the interventions, while the values for the
Random baseline are sampled uniformly at random from the param-
eter’s range.

achieves similar rewards to PPO in the SIR-A and SIRV-A
environments, but under-performs in the remaining four en-
vironments.

Discussion & Limitations
From these empirical results, we conclude that RL is a viable
mechanism for generating alternative intervention plans that
can reduce costs compared with plausible, hand-crafted poli-
cies. Figure 4 illustrates the schedule sampled from PPO’s
policy in the SIRV-B environment. For PPO, which performs
the best, we note that its generated plans are smooth with no
wide fluctuations in control parameter settings, and can be
easily described to policy-makers. For example the plan in
figure 4 is “Enforce mask-wearing mandates and vaccinate as
much as possible of the population, for almost 150 days. By
then the population is mostly vaccinated or the pool of sus-
ceptible individuals is too small to cause a future outbreak.
Then, relax these interventions. Do not enforce expensive
interventions such as school or workplace closures for this
particular disease environment. PPO suggests similar plans
for all the other environments (See Figure 6 in [Mai et al.,
2023]).

Intervention Cost
Mask-wearing 0.05$ per person wearing mask per day
Vaccination 40$ per person getting vaccinated
School closure 1.8$ per affected person per day
Workplace closure 1.8$ per affected person per day

Disease State Cost
Infections 173$ per infectious person per day
Hospitalizations 250$ per hospitalized person per day
Fatalities 100,000$ for each fatality

Table 3: The four interventions under consideration with their re-
spective cost as well as the disease burden cost.

While SAC performs as well as PPO in SIR-A and SIRV-
A, it does not perform as well in the remaining environments.
SAC is particularly sensitive to two hyperparameters: reward
scale and the update frequency of the neural network. Since
we tuned these SAC parameters only on the SIR-A environ-
ment, we suspect that each environment may require its own
independent hyperparameter tuning. For the epidemic plan-
ning problem, this makes PPO a more robust alternative to
SAC, one that requires less tuning or no tuning at all. We
also note that SAC’s high sample efficiency, when compared
to PPO, may not be so important in our application due to the
efficiency of the simulator. Finally, we note that training PPO
for 30,000 timesteps takes significantly less wall-clock time
when compared to SAC (e.g. 3 hours vs. 18 hours on our
hardware per training run in C15-B). In critical situations,
where policy-makers are exploring multiple different inter-
ventions to curb an ongoing epidemic, the time it takes for an
RL agent to suggest intervention plans can make or break its
integration into their policy-making workflows.

Future Work.
It is important to emphasize that the learned RL policies are
heavily influenced by the parameter values that define the dis-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6151



(a) SIR-A (b) SIRV-A (c) C15-A

(d) SIR-B (e) SIRV-B (f) C15-B

Figure 3: The cumulative reward (minimizing cost) of PPO and SAC over 30,000 training timesteps, averaged over four random seeds, We
also plot the cumulative rewards of the three baseline policies, Lax, Aggressive and Random. In all scenarios, PPO outperforms both SAC
and the baseline policies.

Figure 4: The highest-reward intervention schedule generated by
PPO for the SIRV-B environment. Mask-wearing and vaccination
are aggressively used until the population is mostly vaccinated.

ease model (e.g. fatality rate, recovery rate, etc) or the inter-
ventions (e.g. the cost of isolation, the effect of masks on
transmissibility rate, etc). For example, reducing the cost of
workplace closures, or increasing its effectiveness in reducing
infectious interactions within workplaces in our benchmark
may cause the RL agents to favor this intervention rather than
excluding it. Inferring the exact value of these parameters,
or calibration, is an active area of research [Hazelbag et al.,

2020] and [Ritto et al., 2021]. Though we consider this to be
independent of the optimization problem, it is possible to use
our tool to examine the differences in plans sampled from the
agent’s policy when the disease has a high versus a low trans-
missibility rate, or when a vaccine has a high or low efficacy.

We have assumed the availability of a fully observable state
in which we know the population size within every com-
partment. Future work can extend our work to partially ob-
servable MDPs where only partial state information is avail-
able. Finally, we note that we tuned our hyperparameters on a
single configuration; in practice, hyperparameters should be
tuned to be robust with respect to a range of parameter set-
tings (e.g. different transition rates).

4 Related Work
Historical Approaches. Using Markov Decision Processes
(MDPs) for epidemic planning was explored as early as
1981 by Lefevre [1981]. Lefevre [1981] analytically proved
that optimal levels of quarantine or medical care are non-
decreasing functions of the size of the infectious population.
More recently, research on epidemic control has shifted to-
wards a more computational approach where simulations are
carefully designed and analyzed to provide insights for epi-
demic planning. For example, Maharaj and Kleczkowski
[2012], Kleczkowski et al. [2012], and Oles et al. [2012]
compare, through simulations, many well-established inter-
vention plans. Our work complements this body of research
by demonstrating reinforcement learning as a viable approach
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Policy SIR-A SIR-B SIRV-A SIRV-B C15-A C15-B

Random max −94.1 −693.5 −1008.3 −717.4 −559.3 −387.7
µ± σ −110.4± 20 −745.5± 46.6 −2798.3± 1049 −811.9± 61.8 −905.2± 291 −415.4± 20.5

Aggressive −135.9 −1576 −166.3 −1577.1 −139.9 −742.9

Lax −104.4 −104.2 −122.4 −115.6 −167.6 −166.6

SAC max −43.4 −73.4 −99.9 −169.2 −65.6 −128.6
µ± σ −45.3± 1.9 −92.2± 12.6 −108.6± 5.7 −200.4± 22.7 −73.7± 7.2 −176.7± 53.7

PPO max −42.9 −42.1 −82.2 −78.9 −45.3 −45.2
µ± σ −43.3± 0.2 −42.5± 0.3 −83.4± 1.2 −81.2± 1.5 −45.7± 0.47 −46.2± 0.52

Table 4: Maximum, mean and standard deviation of the highest cumulative rewards (expressed as negative costs) achieved by each reinforce-
ment learning algorithm or baseline policy across four different random seeds. All maximum and mean rewards and standard deviations are
in millions of dollars (106).

to generate alternative candidate strategies that are tailored to
a specific environment.

Reinforcement Learning for Epidemic Control. The
COVID pandemic inspired new research into using RL ap-
proaches for epidemic control. Among recent works that have
formulated different MDPs with actions capturing interven-
tions with the goal of using RL to inform epidemic control,
we found Colas et al. [2020], Kompella et al. [2020] and
Libin et al. [2020] to be the most closely related to our work.

While our motivations are similar, we differ in that we
have demonstrated RL as a viable approach to generate
intervention plans when there are multiple, continuously-
parameterizable interventions that can influence different as-
pects of the underlying disease and population model. By
contrast, Colas et al. [2020] and Kompella et al. [2020] com-
bine the effect of many interventions into one that reduces the
transmission rate of the disease, thus controlling the disease
only via this single parameter. Libin et al. [2020] use RL
to study the cost-effectiveness of different degrees of school
closures across regions. In our case, the programmatically-
defined interventions can modify any transition rate, and even
redistribute the population across disease compartments, re-
gions or facilities. Moreover, as the RL agent can control each
intervention independently, it can determine the tradeoffs of
different interventions in terms of their costs and benefits —
an option that is not possible when grouping multiple inter-
ventions into one. Table 5 provides a feature comparison of
the RL approaches used in many of the recent works for epi-
demic planning.

5 Conclusions
We present an approach to support public health officials in
their efforts to combat epidemics. The approach consists
of a reinforcement learning algorithm that proposes policy
choices consisting of multiple continuous interventions (e.g.,
masking, vaccination, isolation, and others, all to various de-
grees). The ability to model multiple interventions is im-
portant, because policy-makers often have multiple strategies
available. The ability to model each intervention continu-
ously is important because it is often impractical to impose an
intervention absolutely (e.g. critical workers may need to in-

S A
Related Works C L C L Sim.

[Bastani et al., 2021; Abdallah et al., 2022] - - - - -

[Libin et al., 2020; Khadilkar et al., 2020]
[Zong and Luo, 2022; Du et al., 2022]
[Arango and Pelov, 2020] • • - - -

[Kompella et al., 2020; Colas et al., 2020]
[Feng et al., 2022b; Bampa et al., 2022]
[Ohi et al., 2020; Jiang et al., 2020] • • - - •
[Song et al., 2020] • • • - -
[Liu, 2020] - - • • -
[Chadi and Mousannif, 2022] • • - • -

[Kwak et al., 2021; Feng et al., 2022a]
[Bushaj et al., 2022] • • - • •
[Padmanabhan et al., 2021] • • • • -

Our Work • • • • •

Table 5: A comparison of recent RL epidemic planning tools in
terms of the size of the supported state space S and action space
A (large (L) • or small/singular -) and their continuity (continuous
(C) • or discrete -), and the integration of an epidemic simulator
(Sim.) that can simulate different diseases.

teract with one another). Our tool offers policy-makers quan-
titatively backed recommendations while leaving to them the
final choice of a strategy, which may involve intangibles such
as culture or politics.

Our benchmarking environments are similar to real-world
epidemic planning environments both in terms of disease
models used (SIR, SIRV and C15) and interventions con-
sidered. In addition to its application to epidemiology, our
work advances reinforcement learning research, through the
provision of a realistic benchmarking environment.
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