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Abstract

Image-based quick response (QR) code is fre-
quently used, but creates barriers for the visual im-
paired people. With the goal of “AI for good”,
this paper proposes the AudioQR, a barrier-free QR
coding mechanism for the visually impaired pop-
ulation via deep neural audio watermarks. Pre-
vious audio watermarking approaches are mainly
based on handcrafted pipelines, which is less se-
cure and difficult to apply in large-scale scenarios.
In contrast, AudioQR is the first comprehensive
end-to-end pipeline that hides watermarks in au-
dio imperceptibly and robustly. To achieve this, we
jointly train an encoder and decoder, where the en-
coder is structured as a concatenation of transposed
convolutions and multi-receptive field fusion mod-
ules. Moreover, we customize the decoder training
with a stochastic data augmentation chain to make
the watermarked audio robust towards different au-
dio distortions, such as environment background,
room impulse response when playing through the
air, music surrounding, and Gaussian noise. Exper-
iment results indicate that AudioQR can efficiently
hide arbitrary information into audio without in-
troducing significant perceptible difference. Our
code is available at https://github.com/xinghua-qu/
AudioQR.

1 Introduction
According to the report1 of World Health Organization, there
are 285 million people with visual impairment, and 39 million
people being completely blind around the world. Due to the
vision disability, this particular population faces many diffi-
culties in their daily work and life. One of the most signifi-
cant difficulties is scanning QR code images for the purpose
of payment, identification, information retrieval, etc. This is
mainly caused by the current vision based design, viz., the
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1https://www.emro.who.int/control-and-preventions-of-

blindness-and-deafness/announcements/global-estimates-on-
visual-impairment.html
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Figure 1: Comparison between image QR and AudioQR

QR codes are displayed on images. Therefore, without exter-
nal assistance, a visually impaired person may hardly realize
there is QR code around, let alone accurately scan it.

Motivated by the principle of responsible AI, we propose
the AudioQR, a new QR scanning mechanism using audios as
carrier instead of images. AudioQR can embed the QR code
information into an audio signal imperceptibly, and extract
the QR code precisely and robustly. In this case, people (not
limited to the visually impaired population) can use the mi-
crophone on the mobile to receive the audio played in the air
for obtaining the embedded QR code. Compared with the cur-
rent image based QR code, AudioQR has several advantages.
1) The image based QR code requires the direction alignment
between camera and displayed QR code as shown in Figure
1. In contrast, AudioQR only needs the microphone to be
inside the sphere neighborhood of the device that broadcasts
the audio. 2) When the environment is in darkness or with
inadequate lighting, the image based QR code would become
hard to use, while the AudioQR will not be affected. Keep-
ing these advantages in mind, we also notice that AudioQR
is not perfect as discussed in Section 4. Therefore, our aim
is not to replace/remove the current image based QR code
system. Instead, we hope AudioQR together with the exist-
ing image based QR code could make the QR scanning more
user-friendly and inclusive.

The key technique of AudioQR is audio watermarking that
hides QR code into any audio through adding human im-
perceptible watermarks. Currently, the studies towards au-
dio watermarking are mainly dominated by heuristic or hand-
crafted pipelines (i.e., traditional mathematical algorithms),
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which makes them less secure and not general enough, thus
being hard to be deployed in large scale media platforms.
Specifically, many previous approaches utilize a certain rule
to hide watermark in audios. For instance, the least sig-
nificant bit substitution (LSBS) [Hua et al., 2016] replaces
the last bits of the binary representation of waveform val-
ues. Some other approaches, such as the concatenation of
discrete wavelet transform and singular value decomposition
(SVD) [Al-Haj, 2014], directly operate in the frequency do-
main [Karajeh et al., 2019]. However, for watermark extrac-
tion, these transform/decomposition based approaches usu-
ally need to save a specific key (e.g., UV matrices in SVD)
for each watermarked audio, thus not being general enough.
This accordingly makes them hard to be applied in large
scale media platform (e.g., Tiktok) where millions of au-
dios uploaded daily. In contrast, the end-to-end training
pipeline for digital watermarking is more promising due to
its “one-model for all” nature, which is well studied in com-
puter vision tasks [Zhu et al., 2018; Tancik et al., 2020;
Qu et al., 2023] yet not in speech and audio domain. Based
on a comprehensive survey [BYRNES et al., 2021], there is
no work exploring deep learning frameworks for end-to-end
audio watermarking.

We build the AudioQR framework as an end-to-end
encoder-decoder based pipeline as shown in Figure 2. Specif-
ically, the encoder includes two modality specific encoders
and one fusion encoder. To enforce the added watermark
imperceptible for human being’s auditory system, we train
the AudioQR encoder with the losses from both time domain
(i.e., l1 norm of added watermark) and frequency domain
(i.e., the l1 distance between mel-spectrograms before and
after adding the watermark). Moreover, we design a multi
period QR decoder architecture with each period to handle a
specific range of periodic signals from the watermarked au-
dio. To boost the robustness of AudioQR towards real-world
audio distortions (such as environment background, room im-
pulse response, music surrounding, and Gaussian noise), we
propose a stochastic distortion chain as data augmentation.

Our contributions can be summarized as bellow.
• Given the difficulties of current image based QR code

system towards the population with vision impairment,
we propose AudioQR, the first end-to-end audio water-
marking pipeline that can imperceptibly hide QR code
into arbitrary audios and recover the corresponding QR
code precisely and robustly.

• We design the AudioQR encoder as two modality spe-
cific encoder and one fusion encoder, and the AudioQR
decoder as a multi-period QR decoders. To achieve the
robustness towards real-world audio distortions, we de-
sign a stochastic distortion chain as data augmentation.

• Experimental results based on LJSpeech, ESC-50, Mu-
sicNet453 and BUT Speech@FIT Reverb Database
show that our AudioQR framework could accurately and
robustly hide QR code in an imperceptible fashion.

2 Related Work
Audio watermarking has been a topic of study for more than
twenty years, which predominantly employs traditional signal

processing techniques [Hua et al., 2016]. The first system-
atic study on traditional audio watermarking was conducted
in the early 1990s [Cox et al., 1997]. Since then, numer-
ous audio watermarking techniques have been proposed, and
they can be broadly categorized into two main groups: time-
domain embedding and transform domain embedding [Hua
et al., 2016]. In time-domain based techniques, the water-
mark is directly added to the waveform using specific rules,
such as least significant bit substitution (LSBS), which re-
places the last binary bit of a waveform value [Chadha and
Satam, 2013]. In echo hiding, the rule entails adding atten-
uated echoes to a carrier audio [Hua et al., 2015]. While
these rule-based methods are straightforward, they are not se-
cure and ad hoc in nature. For example, if the watermark is
added using LSBS, it can be easily removed by applying the
same rule inversely. Similarly, in echo hiding, the echo ker-
nels can be easily detected using cepstral analysis [Hua et al.,
2016], rendering the method insecure and hard to be deployed
widely.

In contrast, transform domain-based audio watermarking
methods consist of two steps: (1) transforming the waveform
into another domain using algorithms like discrete Fourier
transform (DFT) [Kang et al., 2010], discrete wavelet trans-
form (DWT) [Wang et al., 2013], singular value decomposi-
tion (SVD) [Lei et al., 2012], and their concatenations [Al-
Haj, 2014]; and (2) embedding the watermark in the trans-
formed domain and reconstructing the watermarked wave-
form using the inverse transform. While these transform
domain-based methods offer improved imperceptibility and
robustness compared to traditional time-domain approaches,
they are still ad hoc and not generally extendable to large-
scale media platforms. This is primarily due to the need to
save data for inverse transforms. For example, in the SVD-
based methods [Al-Haj, 2014], to enable watermark extrac-
tion, the U and V matrices must be saved for each audio
slice, which can scale to billion level. Similarly, the methods
based on DFT [Hua et al., 2016] need to preserve the sym-
metric property of frequency domain samples within [−π, π)
to achieve reconstructed waveforms after inverse transform.

In summary, traditional watermarking algorithms still have
limitations, such as difficulties in deployment on large-scale
media platforms and requiring expert knowledge and experi-
ence in designing the handcrafted watermarking pipeline. In
recent years, deep learning based watermark has been inves-
tigated, but they mainly focus on image-based tasks [Zhu et
al., 2018; Tancik et al., 2020].

According to [Begum and Uddin, 2020], there are no exist-
ing works exploring deep learning framework for end-to-end
audio watermarking. Given that, this paper is to fulfill this
gap via providing AudioQR, the first end-to-end pipeline for
imperceptible and robust audio watermarking. There are few
reasons that make the end-to-end audio watermarking more
challenging, viz., 1) the sequential data type of waveform is
totally different from the images, which restricts directly ap-
plying existing machine learning based image watermarking
approaches; 2) human auditory system is more complicated
than visual system [Qin et al., 2019]; and 3) hiding pertur-
bation in image files are easier [Schönherr et al., 2018], as
images do not have temporal dependencies.
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Figure 2: The training framework of AudioQR system.

3 Method
The AudioQR framework is composed of two fundamental
parts, as illustrated in Figure 2: the AudioQR encoder and
the AudioQR decoder. The AudioQR encoder includes three
sub-components: an audio encoder, a QR encoder, and a fu-
sion encoder. On the other hand, the decoder component
consists of two distinct pathways: 1) vanilla QR decoding
process through the multi-period decoder, 2) augmented de-
coding involving the stochastic distortion chain.

The AudioQR framework comprises several subcompo-
nents that collectively enable the seamless integration of QR
code information into audio signals. Specifically, the audio
encoder and QR encoder generate encoded audio and QR
code representations, respectively. The fusion encoder com-
bines these representations into a unified feature space. The
decoder component plays a critical role in retrieving the em-
bedded QR code information, even when the audio signal is
subject to various distortions. To facilitate the training of a
robust decoder, the framework employs a stochastic distor-
tion chain that simulates a range of audio perturbations. As
a result, the AudioQR framework provides a comprehensive
solution for embedding and retrieving QR codes in audio sig-
nals, even when confronted with diverse distortions.

3.1 AudioQR Encoder
The aim of the AudioQR encoder is to effectively encode z
into a given audio signal x, where z indicates the QR mes-
sage. The output of this process is the QR code embedded au-
dio x′. The dimensions of x and z are B ·L and B ·D, respec-
tively, where L represents the length of the padded waveform,
D represents the length of the embedded QR code, and B de-
notes the batch size. Both x and x′ share the same dimension.
The AudioQR encoder is comprised of three subcomponents:
the audio encoder, the QR encoder, and the fusion encoder,
which are visually represented in Figure 2 as EA, EQR, and
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Figure 3: The architecture of the audio encoder. The Conv1D layer
setting follows the format of (input channels, out channels, kernel
size, stride, padding).

EF , respectively. In general, the AudioQR encoder pipeline
can be formulated as

x′ = EF (EA(x)⊕EQR(z)), (1)
where ⊕ indicates the concatenation operation.

Audio Encoder
The audio encoder, depicted in Figure 3, is composed of five
1-dimensional convolutional layers, each employing a leaky
Relu activation function, followed by a fully connected layer.
The detail setting of each layer is given in Figure 3. To ex-
pedite the training process, we leverage weight normalization
[Salimans and Kingma, 2016], as a reparameterization tech-
nique that disentangles the weight tensor’s magnitude from
its direction in each 1-dimensional convolutional layer. The
input x is a sliced waveform with length 8192, which aligns
with the training settings in speech synthesis, as detailed in
[Kim et al., 2021]. The output representation fx generated
by the audio encoder EA, is concatenated with the QR code
representation fz . This concatenation facilitates embedding
the QR code into the audio signal.

QR Encoder
The QR encode contains two fully connected layers with Relu
activations. The input of QR encoder is a multi-dimensional
binary vector that carries the QR message z. The network’s
output is a latent representation that has the same dimension
as the output produced by the audio encoder. The primary
objective of the QR encode is to map the input QR message
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Figure 4: The neural network structure of fusion encoder EF

to a latent representation, allowing it to be combined with the
output generated by the audio encoder. This concatenation
enables the embedding of the QR message into audio signals.
Overall, the QR encoder plays a crucial role in facilitating the
secure transmission of information through audio signals.

Fusion Encoder
In general, the target of fusion encoder is to map the mixed
representation from audio encoder and QR encoder to a wave-
form perturbation. The fusion encoder EF is designed as
a stack of convolutional layers and multi-receptive field fu-
sion modules, as illustrated in Fig 4. This design is inspired
by HiFi-GAN [Kong et al., 2020], a generative adversarial
network (GAN) based speech synthesis model using Mel-
spectrogram. In specific, EF utilizes the mixed latent repre-
sentation zA + zQR as input and up-samples it through trans-
posed convolutions until the output waveform δx that shares
the same dimension as its original waveform x.

In order to increase the versatility of the model to accom-
modate QR codes of varying dimensions, a linear projection
layer is initially employed to map the QR code to a unified
latent dimension. Thereby, EF upsamples zA + zQR for m
times to match the temporal resolution of the input waveform
x together with the pre- and post- convolutions. To restrict
the perturbation of the output waveform to a reasonable mag-
nitude, a weighted hyperbolic tangent activation function is
applied. This is in line with the observation that the added
audio watermark is usually much smaller than the original
waveform. Namely, permitting the model to produce signifi-
cant waveform perturbations would therefore impede training
efficiency. In our setting, we set the weight as 0.1.

3.2 Multi-Period QR Decoder
The objective of the QR decoder Dmp is to effectively re-
trieve the QR information that has been embedded within the
watermarked audio signal x′. The entire decoding process
can be represented as

z′ = Dmp(x
′) (2)

Since speech audio signals are comprised of a variety of si-
nusoidal signals, each with differing periods, it is necessary
to identify the diverse periodic patterns that underlie the au-
dio data. In light of this, multi-period QR decoders are pro-
posed, in which each decoder is specialized to handle a spe-
cific range of periodic signals from the watermarked audio.
By partitioning the input signal in this manner, it is possible

to extract the hidden QR code more efficiently, as each de-
coder focuses on a distinct subset of the underlying periodic
patterns presented in the watermarked audio. This results in
an improved decoding performance, as the decoder architec-
ture is specifically designed to account for the complex and
varied periodicity exhibited in the watermarked audio.

More specifically, the multi-period QR decoder comprises
a mixture of sub-decoders, each of which receives only
equidistantly spaced samples of the watermarked audio, with
the spacing controlled by the period parameter p. This design
affords the ability to decode QR codes across various scales
and structures. The philosophy behind here is also reflected
by previous discriminator structure in GAN based TTS sys-
tems (e.g., HiFiGAN [Kong et al., 2020]). More specifi-
cally, each sub-decoder is composed of a stack of strided and
grouped convolutional layers with leaky ReLU activation. At
the end of each sub-decoder, no activation function is ap-
plied. Subsequently, the output from multiple sub-decoders
is stacked and subjected to mean pooling and a sigmoid func-
tion. Finally, the reconstructed QR code z′ can be obtained.

3.3 Robustness Improvements via Stochastic
Distortion Chain

The combination of the AudioQR encoders and the multi-
period QR decoders forms the vanilla pipeline of QR code
embedding and extraction. Nevertheless, this is not suffi-
cient for real-world deployment since it fails to take care of
the audio distortions that are typically introduced by external
sources, which could have a detrimental effect on the util-
ity of the AudioQR pipeline. In order to address this issue,
we consider the threat model introduced below. The threat
model entails identifying and assessing potential sources of
audio distortion that may impact the effectiveness of the ba-
sic AudioQR pipeline. Thereby, we propose the stochastic
distortion chain based data augmentation in order to improve
its robustness towards common real-world audio distortions.

Threat Model
The threat model primarily concerns the potential distortions
that could arise during the deployment of the AudioQR en-
coder and decoder. Essentially, the AudioQR encoder emits a
unique audio signal containing a QR code, which is then ex-
tracted by the AudioQR decoder. However, during the trans-
mission of the audio signal through the air, external factors
may introduce distortions to the watermarked audio, causing
variations in the extracted QR code. As a result, these distor-
tions can have a detrimental impact on the overall accuracy
and reliability of the AudioQR system. It is, therefore, impor-
tant to carefully evaluate and mitigate potential distortions in
order to enhance the robustness of the system.

Given this, we comprehensively consider four distinct
types of audio distortions to ensure the effectiveness of our
AudioQR system, including 1) environment background dis-
tortions (e.g., animal barking, urban traffic noise, machine
enginer sound, external rain sound), 2) room impulse re-
sponse distortions in different palces (e.g., shopping mall,
living room, kitchen, coffee shop, office, hospital), 3) mu-
sic surrounding distortions, and 4) Gaussian noise distor-
tion. It is noteworthy that these four types of distortions are
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closely relevant in the real-world scenarios where AudioQR
systems are deployed. For instance, when a vision-impaired
customer uses a mobile phone to receive the QR-embedded
audio played by the bar counter in a coffee shop, the audio
signal can be distorted by the surrounding noise, room acous-
tics, machine noise, and music played in the shop. Although
there are other metrics for evaluating audio watermark robust-
ness (e.g., mp3 compression, band pass filtering), they are not
closely related to the AudioQR scenario we consider. Hence,
we focus on the real-world-driven threats that are specific to
the AudioQR scenario we described above. The robustness
in such setting is less investigated in previous studies. Given
that, we propose a stochastic distortion chain for data aug-
mentation during training in order to improve the robustness
of our AudioQR system.

Stochastic Distortion Chain
To enhance the robustness of AudioQR system for practical
real-world deployment, we propose to use a stochastic dis-
tortion chain as data augmentations. Data augmentation has
been widely applied in model training for different purpose,
such as adversarial training [Rebuffi et al., 2021] and aug-
mented representation learning [Chen et al., 2020]. In digital
watermarking, there are also studies using data augmentation
for enhancing the robustness toward input variations. For in-
stance, [Qin et al., 2019] utilized the data augmentation of
room impulse response to simulate the audio played through
the air, but their work focused on audio adversarial attacks,
instead of our audio watermarking task. [Qu et al., 2023] uti-
lized the data augmentation with randomized connections of
different image corruptions during the anti-forwarding water-
mark training. However, they are for computer vision area,
thus being different from our setting in audio.

In general, the four types of audio distortions for data aug-
mentation training can be represented as δe for environment
background distortion, δr for room impulse response distor-
tion, δm for music surrounding distortion, and δg for Gaus-
sian noise distortion. Under the stochastic distortion chain,
the probabilities of each distortion are pe, pr, pm, pg , respec-
tively. Therefore, the decoding process of the augmented QR
decoding can be represented as

z′aug = Dmp(x
′ + δaug)

δaug = pe ◦ δe + pr ◦ δr + pm ◦ δm + pg ◦ δg,
(3)

where pe ◦ δe means the distortion δe is sampled with prob-
ability pe. Similar meaning applies to pr ◦ δr, pm ◦ δm, and
pg ◦ δg . Such stochastic concatenation of different distor-
tions is motivated by two factors: 1) the real-world audio dis-
tortions exist in the stochastic concatenation manner; 2) the
stochatic combination of different distortions can increase the
generalization ability of robustness.

3.4 Loss Functions
There are totally two types of loss functions for training Au-
dioQR encoder and decoder jointly, including 1) the audio
watermark imperceptibility loss functions, and 2) the QR
code reconstruction loss functions.

The Audio Watermark Imperceptibility Loss
The audio watermark imperceptibility loss mainly aims to
minimize the similarity between the original audio and the
watermarked audio, as shown in Figure 2. Such impercepti-
bility is achieved via two loss functions, viz., Lti for time-
domain imperceptibility and Lfi for frequency-domain im-
perceptibility.

More specifically, Lti minimizes the magnitude of the add-
on watermark in time domain, viz.,

Lti = Ex||x′ − x||1. (4)

Based on our experiments, the L1 distance minimization be-
tween x′ and x directly on waveform is usually not enough
for ensuring the imperceptibility. Given that, we involve an-
other imperceptibility loss from frequency domain as

Lfi = Ex||ϕ(x′)− ϕ(x)||1, (5)

where ϕ(·) is the function that transforms the waveform to
spectrogram with Mel scale in frequency domain. Such a
transformed distance between audios has also been proved to
enable more efficient and stable training in previous vocoder
study [Kong et al., 2020] for translating audio spectrogram
to waveform. In general, the spectrogram contains less noisy
information than original waveform given the filtering pro-
vided by the Fourier transform. Moreover, Mel scale is also
involved to better reflect the human perception range in fre-
quency. Therefore, the distance calculation based on mel
speatrogram and original waveform could provide a compre-
hensive measure about the imperceptibility quantification.

QR Code Reconstruction Loss
The QR reconstruction losses aim to decode the QR code
from the watermarked audio x′. Given two QR decoding
pipelines as shown by Figure 2, there are two different types
of QR reconstruction losses, namely, Lv for vanilla QR re-
construction indicated by the yellow pipeline, and La for aug-
mented reconstruction indicated by the green pipeline. In par-
ticular, Lv and La can be represented as

Lv = Ex′ ||Dmp(x
′)− z||1,

La = Ex′ ||Dmp(x
′ + δaug)− z||1,

(6)

where z is the ground truth QR message that serves as the
reconstruction target. δaug is given in Eq. 3.

Moreover, in computer vision, to better enable impercep-
tibility of pixel watermark, the perceptual similarity loss
based on the average learned perceptual image patch similar-
ity (LPIPS) distance [Zhang et al., 2018] is usually utilized.
Motivated by so, we propose the audio deep feature loss Lf

that is calculated in the multi-period encoder. Let fx′ indi-
cates the deep features from Dmp with input x′. Similarly,
fx′+δaug

means the corresponding deep features from input
x′ + δaug . Therefore, Lf can be represented as

Lf = Ex′ ||fx′ − fx′+δaug ||1. (7)

In summary, the training loss Ltotal for our end-to-end Au-
dioQR system is

Ltotal = λimp(Lti + Lfi) + λmr(Lv + La + Lf ), (8)

where λimp and λmr are weights for the watermark imper-
meability losses and QR reconstruction losses, respectively.
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Figure 6: The comparison of spectrogram from the non-watermarked audio, watermarked audio, and watermarked & distorted audio.

Algorithms BER ACC
DWT [Xiang, 2011] 0.00% 100%
[Wang et al., 2016] 0.00% 100%
SS-SNR-HS [Su et al., 2018] 0.00% 100%
[Li et al., 2018] 0.12% 99.88%
[Hsu et al., 2020] 1.23% 98.78%
GA-DT [Wu et al., 2021] 0.10% 99.90%
AudioQR w/o Aug 0.01% 99.99%
AudioQR Aug 0.02% 99.98%

Table 1: Accuracy of audio watermark decoding.

4 Experiments
4.1 Dataset
We evaluate the effectiveness and robustness of our audio QR
system on four datasets, i.e., LJSpeech, ESC-50, MusicNet
and BUT Speech@FIT Reverb Database. LJSpeech dataset
contains 13,100 short audio clips of a single speaker reading
passages from 7 non-fiction books. The dataset separation for
training and test follows the setting in [Kim et al., 2021]. In
calculating the mel spectrogram, we use Short-time Fourier
transform (STFT) to convert waveform to linear spectrogram
first. In such STFT process, the FFT size, window size and
hop size of the transform are set to 1024, 1024 and 256, re-
spectively. Thereafter, we get 80 bands mel-scale spectro-
grams by introducing a mel-filterbank to linear spectrograms.
The sampling rate used on LJSpeech is 22050.

In the stochastic distortion chain module, we use ESC-50
dataset [Piczak, 2015] for environmental background distor-
tion, and MusicNet dataset for music surrounding distortion.
In particular, ESC-50 dataset contains 2000 5-second envi-
ronmental audio recordings for environmental sound classifi-
cation. MusicNet contains 330 freely-licensed classical mu-
sic recordings. Moreover, we involve BUT Speech@FIT Re-
verb Database to simulate different reverberations in different
places, such as living room, kitchen, coffee shop, shopping

mall, office, hospital.

4.2 Evaluation Metrics
We use bit error rate (BER) to represent the error of decoding
QR code from watermarked audios. The corresponding ac-
curacy (ACC) can be calculated as 100 − BER, which indi-
cates the percentage ratio of correctly reconstructing the pre-
embedded QR code. Moreover, to evaluate the imperceptibil-
ity of the QR code embedded audios, we involve the signal to
noise (SNR) ratio that is computed by

SNR = 10 · log
∑

x2
i∑

(x′ − x)2
. (9)

4.3 Implementation Settings
In our experiments, we set the input dimension of audio x to
8192. We utilize the Adam optimizer with a learning rate of
2e−4, and the exponential decay rates of moment estimates
are set at 0.8 and 0.99. The loss weights λimp and λmr in Eq.
8 are set to 1. During the training process, the audio QR code
capacity can be chosen flexibly based on the requirements.
We opt for 50 bits for each 8192 audio clip, resulting in a
capacity of around 135 per second, based on the sampling
rate of 22050. However, we also find that using 100 bits per
clip (resulting in the capacity of 270) would not significantly
impact the performance. The probabilities pe, pr, pm, pg of
the four distince audio distortions are set to be 0.75.

4.4 Accuracy Evaluation
As shown in Table 1, our well trained model could achieve
99.99% bit recovery accuracy on LJSpeech test dataset,
which means that the embedded QR code can be precisely
recovered. Such an ability of achieving near/equal 100%
BER is also observed in many other audio watermarking
algorithms, such as DWT based algorithms [Xiang, 2011;
Li et al., 2018], derivative free optimization [Su et al., 2018;
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No Distortion RIR Environment Background Music Gaussian Noise All concatenated
AudioQR w/o Aug 99.99% 48.26% 49.62% 49.80% 50.88% 50.31%
AudioQR with Aug 99.98% 97.84% 96.33% 98.84% 98.64% 93.50%

Table 2: The robustness evaluation based on RIR, environment background distortion, music background distortion, Gaussian noise distortion
, and the concatenation of all distortions.

Algorithms SNR
DWT [Xiang, 2011] 23.98 db
SS-SNR-HS [Su et al., 2018] 24.94 db
[Wang et al., 2016] 22.44 db
[Li et al., 2018] 24.34 db
[Hsu et al., 2020] 27.7 db
GA-DT [Wu et al., 2021] 25.04 db
AudioQR w/o Aug 49.50 db
AudioQR Aug 31.84 db

Table 3: Imperceptibility (SNR) evaluation and comparison. The
larger the better of SNR value.

Wu et al., 2021]. However, our method is more computa-
tional efficient. In comparison, the SS-SNR-HS method [Su
et al., 2018] takes an average computation time of around 574
seconds per audio watermark, while our method only requires
inference through the decoder network, which takes less than
1 second. Moreover, our algorithm could achieve better im-
perceptibility as shown below.

4.5 Imperceptibility Evaluation
We conducted an evaluation of the imperceptibility of our
added QR code watermark in audios based on SNR, and com-
pared our results with those from previous baselines, as pre-
sented in Table 3. Our methods yielded significantly better
SNRs than previous baselines in general. Specifically, our
AudioQR model, trained without using data augmentation,
achieved an impressive 49.50 SNR. Even with data augmen-
tation, AudioQR still achieved a respectable 31.84 SNR. In
contrast, most previous baselines were only able to achieve
SNRs between 20 and 30. The highest SNR value achieved
by the baselines we compared against was 27.7. The human
perceptible threshold [Al-Haj, 2014] is typically set at 20 dB.
Given this threshold, it becomes clear that our method is sig-
nificantly more imperceptible than previous baselines. When
AudioQR is trained without data augmentation, the SNR is
greatly larger than this threshold. Even with data augmen-
tation, our model still achieves a relatively high SNR (i.e.,
31.84 db), indicating a minimal perceptual impact on the au-
dio quality. These results indicate the effectiveness of Au-
dioQR in achieving high imperceptibility.

4.6 Robustness Evaluation
We evaluate the robustness of AudioQR based on the four
types of audio distortions illustrated in Section 3.3. In spe-
cific, during evaluation, we apply each audio distortion and
their concatenation to the watermarked audio x′ with ran-
domly selects strength from [10db, 20db]. The comparison
between AudioQR with and without data augmentation is
shown in Table 2. In general, we can easily find that with in-
troducing the stochastic distortion chain based data augmen-

tation, the robustness of the AudioQR model has been signif-
icantly improved. In particular, without using data augmenta-
tion, the QR code recovery accuracy decreases from 99.99%
to around 50% on all kinds of distortions. In contrast, after
introducing data augmentation in AudioQR training, the ac-
curacy under distortions exceeds 93.5%. Moreover, we also
note that the concatenation of all distortions impacts the ac-
curacy of AudioQR with data augmentation most. This is
reasonable because the concatenation of distortions usually
brings stronger impact compared to the independent case.

4.7 Audio Watermark Analysis
To further analyze the pattern of the embedded QR water-
mark, we plot the waveform (Figure 5) and spectrogram (Fig-
ure 6) from three different cases, i.e., a) non-watermark, b)
watermarked, and c) watermarked & distorted. Comparing
cases a) and b) in both Figure 5 and Figure 6, we can eas-
ily find that the added watermark is quite imperceptible from
both time domain and frequency domain. Conversely, com-
paring cases b) and c) in Figure 5&6, we can observe signif-
icant differenence of both waveform and spectrogram. This
reflects again that AudioQR can precisely extract QR code
from imperceptible watermark. Moreover, the strong distor-
tions cannot destroy our model’s such ability for extracting
the imperceptible QR code embedding.

4.8 Limitations and Discussions
Although our AudioQR works efficiently with a significant
better imperceptibility, there are still challenges for real-
world deployment. One of the challenges is how to handle
the situation when different audio QR codes are played si-
multaneously, since the decoder would be confused on which
one should output. Such an issue also happens in image QR
code scanning. An intuitive solution is to choose decoding
results based on audio strength. Another challenge is about
the security of deployed QR systems. Namely, a malicious
party may steal the model based on input-output queries. We
believe that merging the audio encoding with the audio syn-
thesis training could significantly avoid this issue, where the
data pair is not available.

5 Conclusion
This paper propose AudioQR as a new QR coding mecha-
nism considering that the current image based QR code scan-
ning is naturally unfriendly towards the population with vi-
sion impairment. not only precisely embed and recover any
random QR code, but also behave robustly when different
real-world distortions exist. Therefore, we present an end-
to-end encoder-decoder based framework for audio QR scan-
ning. We carefully design the model structure of each mod-
ules. The results showcase that AudioQR can precisely and
robustly recovers the hidden QR code.
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