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Abstract

Humanitarian relief operations are often accompa-
nied by regional conflicts around the globe, at risk
of deliberate, persistent and unpredictable attacks.
However, the long-term channeling of aid resources
into conflict areas may influence subsequent pat-
terns of violence and expose local communities
to new risks. In this paper, we quantitatively
analyze the potential externalities associated with
long-lasting humanitarian relief operations based
on game-theoretical modeling and online planning
approaches. Specifically, we first model the prob-
lem of long-lasting humanitarian relief operations
in conflict areas as an online multi-stage rescuer-
and-attacker interdiction game in which aid de-
mands are revealed in an online fashion. Both mod-
els of single-source and multiple-source relief sup-
ply policy are established respectively, and two cor-
responding near-optimal online algorithms are pro-
posed. In conjunction with a real case of anti-Ebola
practice in conflict areas of DR Congo, we find that
1) long-lasting humanitarian relief operations aim-
ing alleviation of crises in conflict areas can lead
to indirect funding of local rebel groups; 2) the op-
erations can activate the rebel groups to some ex-
tent, as evidenced by the scope expansion of their
activities. Furthermore, the impacts of humanitar-
ian aid intensity, frequency and supply policies on
the above externalities are quantitatively analyzed,
which will provide enlightening decision-making
support for the implementation of related opera-
tions in the future.

1 Introduction
In recent years, natural disasters and regional conflicts are
on the rise, and often deeply intertwined, leading to an ex-
acerbation of poverty, famine, plague and many other critical
issues globally. These disasters and conflicts including the
2023 earthquake in Turkey and Syria, the COVID-19 pan-
demic across the world, as well as the ongoing regional con-
flicts in the Middle East and Africa have taken millions of
lives and resulted in huge economic losses. According to the

statistics of United Nations Office for the Coordination of Hu-
manitarian Affairs (OCHA), 274 million people need human-
itarian assistance and protection in 2022, which is the highest
figure in decades [OCHA, 2022]. Fueled by the soaring need
of mitigating the miserable effects of these natural or man-
made disasters, humanitarian relief operations have received
increasing attention from both international organizations and
researchers [Modgil et al., 2020; Ekici and Özener, 2020;
Agarwal et al., 2022; Väyrynen, 2023]. Every year, bil-
lions of dollars worth of humanitarian aid allocations flow
into conflict-affected countries and regions through bilateral
or multilateral channels [Wood and Molfino, 2016], which
plays a vital role in sustaining vulnerable populations.

However, the involvement of humanitarian relief opera-
tions in conflict areas can not only play a positive role in
alleviating the local humanitarian crisis, but also bring neg-
ative externalities. Humanitarian relief organizations such as
the International Committee of the Red Cross (ICRC) and the
International Crisis Group (ICG) have increasingly advocated
to remain neutral and impartial during conflict [Terry, 2011];
however, the long-lasting presence of them can affect the re-
lationships between insurgents, counter-insurgents, and civil-
ians [Narang and Stanton, 2017]. Multiple statistical anal-
yses shows that the long-term channeling of aid resources
into conflict areas may influence subsequent patterns of vi-
olence, more specifically increase the rebel violence against
civilians [Wood and Sullivan, 2015]. Evidence from violence
in Afghanistan indicates that specific violence from insur-
gents targeting humanitarian aid workers is likely to emerge
in conflict areas, as their services may strengthen government
support from a rebel perspective [Narang and Stanton, 2017].
In some extreme cases, such as 1983 Ethiopian famine, hu-
manitarian aid were misused to further war efforts, which in-
evitably facilitated and prolonged conflict [Prine, 2020].

To the best of our knowledge, the analysis of the externali-
ties of humanitarian relief operations is mainly based on qual-
itative analysis and empirical statistics, and few researchers
focus on the quantitative analysis based on the integration
of game-theoretical behavioral models and empirical data.
In this work, we address the challenge of quantitatively an-
alyze the potential externalities associated with long-lasting
humanitarian relief operations. Different from existing stud-
ies, which only focus on empirical findings and qualitative
policy analysis of externalities, the behavioral models of the
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two main players (i.e., rescuer and attacker) in long-lasting
humanitarian relief operations are built to investigate their in-
teractions in a game-theoretical framework. In this game, ir-
revocable relief decisions should be made by the rescuer in
real time, while attackers can operate to hinder the relief op-
erations by taking armed control of some roads and towns.
By integrating the empirical data of real-time geo-located aid
demands and rebel group distribution with the game model,
this paper explores the relationship between the rescuer’s pol-
icy choice and the scale of externalities quantitatively for the
first time. The main contributions of this paper are as follows:
(1) We first model the problem of long-lasting humanitar-

ian relief operations in conflict areas as an online multi-
stage rescuer-and-attacker interdiction game in which
aid demands are revealed in an online fashion.

(2) Both models of single-source and multiple-source re-
lief supply policy are established respectively, and two
corresponding near-optimal online algorithms are pro-
posed.

(3) In conjunction with a real case of anti-Ebola practice in
conflict areas of DR Congo, the externalities of financing
the rebel groups passively and expanding the range of
violent activities are found. The impacts of humanitarian
aid intensity, frequency and supply policies on the above
externalities are quantitatively analyzed.

2 Related Works
2.1 Externalities of Humanitarian Aid
The negative externality of humanitarian aid is a long-
standing concern of the academic community [Bryer and
Cairns, 1997; de Montclos, 2009; Elayah and Ahmed, 2022].
A empirical study with geo-located data on twenty sub-
Saharan African countries during the post–Cold War era
shows that humanitarian aid increases the frequency of sub-
sequent violent engagements between rebel and government
forces in the aid-concentrated areas [Wood and Molfino,
2016]. Findley [2018] conducted a survey of arguments con-
necting aid to the onset, dynamics, and recurrence of civil
wars, and discussed the challenge of causal effect analysis
posed by under-theorization of aid allocation. Empirical anal-
ysis of the situation in Yemen indicates that humanitarian as-
sistance is being used as a weapon of war for power and fi-
nancial gain, thus becoming a contributing factor to the con-
tinuation of the conflict [Elayah et al., 2021] and augment-
ing the crisis of sovereignty [Elayah and Ahmed, 2022]. Un-
fortunately, the quantitative relationship between humanitar-
ian relief policy choice and the corresponding externalities is
scarcely explored.

2.2 Game Theory Applications in Humanitarian
Operations

Game theory, as a tool for modeling systems with mul-
tiple decision-makers, tends to be a promising choice for
the context of humanitarian relief operations with several
interest-intertwined players involved in conflict areas [Muggy
and L. Heier Stamm, 2014]. A Generalized Nash Equi-
librium network model for post-disaster humanitarian relief

by nongovernmental organizations (NGOs) was developed
where disaster relief NGOs competing for financial dona-
tions [Nagurney et al., 2016]. To explore the coordination
mechanism between the private sector and humanitarian or-
ganization, evolutionary game models concerning traditional
and trust mechanisms were developed [Fathalikhani et al.,
2018] Considering both financial and logistical aspects of
humanitarian organizations, a game theory model for dis-
aster relief is constructed so as to reflect the interaction of
operations taking by different organizations, as well as the
final equilibrium [Nagurney et al., 2019]. To model the
location-routing-inventory decision-making problem in hu-
manitarian relief chain, a cooperative game theory approach
was proposed for the four-echelon multi-objective, multi-
commodities and multi-period disaster relief chain [Ghasemi
et al., 2022]. Most researchers focus on games between hu-
manitarian organizations from the perspective of cooperation,
and only a few have explored the game between rescuers and
regional armed forces [Yang et al., 2022].

2.3 Network Interdiction Game

Network interdiction problem is a kind of Stackelberg game
which models the interaction between an attacker and a de-
fender who executes actions or plans on a network. As a
quantitative decision-making approach, it has been widely ap-
plied to security decision-making scenarios relating to oper-
ations on networks, involving military operations, humani-
tarian relief, transportation and logistics [Sinha et al., 2018;
Smith and Song, 2020]. After the classical models of net-
work flow interdiction [Wood, 1993] and shortest-path in-
terdiction [Fulkerson and Harding, 1977; Israeli and Wood,
2002] were proposed, different variants of interdiction mod-
els with new features have received considerable attentions
recently, including goal recognition assistance [Xu et al.,
2017], incomplete information [Borrero et al., 2019], dy-
namic or adaptive interdiction [Xiao et al., 2018; Zhang et al.,
2019], network interdependence [Yan et al., 2020; Xie and
Aros-Vera, 2022], and asymmetric cost uncertainty [Nguyen
and Smith, 2022] etc. However, few studies have applied
the interdiction game approach to humanitarian relief context
with the online decision-making requirement.

3 Multi-Stage Humanitarian Relief
Interdiction Game

In this section, we first model the problem of long-lasting hu-
manitarian relief operations as a sequence of stage-based in-
terdiction games between the rescuer and attacker, i.e., multi-
stage humanitarian relief interdiction game (MHRIG). Dif-
ferent from the optimization goal of transportation cost in the
previous study [Yang et al., 2022], this paper takes both the
transportation cost and the actual delivery of relief resources
as the goal of the game between the two sides. Then, the om-
niscient offline versions of MHRIG under single-source and
multiple-source relief supply policy choices are proposed.
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3.1 The Simultaneous Game at Each Stage of
MHRIG

At each stage of the MHRIG, there is a simultaneous rescuer-
and-attacker interdiction game. The scene of the game is on
a road network G = (V,E) consisting a set of nodes V rep-
resenting intersections (cities,towns, etc.) and a set of edges
E representing roads. If the rescuer at stage t decides to meet
the relief demand wt from the resource base city ot to the city
of demand gt, she needs to plan a road path in the network
within the constraint of a given transportation time frame.
Her goal is to maximize actual quantity of arrived relief sup-
plies and minimize the cost on transport. The attacker, on the
other hand, has several armed forces distributed at different
nodes of the network with the aim of mobilizing them to in-
terdict the rescuer thereby levying taxes or outright robbing
under the constraint of mobility.

The Attacker Problem

The attacker problem is implementing his armed forces dis-
tributed in the network to control some selected nodes so as
to interdicting the relief routing of the rescuer. Denote by
ht = (hjt)j∈V ∈ {0, 1}|V | the distribution vector of the
armed forces, and hjt = 1 if there is an arm force stationed
at node j at stage t. The strategy of the attacker is made up
of |I| vectors, denoted by zit = (zijt)j∈V ∈ {0, 1}|V |, and
zijt = 1 if the armed force i is decided to reach and control
node j at stage t. Also, the actions of attacker are restricted by
movement constraints, i.e., the movement cost of each armed
force i ∈ I should not exceed the budget fit at stage t (vec-
tor form f t). Then, the set of all feasible strategies for the
attacker can be denoted by

Zt =
{
Zt = (zit)i∈I

∣∣∣ ZT
t 1 ≤ 1, ZT

t LHt ≤ F t,
}
, (1)

where 1 denotes the all 1 vectors, and the first constraint illus-
trates that one armed force can only be deployed once in each
stage. Denote by Vh the set of nodes which are controlled
by the rebel groups at stage t, and F t = [f tf t · · ·f t]

T ∈
R|V |×|Vh|

+ . We introduce Ht = (h′ij)i∈V,j∈Vh
where h′ij = 1

indicates that nodes i is selected to reach and control by
the rebel group located in node j. Let L = (lj′j)j′,j∈V ∈
R|V |×|V |+ represent the cost of implementing the stationed
force from node j to node j′, which can be estimated by the
attacker using road transport information. Hence, the second
constraint makes the deployment of armed forces not exceed
the attacker’s mobility limits.

The Rescuer Problem

The rescuer problem is planning a routing path through the
network from ot to gt which can be modeled as a path-finding
problem. Denote by yt = (ykt)k∈E ∈ {0, 1}|E| the decision
variables of the rescuer representing a path in the network,
and ykt = 1 if she selects the edge k to traverse. Let FS(i)
and RS(i) represent the set of edges directed from/into node
i. Then, the strategy space of the rescuer is constrained by the

following flow conversation constraints:

∑
k∈FS(i)

ykt −
∑

k∈RS(i)

ykt =

{
1 for i = ot
0 ∀ i ∈ V \{ot, gt},
−1 for i = gt

(2)

ykt ≥ 0. ∀ k ∈ E (3)

Then the set of all feasible strategies of the rescuer is

Yt =
{
yt

∣∣∣Constraints (2), (3)
}
. (4)

The Utility Function
The utility for both players is consist of two parts, i.e., the
actual quantity of relief supplies that arrive in time and the
transporting cost of this operation. The rescuer aims to max-
imize the quantity of arrived relief supplies and minimize the
cost on transport by selecting the path traversed, while the
attacker interdicts the relief routing from the opposing per-
spective.

If the rescuer selects an attacker-controlled edge to traverse
at one stage, the transported relief resources wt will suffer a
loss of being levied or robbed. The amount of loss at edge k
depends on the levy rate q = (qk)k∈E ∈ (0, 1)|E| of armed
forces the rescuer encountered. Then, the total loss of relief
supplies at stage t is wt

∑
k∈E z

′
ktqkykt given the decision

pair (Zt,yt) from the rescuer and attacker. Denote by ut
(vector form u) the left relief supplies at stage t which can be
successfully transported to the city or town in need, we have

ut = (1−
∑
k∈E

z′ktqkykt)wt, (5)

which is bi-linear and made up of both players’ decision vari-
ables.

Meanwhile, we consider the timeliness requirements of
emergency relief demands. Denote by at the actual trans-
porting cost on roads when attacks may happen, we have

at =
∑
k∈E

(ck + z′ktdk)ykt. (6)

where ck (vector form c) denotes the time cost of traversing
edge k, and dk (vector form d) represents the additional cost
of passing through edge k which is controlled by the attacker
with an armed force. z′kt denotes an intermediate decision
variable, and z′kt = 1 if the edge k is under control of the
attacker at stage t. Specifically, we suppose that all edges
directing out of a force garrisoned node are under control,
i.e.,

z′kt = zijt. ∀ k ∈ FS(j), j ∈ V, i ∈ I (7)

To optimize the above two goals ut and at at the same time,
we integrate them with a pair of weight coefficient (θ, δ) indi-
cating the importance of ut and at to the rescuer respectively.
Hence, we propose the utility function as follows:

Ut(yt, Zt) = θ(wt − ut) + δat, (8)

where the weight coefficients can be determined by assessing
their value in the humanitarian operations.
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Finally, denote by P = {attacker, rescuer} the set of play-
ers. Then, the simultaneous game of MHRIG at each stage
can be expressed as a tuple Gt = (P,Zt,Yt, Ut). The final
quantity of arrived relief supplies ut (vector form u) in this
game is defined as the mixed Nash equilibrium of game Gt. In
this work, we assume that parameters from the demand side,
i.e., demand cities gt and the amount of relief needed wt, are
generated i.i.d. from an unknown distribution respectively, as
well as those from the attack side, i.e., mobility budget f t and
distribution ht.

3.2 Omniscient Offline Versions of MHRIG
Based on results of game Gt at each stage, we can con-
struct offline versions of MHRIG by assuming that all data
and parameters are known in advance. Specifically, this sec-
tion considers two offline versions of multi-stage humani-
tarian relief operations with single-source relief supply pol-
icy (OFFMHRIGS) and multiple-source relief supply policy
(OFFMHRIGM).

Offline Version With Single-Source Relief Supply
We first suppose that there is a single, integrated, and large-
scale relief supply site throughout the entire humanitarian re-
lief operations. Due to the general shortage of relief supplies,
the rescuer has to make decisions at each stage whether to
meet the relief demand of a certain city. Denote by n the
number of stages of MHRIG, and N = {1, 2 · · · , n} the set
of stages. Let x = (xt)t∈N ∈ {0, 1}n represent the deci-
sion variables of the rescuer, and xt = 1 if she decides to
meet the demand wt at stage t. To meet this demand, the res-
cuer has to pay a cost of at on transportation and can cover
a certain amount of demand ut as a kind of revenue at this
stage. Hence, as a long-term revenue seeker, the rescuer aims
to maximize the total amount of demand satisfaction under
the limitation on total amount of relief resources b1 and trans-
portation budget b2.

In OFFMHRIGS, there is only one choice for the provision-
ing site, i.e., ot is a fixed source site at each stage. All online
data ut and at are solving from Gt given that ot is a fixed
relief supply site. When assuming ut and at are known in
advance, we can formulate OFFMHRIGS to a binary linear
integer programming (BLIP) as follows:

[P-OFFMHRIGS] max
x

uTx

s.t. [w a]
T
x ≤ b, (9)

where x ∈ {0, 1}n, vectors u, w, a ∈ Rn
+, and denote by

b the vector [b1, b2]T. In this way, [P-OFFMHRIGS] can be
solved using BLIP techniques and x̄∗ denotes the optimal so-
lution of it.

Offline Version With Multiple-Source Relief Supply
In actual humanitarian operation practice, relief resources are
often supplied from more than one site. That is, the rescuer
can select one site from the set of available sites as the source
site to fulfill the relief demand at a given stage. Hence, we
then proposed the extended version OFFMHRIGM.

Denote by m the number of available source sites. For any
site number j ∈M = {1, 2, · · · ,m}, let ut = (utj)j∈M and

at = (atj)j∈M present the results by solving Gt given that
site j is selected to be the supply for all stages. Denote by
xt = (xtj)j∈M the decision variables which indicate when
site j is chosen during the multi-stage process, we formulate
OFFMHRIGM to a multi-dimensional extension of the BLIP
in [P-OFFMHRIGS] as follows:

[P-OFFMHRIGM] max
xj

n∑
t=1

uT
t xt

s.t.
n∑

t=1

[w at]
T
xt ≤ b, (10)

1Txt ≤ 1, xt ∈ {0, 1}m. ∀ t = 1, 2, · · · , n (11)
In this problem, the rescuer only selects one site j as the
source to fulfill the relief demand at stage t. Similarly, [P-
OFFMHRIGM] can be solved when all online revealed data
uj and aj are known in advance.

4 Online Humanitarian Relief Policies
Since both rescue demands and the distribution of rebels
are revealed in an online manner, the results from game G
served as the core parameters of the offline problems can-
not be known in advance. Accordingly, online decision-
making approaches are needed. Previous studies on online
linear programming provide a series of theoretically guaran-
teed algorithms for long-term revenue in sequential decision
making [Buchbinder and Naor, 2009; Balseiro et al., 2020;
Li et al., 2020], which is instructive for problems in this work.

We next give the explicit online models of multi-stage hu-
manitarian relief operations single-source relief supply pol-
icy (ONMHRIGS) and multiple-source relief supply policy
(ONMHRIGM), and then provide corresponding online algo-
rithms respectively.

4.1 Online Versions of MHRIG
Online Model With Single-Source Relief Supply
In the online version of MHRIG, the parameter ut and at are
revealed to the rescuer based on the Nash equilibrium results
of the stage game Gt at each stage t. Simultaneously, the res-
cuer needs to make a decision on xt in real time. Unlike the
setting in OFFMHRIGS, rescuer only knows the history infor-
mation Ht = {ui, wi, ai, xi}t−1

i=1 . Hence, the online decision
policy of rescuer can be presented as a function ϕ of the his-
tory and the observed parameters at the current stage t:

[P-ONMHRIGS] xt = ϕ(ut, wt, at,Ht). (12)
Before designing the function ϕ, the distribution features

of online revealed parameters are first analyzed. Denote
by N the Nash equilibrium mapping from the parameters
(gt, wt,f t,ht) in game Gt to parameters rt and at, i.e.,

(ut, at) = N (gt, wt,f t,ht). (13)
Since (gt, wt,f t,ht) in game Gt are generated i.i.d. from an
unknown distribution, it can be proved that (ut, at) is i.i.d.
sampled from an unknown distribution P in Theorem 1.
Theorem 1. The coefficient pair (ut, at) are generated i.i.d.
from unknown distribution, if parameters (gt, wt,f t,ht) are
generated i.i.d. from unknown distribution. (Proof in Ap-
pendix)
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Online Model With Multiple-Source Relief Supply
The difference between ONMHRIGM and ONMHRIGS is
the number of available relief source sites, resulting addi-
tional decision variables about how to choose a site. We
denote the history information of the rescuer as Ht =
{(uij)j∈M , wi, (aij)j∈M , xi}t−1

i=1 , and then the online deci-
sion policy at stage t can be presented as

[P-ONMHRIGM]
xtj = ϕ((utj)j∈M , wt, (atj)j∈M ,Ht),

(14)

for any j ∈ {1, 2, · · · ,m}. Similarly, we can prove that for
any site j, (utj , atj) are generated i.i.d. from an unknown
distribution 1.

4.2 Online Algorithms
It is clear that ONMHRIGS is a degenerated version of ON-
MHRIGM when m = 1; hence, we here only focus on the
analysis and online algorithm design of [P-ONMHRIGM].

Before given the online learning algorithm to ON-
MHRIGM, we present the linear programming relaxation of
[P-OFFMHRIGM] as follows:

[LP-OFFMHRIGM] max
xt

n∑
t=1

uT
t xt

s.t. Constraints (10),

1Txt ≤ 1, xt ≥ 0. ∀ t = 1, 2, · · · , n (15)
Then, the linear dual problem of it can be formulated as

[DLP-OFFMHRIGM] min
p,s

bTp + 1Ts

s.t. [w at]p + st ≥ ut, ∀ t = 1, 2, · · · , n (16)

p ≥ 0, s ≥ 0, (17)
where the dual decision variables are p ∈ R2 and s ∈ Rn.
Denote by x∗t , p∗n, and s∗ the optimal solutions of problem
LP-OFFMHRIGM and DLP-OFFMHRIGM. From the com-
plementary slackness conditions, we have

x∗t =

{
0, if for all j, utj ≤ [wtj atj ]p∗n
ej , else j = arg max

j
(utj − [wtj atj ]p∗n)

(18)
for all t ∈ {1, 2, · · · , n} where ej is the unit vector with 1 at
the j-th entry and 0 otherwise.

According to Equation (18), if the optimal value of p∗n can
be estimated properly during the online decision-making pro-
cess, it is possible to make online decisions achieving a near-
optimal performance. Using the theoretical results of online
linear programming technique [Li et al., 2020], we give the
following online algorithm for [P-ONMHRIGM] shown in
Algorithm 1 2. The step learning rate γt is set as 1√

n
at each

stage t.
1Since it is a simple extension of Theorem 1, we omit it here.
2It is easy to degenerate it for solving ONMHRIGS by setting

m = 1; hence we omit it.

Algorithm 1 Online learning algorithm for ONMHRIGM
Input: n, online revealed coefficient pair (ut,w,at)
Parameter: learning rate γt = 1√

n

Output: a sequence of online decisions xt

1: Let e = b
n

2: Initialize p1 = 0
3: for t = 1, 2, · · · , n do
4: Set vt = max

j=1,2,·,m
(utj −

[
wtj atj

]
pt)

5: if vt > 0 then
6: jt = argmax

j
(utj −

[
wtj atj

]
p∗n)

7: Set xtj =

{
1, j = jt
0, else

8: else
9: Set xt = 0

10: end if
11: Compute pt+1 = max{pt + γt(

[
w at

]T
xt − e),0}

12: end for
13: return (xt)t∈N

The performance of the online learning algorithm is evalu-
ated by introducing the performance measure – regret– which
is a common metric of online learning approach [Balseiro
and Gur, 2019]. Denote by R∗n =

∑n
t=1 u

T
t x
∗
t the opti-

mal objective value of the online problem ONMHRIGM, and
Rn =

∑n
t=1 u

T
t xt the actual objective value under the on-

line learning strategy (xt)t∈N . The expected optimality gap
between them is

∆Pn = E[R∗n −Rn]. (19)

Denote by Ξ the family of distribution P , then the definition
of regret is formally given as

∆n = sup
P∈Ξ

∆Pn . (20)

According to Corollary 1, when the number of stages n→
∞, we have the average regret ∆n

n → 0, which theoretically
illustrates the priority of Algorithm 1.
Corollary 1. If the step learning rate γt = 1√

n
for t ∈ N ,

then Algorithm 1 achieves O( 1√
n

) average regret of problem
ONMHRIGM. (Proof in Appendix)

5 Case Study on Externalities of Anti-Ebola
Humanitarian Practice in DR Congo

In conjunction with a real case of anti-Ebola practice in con-
flict areas of the DR Congo, we quantitatively analyze the
externalities of humanitarian relief operations as a case study
in this section. The humanitarian rescuer and the rebel group
interact with each other in this empirical case. The rescuer
plans to pass through the conflict area in order to transport
supplies to the city affected severely by the epidemic, while
the rebel group as an attacker aims to gain payoff by control-
ling some routes.

5.1 The Ebola Epidemic and Rebel Conflicts
The second largest DR Congo Ebola outbreak in December
2019 has been a humanitarian crisis that originated in an ac-
tive conflict area, which has severely affected the ability of
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(a) Ebola Outbreak (b) Conflict Map

Figure 1: The Situation of Ebola Epidemic and Rebel Conflicts in
Nord-Kivu and Sud-Kivu Province of DR Congo.

relief efforts and vaccination [Schwartz, 2020]. In the major
epidemic area, i.e., the Eastern DR Congo including Nord-
Kivu and Sud-Kivu province, more than 10 active armed rebel
groups are scattered [Usanov et al., 2013]. These armed
groups actively operate in the regions of Ebola virus relief,
controlling the routes in and out of the regions, levying taxes
on households and transport, and attacking healthcare and re-
lief workers [Schwartz, 2020]. As a result, humanitarian re-
lief operations in the region face huge risks and uncertainties
from those rebel groups.

We collect the statistical data of DR Congo including Ebola
outbreak data, conflict statistics and road network data in
Nord-Kivu and Sud-Kivu province. The Ebola outbreak data
in the same period reported by the World Health Organiza-
tion is visualized as the map in Figure 1(a) [WHO, 2020].
The conflict data from 31 December 2018 to 5 January 2020
in the same area is shown in Figure 1(b), which is offered by
the Armed Conflict Location & Event Data Project [Clionadh
et al., 2010; ACLED, 2020]. The road network of Nord-Kivu
and Sud-Kivu province contains 810 vertices (i.e., cities and
towns) and 2,188 arcs (i.e., major and other roads).

Assuming that a city’s relief demands are positively cor-
related with the number of new Ebola cases in that city, we
can obtain statistics on urban relief demands over time, as
shown in the Figure 2. The areas most affected by Ebola,
such as Katwa and Beni in Nord-Kivu, were in huge need
of emergency humanitarian relief. Unfortunately, the road
network from non-infected areas (e.g., Bukavu in Sud-Kivu
province) to those demand cities is under the control or in-
fluence sphere of rebel groups to a large extent. In this case,
the city Bukavu, Kitchanga, Walikale, Goma, Osso are set as
the potential bases of relief resources, and the demand cities
include Beni, Butembo, Katwa, Kalunguta, Mabalako and
Oicha. Specifically, the traversing cost c is set as the length
of the actual road between cities. The added cost of transport-
ing d is assumed to be uniformly distributed on [1, c̄], where
c̄ denotes the average value of c. The movement cost f t is
supposed to be uniformly distributed on [1, vL̄], where L̄ de-
notes the average distance between relief sites and demand
cities, and v represents the maximum cost coefficient. Denote
byW =

∑n
t=1 wt the total demand during this period, and C

Figure 2: Statistics on Urban Relief Demand over Time in Nord-
Kivu and Sud-Kivu province of DR Congo.

the total transporting cost of satisfying all demands over the
period. Let the relief resource budget b1 = αW , the trans-
portation budget b2 = βC.

5.2 Externality Analysis of Humanitarian Relief
Operations

We quantitatively analyze the Externalities of humanitarian
relief operations against the Ebola epidemic in DR Congo,
including the externality of financing the rebel groups and
expanding the range of their activities. Also, we analyze the
optimality performance of Algorithm 1 3.

Externality I: Financing the Rebel Groups Passively
As mentioned above, the attacker may levy taxes on or out-
right rob the relief resources, thereby passively financing
rebel groups. According to the notations in game Gt, the total
loss of relief supplies at stage t will become a kind of ex-
ternal income for rebel groups, and the total quantity I lost
supplies is

I =

n∑
t=1

(
wt

∑
k∈E

z′ktqkykt

)
. (21)

In empirical case of anti-Ebola humanitarian operations,
we have found that long-lasting medical and relief operations
targeting epidemic outbreak sites can lead to indirect funding
of local insurgent groups, which is denoted by Externality
I for simplicity. Furthermore, increasing the intensity and
frequency of humanitarian aid may exacerbate this negative
externality though alleviating shortages in outbreak regions.

As shown in Figure 3, the negative impact of Externality
I gradually becomes more pronounced as the budget for re-
lief supplies increases 4. As the proportion of relief resource
budgets α increases from 0.1 to 0.9, more relief demands
will be met, but at the cost of a rise in the amount looted
by rebel groups (from 4.1 to 89.2). Moreover, the ratio of
robbed to actual arrived relief supplies increased from 12.9%
to 39.0%, indicating that the effect of Externality I has been
significantly intensified.

On the other hand, we analyze the impact of humanitarian
relief supply policies, i.e, single- and multiple-source pol-

3Experimental results in Appendix
4The impact of transportation budget on Externality I is analyzed

in Appendix.
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Figure 3: Externality I under Different Ratio of Relief Resources
Budget (n = 50, b2 = 0.5C, v = 0.1)

Figure 4: Externality I under Different Policies of Relief Supply
(n = 50, b1 = 0.5W, b2 = 0.5C, v = 0.1)

icy, on this negative externality. It is found that multiple-
source policy can significantly alleviate Externality I com-
pared to the single-source policy. Comparatively speaking,
multiple-source policy tends to greatly reduce the loss of re-
lief resources caused by rebel groups robbery while increas-
ing the ratio of meeting relief demands, thereby reducing pas-
sive funding for insurgent activities. The quantity of relief re-
sources robbed by attackers decreases from 38.0 to 12.4 while
the quantity delivered to civilians in need grows from 144.0
to 169.6 as shown in Figure 4.

Externality II: Expanding the Range of Rebel Activities
The presence of humanitarian relief supplies in conflict areas
is likely to attract the attack targeting aid workers from armed
rebel groups around [Schwartz, 2020]. As a result, the range
of armed rebel activities will be altered and may be expanded
due to the impact of humanitarian operations. We here give
the definition of Scope Expansion Ratio of rebel activities de-
noted by

E =
|Vch| − |Vc|
|Vc|

, (22)

where Vc denotes the initial node set controlled by rebel
groups and Vch represents the set of controlled nodes after the
implementation of a series of humanitarian relief operations.

We find that humanitarian relief operations in conflict areas
can increase the activity of insurgent groups to some extent,
as evidenced by the scope expansion of their activities in an
attempt to loot more relief supplies, hereinafter referred to as
Externality II. As shown in Figure 5, with the increase in α,
the scope expansion ratio becomes more than doubled from
38.9% of the initial range of activities, reporting an surge of
108.9%. This will significantly increase the scope of the con-
flict and potentially involve more innocent civilians in con-

Figure 5: Externality II under Different Ratio of Relief Resources
Budget (n = 50, b2 = 0.5C, v = 0.1)

Figure 6: Externality II under Different Policies of Relief Supply
(n = 50, b1 = 0.5W, b2 = 0.5C, v = 0.1)

flict and risk. Similarly, we analyze the impact of humanitar-
ian relief supply policies on Externality II. It can be observed
that there has been no significant change in the average ratio
of the scope expansion of conflict activities when the multi-
source relief policy is applied as shown in Figure 6. This
suggests that the multi-source relief policy does not intensify
the Externality II as intuitively as expected, though the scope
of humanitarian activities has expanded under this policy.

6 Conclusion
In this paper, we quantitatively analyze the potential exter-
nalities associated with long-lasting humanitarian relief oper-
ations based on game-theoretical modeling and online plan-
ning approaches. In conjunction with a real case of anti-Ebola
practice in conflict areas of DR Congo, two kinds of exter-
nalities are found in the ase study, i.e, Externality I: long-
lasting humanitarian relief operations targeting alleviation of
crises in conflict areas can lead to indirect funding of local
rebel groups; Externality II: these operations in conflict areas
can increase the activities of insurgent groups to some ex-
tent, as evidenced by the scope expansion of their activities
in an attempt to loot more relief supplies. Furthermore, the
impacts of humanitarian aid intensity, frequency and supply
policies on the above externalities are quantitatively analyzed,
which will provide enlightening decision-making support for
the implementation of related operations in the future. This
work might inspire more efforts in the field of AI on realistic
data-driven humanitarian operations research, especially AI
assisted policy design and externality analysis of humanitar-
ian operations, for the good of those civilians suffering from
both disasters and conflicts.
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