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Abstract
Wind power is attracting increasing attention
around the world due to its renewable, pollution-
free, and other advantages. However, safely and
stably integrating the high permeability intermit-
tent power energy into electric power systems re-
mains challenging. Accurate wind power fore-
casting (WPF) can effectively reduce power fluc-
tuations in power system operations. Existing
methods are mainly designed for short-term pre-
dictions and lack effective spatial-temporal fea-
ture augmentation. In this work, we propose a
novel end-to-end wind power forecasting model
named Hierarchical Spatial-Temporal Transformer
Network (HSTTN) to address the long-term WPF
problems. Specifically, we construct an hourglass-
shaped encoder-decoder framework with skip-
connections to jointly model representations ag-
gregated in hierarchical temporal scales, which
benefits long-term forecasting. Based on this
framework, we capture the inter-scale long-range
temporal dependencies and global spatial corre-
lations with two parallel Transformer skeletons
and strengthen the intra-scale connections with
downsampling and upsampling operations. More-
over, the complementary information from spatial
and temporal features is fused and propagated in
each other via Contextual Fusion Blocks (CFBs)
to promote the prediction further. Extensive ex-
perimental results on two large-scale real-world
datasets demonstrate the superior performance of
our HSTTN over existing solutions.

1 Introduction
The UN Sustainable Development Goals 7 [Vinuesa et al.,
2020] (SDG 7) aims to ensure access to affordable, reliable,
sustainable, and modern energy for all. Wind Power Fore-
casting (WPF), which focuses on accurately predicting the
wind power generation of turbines in a wind farm for future
time intervals, can contribute to the realization of SGD 7 by
building more efficient low-carbon systems. It was reported
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that in 2021, the proportion of global wind and solar power
generation had reached one-tenth, and the total energy output
exceeds 2837 TWh [Jones et al., 2022]. However, due to the
chaotic nature of the earth’s atmosphere, wind power gener-
ation is always associated with non-stationary uncertainties.
Therefore, how to integrate wind energy into the power grid
with high stability and security is of great significance.

Fortunately, these uncertainties in power systems opera-
tions can be mitigated to a certain degree via accurate WPF
methods, which are becoming the most promising solutions
for integrating a large amount of wind energy into power
grids [Tastu et al., 2013]. Wind Power Forecasting has been
extensively investigated over the past decades [Deng et al.,
2020; Wang et al., 2021], and the existing research can be
coarsely divided into four categories: physics-based meth-
ods [Chen et al., 2013; Shao et al., 2016], statistical meth-
ods [Zeng and Qiao, 2011; Hu et al., 2015], hybrid intelli-
gent methods [Ghoushchi et al., 2021; De Caro et al., 2021],
and deep learning-based methods [Ahmad and Zhang, 2022;
Zhu et al., 2019]. However, most of the existing works still
suffer from several limitations, which restricts their applica-
tions in real world:

• Physics-based and statistical methods usually take too
much calculation costs and are sensitive to the errors
introduced by the initial condition [Deng et al., 2020].
They can not perform well when dealing with nonlin-
ear and non-stationary traits in wind power due to their
shallow learning models [Wang et al., 2017].

• Most of them are designed for short-term predictions
and can not achieve satisfactory results under long-
term wind power forecasting [Shao et al., 2016; He
and Wang, 2021], while accurate long-term predic-
tions are even more critical in system dispatch planning
and ramp events (large wind power fluctuation) predic-
tion [Ouyang et al., 2019].

• Existing methods lack an effective design for spatiotem-
poral modeling. They either consider WPF as a sim-
ple times series forecasting problem ignoring spatial in-
formation or extract spatial dependencies in a local and
static manner [Yu et al., 2020; Zhu et al., 2019]. Actu-
ally, indispensable information may be revealed by mod-
eling spatial correlations because wind characteristics at
a site resemble those nearby or share the same meteoro-
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logical conditions [Ding, 2019]. It is nontrivial to cap-
ture global and comprehensive spatial correlations.

The long-term WPF aims to understand the correlation
between data in each different time step. However, 1) a
single point does not have semantic meaning like a word
in a sentence and may have limited influence on predicting
the future [Nie et al., 2022]. What is more, 2) the inher-
ent high intermittent of wind power and the record noises
caused by some external reasons bring in plenty of uncer-
tainties, which makes the long-term prediction worse. 3) the
fine-grained long-term prediction leads to high computational
and space complexities when applying the point-wise self-
attention mechanism. In contrast, sparse and localized con-
textual information is essential in analyzing their semantic
connections [Du et al., 2023], e.g., the airflow in a period,
like midnight, may show intense fluctuations but blows much
heavier than that at noon. Thereby, the aggregated and coarse-
grained temporal representations are nontrivial and comple-
mentary to the fine-grained temporal features for precise fore-
casting.

Inspired by the ideas and problems mentioned above, we
propose a novel end-to-end deep learning-based framework
termed Hierarchical Spatial-Temporal Transformer Network
(HSTTN), which well addressed the long-term predictions
with the hourglass-shaped network and effectively modeled
the spatiotemporal contextual information and correlations.
In particular, the HSTTN consists of four main modules:
hourglass-shaped encoder-decoder architecture, residual spa-
tiotemporal encoder/decoder layers, and Contextual Fusion
Blocks (CFBs).

Different from the standard transformer architecture, in en-
coder, temporal pooling operations are inserted between sev-
eral cascaded residual spatiotemporal encoder layers to gen-
erate hierarchical temporal scale features from fine-grain to
coarse-grain. Symmetrically, in decoder, we gradually re-
cover the fine-grained predictions from coarse-grained repre-
sentations with upsampling operations inserted between the
residual spatiotemporal decoder layers. Aggregating time
steps to coarse-grained scale not only provides comprehen-
sive semantic representations that are complementary to finer
scales, but also reduces the amount of calculation since the
sequence length is smaller. Besides, via inter-scale skip-
connections, the outputs of each residual spatiotemporal en-
coder layer are directly concatenated to the outputs of each
residual spatiotemporal decoder layer with the same tempo-
ral scales, which aggregates the rich fine-grained information
from hierarchical encoder layers to facilitate the decoder to
make more precise predictions. It is noteworthy that vanilla
Transformer [Vaswani et al., 2017] is designed for the ma-
chine translation task which follows a seq2seq paradigm,
while wind power records are spatiotemporal structured. So
we first decouple the topological data into temporal-wise fea-
ture vectors and spatial-wise feature vectors, then feed them
into the residual spatiotemporal encoder layers in parallel,
which consists of temporal and spatial Transformer skeletons
and contextual fusion blocks, to capture the hierarchical long-
range temporal dependencies and spatial global correlations
with the multi-head self-attention mechanism. The CFBs
are designed for better spatiotemporal feature fusion and are

inserted between each temporal encoder layer and spatial
encoder layer. In specific, the latent representations from
both layers are firstly rearranged into original spatiotemporal-
shape and concatenated along feature dimension. Then a
Convolutional Neural Network is set to fuse and learn their
contextual feature representations. The enhanced features
which carry more comprehensive information are then fed
into the next residual encoder layer for sparser scale but
higher-level representation learning. The residual spatiotem-
poral decoder layers follow the same structure while the in-
puts are only future time spots and turbines locations without
knowing the meteorological data and turbine internal status.
The main contributions of this work are as follows:

• We propose a Transformer-based framework to predict
wind power generations, which well addresses the long-
term forecasting problem due to its impactful capacity
to capture long-range and global dependencies by self-
attention mechanism. To the best of our knowledge, this
is the first attempt to apply Transformer architecture to
long-term wind power forecasting tasks.

• A well-designed hourglass-shaped hierarchical architec-
ture with lower time and space complexity is introduced
to improve the long-term predictions by aggregating
complementary multiscale temporal representations.

• Extensive experiments are conducted on two real-world
wind power datasets with diverse dynamic context fac-
tors (meteorological data and turbine internal status),
which demonstrate the effectiveness of the proposed
framework for wind power forecasting.

2 Related Work
Wind Power Forecasting: Existing forecasting models can
be grouped into four types based on differences in model-
ing theory: physics-based methods [Lobo and Sanchez, 2012;
Shao et al., 2016], statistical methods [Zeng and Qiao, 2011;
Hu et al., 2015], hybrid intelligent methods [He and Wang,
2021; Shahid et al., 2021] and deep learning based methods
[Deng et al., 2020; Wang et al., 2021; Wang et al., 2017].
In physical models, numerical weather predictions (NWP) or
weather researcher forecasting (WRF) are usually performed
to predict weather conditions and then the weather condi-
tion predictions are fed into physics-based models to generate
wind power forecasting. A non-negligible drawback of these
two-stage prediction frameworks is that the errors in the first
stage will accumulate and magnify the final prediction errors.
To avoid the limitations of a single model, hybrid intelligent
method also attracted much attention, which is a weighted
sum of several models or the combination of compensatory
models. [Shahid et al., 2021] developed a hybrid framework
comprising of long short term memory (LSTM) and genetic
algorithm (GA). The global optimization strategy of GA was
exploited to optimize hyperparameters in LSTM layers. The
deep learning based methods have drawn increasing attention
in recent years due to its capacity of modeling intricate and
non-linear relations. For instance, [Yu et al., 2020] proposed
a hybrid neural network to capture spatial-temporal charac-
teristics, in which the spatial features were extracted by a 2D-
CNN and the temporal features were extracted by an LSTM.
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CNN is efficient in local feature extraction whereas in this
work we prefer global spatial correlations as illustrated in the
above section.
Transformers: Transformer is an advanced attention-based
neural network block, which is originally proposed to tackle
the machine translation task then widely used in natural lan-
guage processing due to its superior performance in captur-
ing long-range dependency by global self-attention mecha-
nism [Vaswani et al., 2017; Devlin et al., 2019]. Recently,
researchers have applied transformers to more artificial intel-
ligence tasks such as visual understanding [Li et al., 2021;
Wu et al., 2022; Liu et al., 2022b; Li et al., 2022; Zhang
et al., 2023; Jiang et al., 2023a], time series analysis [Zhou
et al., 2021; Wu et al., 2021; Jiang et al., 2023b; Luo et
al., 2023] and spatial-temporal modeling [Xu et al., 2020;
Liu et al., 2021; Liu et al., 2022a; Geng et al., 2022].
For long-term forecasting, [Zhou et al., 2021] proposed a
transformer-based model named Informer to predict long se-
quences and designed the ProbSparse self-attention mecha-
nism and distilling operation which drastically improved the
inference speed of long-sequence predictions. Others explore
to divide time steps into segments and capture segment-wise
correlations [Nie et al., 2022; Du et al., 2023]. Inspired
by these amazing works, we propose a Transformer-based
spatial-temporal learning framework to hierarchically capture
the contextual information interaction between complemen-
tary spatial and temporal features. To the best of our knowl-
edge, this work is the first attempt to apply Transformer ar-
chitecture to long-term wind power forecasting.

3 Problem Specification
In this section, we provide basic notations and the definition
of wind power forecasting. The objective of WPF is to ac-
curately estimate the wind power supply of a wind farm at
different time steps by characterising the intricate relations
between historical records and future wind power genera-
tions. In practice, wind is deflected by the blades of a wind
turbine, and then generates electricity through rotations and
generators, indicating the wind power is not only related to
wind speed, but also to other meteorological data like wind
direction, external temperature and essential turbine internal
status. Given a wind farm consisting of N turbines, each
of them generates wind power time series and correspond-
ing dynamic context factors (meteorological data, turbine in-
ternal status, etc.). The dynamic context records of all tur-
bines in a time window with T timestamps is formulated
as X = {X1, X2, . . . , Xn, . . . , XN} ∈ RN×T×C ,where
C is the number of feature channels including the target
variable Patv. For the n-th turbine, we denote Xn =
{X1

n, X
2
n, . . . , X

T
n } ∈ RT×C as the context records of all

timestamps for the n-th turbine. Symmetrically, the con-
text records of the whole farm at timestamp t is denoted as
Xt = {Xt

1, X
t
2, . . . , X

t
N} ∈ RN×C .

Definition 1. Wind Power Forecasting. Assuming that the
current timestamp is t, the wind power forecasting prob-
lem is to predict all turbines’ power generations of future
F timestamps utilizing the historical dynamic context factors
of previous H timestamps, which is also a spatio-temporal

data prediction problem. Mathematically, the predictions
Ŷt+F = {Y 1

1 , Y
2
1 , . . . , Y

1
2 , Y

2
2 , . . . , Y

F
N } ∈ RN×F×1, where

1 represents the target variable Patv, is obtained:

Ŷt+F = f(Xt−H | Φ) (1)

where f(·) represents the model for wind power forecasting,
Xt−H denotes the historical dynamic context records and Φ
represents the parameters in our model.

4 Method
The overall architecture of the proposed framework HSTTN
is shown in Figure 1, which is composed of the hourglass-
shaped encoder-decoder architecture, the residual spatiotem-
poral encoder/decoder layer, the Contextual Fusion Block and
a wind power regression module. The hierarchical resid-
ual spatiotemporal encoder/decoder layers (RSTEL/RSTDL)
with pooling and up-convolution operations capture multi-
scale temporal dependencies and global spatial correlations
from the embedded temporal-wise features and spatial-wise
features respectively. Skip-connections between encoder and
decoder will help enhance finer predictions by recovering lo-
calized coarse temporal information. Meanwhile, the CFBs
inserted in residual spatiotemporal layers take the outputs of
each temporal sublayer and spatial sublayer to capture the
contextual information interaction between spatial and tem-
poral features and propagate the enhanced representations
carrying both spatial and temporal information. The encoder-
decoder modeling paradigm generates output sequence one
element at a time.

4.1 Hourglass-shaped Encoder-decoder
This is the main body of our framework. To tackle the long-
term time series forecasting problem, global self-attention
mechanisms are always preferred for modeling dependen-
cies without regard to their distance in the sequences. Dif-
ferent from previous local modeling works [Yu et al., 2020;
Zhu et al., 2019], we try to capture the global spatial corre-
lations among different locations, as wind characteristics are
similar in a local area or distant areas with similar climatic
conditions. Besides, turbines that are not close to each other
but sharing the same working status will also perform in an
analogous way. So we employ the transformer architecture
to model both long-range temporal dependencies and spatial
correlations. Noted that the inputs of the first decoder layer
Xd

t+H are different from encoder inputs Xe
t−H , which contain

only future time spots and turbine locations without knowing
the meteorological data and turbine internal status. The un-
known factors in decoder’s inputs are padded with zero.

As introduced in Section 3, the raw wind power context
records are spatiotemporal structured data. As is depicted in
Figure 2, a 1×1 convolutional block is firstly adopted to learn
a high-dimension latent feature embedding from raw inputs.
Without padding and stride, this step will generate a 2-D fea-
ture map FConv ∈ RN×T×dmodel , where dmodel is the num-
ber of convolution kernels, i.e., the embedded features dimen-
sion:

FConvi = ReLU(W i ⋆ X + bi), i = 1, 2, . . . , dmodel, (2)
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Figure 2: The details of raw feature embedding module.

where FConvi denotes the i-th channel in the final feature
map FConv , ReLU(·) is the activation function, ⋆ represents
the convolution operation, W i ∈ R1×1×C and bi ∈ RC are
the learned weights of the i-th kernel and bias, respectively.
Then FConv is duplicated and decoupled into N temporal-
wise feature vectors F tem ∈ RT×dmodel and T spatial-wise
feature vectors F spa ∈ RN×dmodel as the inputs of residual
encoder layers.

Significantly, different from the general transformer archi-
tecture, we propose to successively downsample the long-
term fine-grained temporal scale to coarse-grained scale in
the encoder and recovering it with upsamplings in the de-
coder, which forms a hierarchical structure with different
temporal scales. The cascaded residual spatiotemporal en-
coder/decoder layers which can self-repeat multiple times
form the hourglass-shaped network and the details of RS-
TEL is depicted in Figure 3. The input features F tem and
F spa are firstly fed to the corresponding temporal encoder
layer and spatial encoder layer, which apply the standard
Multi-head Self-Attention (MSA) mechanism [Vaswani et
al., 2017]. Taking temporal encoder layer for example, the
i-th temporal encoder layer’s input F tem

i is first fed into three
linear layers to generate query, key and value embedding:
Qtem

i = F tem
i W q

i , Ktem
i = F tem

i W k
i , V tem

i = F tem
i W v

i ,
where W q

i ∈ Rdmodel×dk , W k
i ∈ Rdmodel×dk , and W v

i ∈

RSTEL

𝐹𝑡𝑒𝑚
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Figure 3: The structure of Residual Spatiotemporal Encoder Layer
(RSTEL).

⊕
represents element-wise addition.

Rdmodel×dv are the projection parameter matrices. we can
obtain the latent representation:

headtemi = Softmax(
QtemKtemT

√
dk

)V tem,

Attntem = Concat(headtem1 , . . . , headtemh )WO,

(3)

where Attntem ∈ RT×dmodel . To be exact, for each embed-
ded FConv , there are N encoded vectors Attntem. Then,
both temporal and spatial features are delivered into the con-
textual fusion block, which generates the enhanced represen-
tation. At last the origin inputs are directly added to the fusion
output in a residual manner, which can help to reduce over-
fitting and gradient vanishing. Therefore the output of the
i-th residual spatiotemporal encoder layer can be written as
follows:

F tem
i

′

= FUSE(Attntem
i ) + F tem

i ,

F spa
i

′
= FUSE(Attnspa

i ) + F spa
i ,

(4)

where FUSE(·) represents the contextual fusion in Sec-
tion 4.2. After the maxpooling, we have the inputs for the
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next RSTEL F tem
i+1 ∈ R

T
p ×dmodel , where p is the pooling fac-

tor. RSTDL follows a similar structure except for an addi-
tional multi-head attention over the outputs of its correspond-
ing RSTEL. The inter-scale skip connections between en-
coder and decoder layers further facilitate the model to make
precise predictions. Specifically, the outputs of each RSTEL
are directly concatenated to the outputs of their correspond-
ing RSTDL, followed by a up convolution to recover the fine-
grained details.

4.2 Contextual Fusion Block
The temporal dependencies and spatial correlations are char-
acterized in their own branches thus lack of contextual in-
formation interactions. Here we utilize a simple, computa-
tionally efficient but effective module named Contextual Fu-
sion Block (CFB) to capture the contextual joint features and
propagate them among temporal and spatial representations.
Figure 4 shows the structure of CFB.

We take the feature fusion in encoder for example since
the decoder shares the same mechanism. As described
in Section 4.1, the original input features are decoupled
into multiple sequences of vectors. After aggregating in-
formation from the whole sequence, the outputs of each
temporal encoder layer are Attntemn ∈ RT×dmodel , n =
1, 2, . . . , N and the outputs of the corresponding spa-
tial encoder layer are Attnspat ∈ RN×dmodel , t =
1, 2, . . . , T . Both of them are firstly stacked to the orig-
inal 2-D shape feature maps and then concatenated along
the channels: Ospa = Concat(Attnspa1, . . . , AttnspaT ),
Otem = Concat(Attntem1

, . . . , AttntemN
), Osp =

Concat(OspaT

, Otem), where Concat(·) denotes a con-
catenation operation, Ospa ∈ RT×N×dmodel and Otem ∈
RN×T×dmodel are the stacked spatial encoder layer output
and temporal encoder layer output respectively and Osp ∈
RN×T×dmodel·2 is the learned representation including both
spatial and temporal characteristics. Then, in order to remove
redundant information and reduce feature dimensions, a 1×1
convolution is employed to capture the contextual spatio-
temporal correlations and generate the enhanced representa-
tion Ofuse ∈ RN×T×dmodel :

Ofusei = ReLU(W i ⋆Osp + bi), i = 1, 2, . . . , dmodel, (5)

where Ofusei is the i-th channel in Ofuse. Finally, the en-
hanced informative features carrying both spatial and tem-
poral information are duplicated and decoupled into multiple
temporal-wise and spatial-wise sequence vectors as described
in Section 4.1, which are then fed to their corresponding next
encoder layers for higher-level representation learning.

4.3 Wind Power Regression Module
The outputs of the original scale residual spatiotemporal
encoder and decoder layers are concatenated to make the
final predictions. The concatenated outputs Oorign ∈
RN×F×dmodel·2, are fed into a fully-connected layer to
predict wind power generations of the next F timestamps
Ŷt+F ∈ RN×F×1 :

Ŷt+F = Drop(Oorign)WY + bY , (6)
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Figure 4: The structure of our Contextual Fusion Block (CFB).

where Drop is the dropout operation, WY ∈ R2·dmodel×1 are
the learnable parameters and bY is the bias.

To evaluate the difference between our prediction and the
ground truth, we utilize mean square error (MSE) as our loss
function, which is defined below:

Loss = MSE =
1

m

m∑
i=1

(Y i
t+F − Ŷ i

t+F )
2, (7)

where m is the number of samples.

5 Experiments
5.1 Experimental Setup
Datasets: We conduct experiments on two challenging real-
world datasets: i) SDWPF [Zhou et al., 2022] is obtained
from the real-world data from Longyuan Power Group Corp.
Ltd. This dataset contains 4,727,520 records sampled ev-
ery 10 minutes and are collected from a wind farm with
134 wind turbines in 245 days. Each record contains 13
attributes including critical external features (such as wind
speed, wind direction and temperature) and essential internal
features (such as inside temperature, nacelle direction and so
on). ii) Engie1 is obtained from ENGIE group. The wind
power data consists of 1,057,968 records from 1 January 2013
to 12 January 2018, obtained by sampling every 10 minutes
from a wind farm containing 4 wind turbines. Each record
contains 34 attributes.
Implementation Details: In our experiment, we utilize the
historical records of 144 time slots to forecast the wind power
generations in the next 144 time slots. For SDWPF, we se-
quentially split the dataset into 155 days, 30 days and 60
days for training, validation, and testing, respectively. For
Engie, the dataset is split into 1296 days, 180 days and 360
days for training, validation and testing, respectively. Finally,
the whole dataset is normalized with Z-score Normalization
and inverted to the original scale when performing evalua-
tion. Our proposed model is implemented with the PyTorch
framework. The feature dimension dmodel for multi-head at-
tention is set to 16 and the number of head is set to 2 for both
datasets. The number of convolution kernels in CFB is also
16. For this 144 time slot prediction task, we downsampling
the original scale with 3 and 2 times successively in encoder,
while upsampling it to the original scale in decoder. The ini-
tial learning rate is 1e-4 and 1e-3 and decreases gradually.

1https://opendata-renewables.engie.com
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Method
SDWPF Engie

MAE(MW) RMSE(MW) MAE(MW) RMSE(MW)

LSTM 41.23 46.15 1.34 1.58
GRU 40.92 46.40 1.35 1.56
Baidu 37.73 43.72 1.16 1.36

DCRNN 38.33 46.52 1.05 1.22
Informer 37.15 43.45 1.15 1.30
Bi-STAT 38.34 45.75 1.03 1.23

TSAT 38.03 44.91 1.10 1.28
HSTTN 33.07 40.16 0.91 1.08

Table 1: Performance of different methods on both datasets.

Adam optimizer is adopted to minimize the MSE loss until
the training process is ended by early stopping strategy. We
choose the best model on validation set as the final model and
evaluate its performance on testing set for fair comparisons.
Evaluation Metrics: We use two widely used metrics includ-
ing mean average error (MAE) and root mean square error
(RMSE) to evaluate all methods’ performance on the whole
wind farm. They are defined as:

MAE =
1

m

N∑
n=1

m∑
i=1

|y(n,i) − ŷ(n,i)|,

RMSE =

N∑
n=1

√√√√ 1

m

m∑
i=1

(y(n,i) − ŷ(n,i))
2
,

(8)

where N is the number of turbines and m is the number of
samples of each turbine. Besides, SDWPF introduced sev-
eral invalid conditions of the records caused by its recording
system. These invalid values will not be used in evaluation.

5.2 Baselines
In this paper, we compare the proposed HSTTN against seven
deep learning methods, including two RNN-based models
LSTM [Hochreiter and Schmidhuber, 1997], GRU [Cho et
al., 2014], two Transformer-based models: Informer [Zhou et
al., 2021], TSAT [Ng et al., 2022], and three spatial-temporal
forecasting models: Baidu* 2, DCRNN [Li et al., 2018], Bi-
STAT [Chen et al., 2022]. All methods are implemented on
both preprocessed datasets under the same experimental setup
for a fair comparison.

Table 1 summarizes the performance of all comparison
methods on SDWPF and Engie respectively, and our pro-
posed HSTTN performs the best on both datasets. LSTM,
GRU, Informer and TSAT are time series forecasting mod-
els which lack spatial feature modeling. So we decouple
the spatiotemporal input data to multiple temporal sequences
in the manner mentioned in Section 4.1 and feed them into
these models. As a result, our HSTTN achieves the low-
est MAE and RMSE on both dataset. We can observe
that when handling WPF as multivariate time series fore-
casting, Transformer-based models (Informer, TSAT, Baidu*,
Bi-STAT and HSTTN) outperforms those RNN-based mod-
els LSTM, GRU and which imply the effectiveness of self-
attention for capturing long-range temporal dependencies.

2https://github.com/PaddlePaddle/PGL/tree/main/examples/
kddcup2022/wpf baseline

Variant
SDWPF Engie

MAE(MW) RMSE(MW) MAE(MW) RMSE(MW)

STTN 35.29 41.57 1.03 1.23
2-STTN 34.83 41.22 0.98 1.20
4-STTN 36.18 42.29 1.07 1.27
NoSkip 35.98 41.86 1.04 1.25
HSTTN 33.07 40.16 0.91 1.08

Table 2: Performance of different temporal scales.

Informer and TSAT also utilize self-attention to learn tem-
poral representations but lack spatial information modeling,
which limits their performance. Compared with simple RNN,
DCRNN improves the performance to some degree with
the help of learning spatial representations explicitly, which
demonstrates the importance of spatial features for multi-
turbine wind power forecasting. By modeling both spatial-
temporal context, DCRNN and Bi-STAT outperforms com-
mon recurrent neural networks (LSTM, GRU) and temporal
transformer models (Informer, TSAT) and reaches compara-
ble results with our HSTTN on Engie dataset, but the perfor-
mance is not satisfactory on SDWPF dataset. The reason is
that DCRNN and Bi-STAT capture spatial context based on
Euclidean connectivity and distance, while the turbine distri-
butions on SDWPF are much more complex than that of En-
gie and the spatial context of wind power is also related to me-
teorological conditions and turbine status. Compared to the
above methods, we not only capture the global and compre-
hensive spatial-temporal correlations by self-attention mech-
anism but also carefully designed the hourglass-shaped net-
work architecture for long-term prediction, thereby achieving
the state-of-the-art performance for both dataset.

5.3 Ablation Studies
In this subsection, we perform extensive analyses to verify the
effectiveness of each component of the proposed HSTTN.

Effectiveness of Hierarchical Temporal Learning
• Spatial-Temporal Transformer Network (STTN): In this

variant, we remove the downsampling, upsampling and
skip-connection operations to explore the performance
of the original temporal scale only.

• Two scale Spatial-Temporal Transformer Network (2-
STTN): This variant implement the downsampling and
upsampling once each with the factor of 3, which lead-
ing to 2 temporal scale learning, to explore the effective-
ness of coarse-grained semantic representations.

• Four scale Spatial-Temporal Transformer Network (4-
STTN): Similarly, we implement the downsampling the
upsampling 3 times with the factors of 3, 2 and 2.

• HSTTN without skip-connections (NoSkip): To demon-
strate the effectiveness of the skip-connections between
encoder and decoder, we remove them in this variant.

In Table 2, we can observe that 2-STTN and HSTTN both
perform better than STTN, which demonstrates the effective-
ness of both the coarse-grained temporal dependencies and
our hierarchical architecture. But the 4-STTN variant can’t
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Variant
SDWPF Engie

MAE(MW) RMSE(MW) MAE(MW) RMSE(MW)

T-CNN 39.25 44.83 1.20 1.38
S-CNN 41.21 46.02 1.28 1.46
T-Only 35.50 41.78 1.03 1.25
S-Only 40.01 45.63 1.25 1.44

ST-Only 35.21 41.60 1.02 1.25
HSTTN 33.07 40.16 0.91 1.08

Table 3: Performance of different variants of HSTTN and variants
of CNN model.

make further improvement, which may suffer from overfit-
ting problems as the network goes deeper. The HSTNN out-
performs NoSkip variant, which proves that aggregating in-
formation from different scales enables the model to make
more precise predictions.

Importance of Capturing Global Information
• Temporal 1-D CNN Only (T-CNN): To verify the im-

portance of global temporal information, we replace the
transformer in the above T-Only with stacked 1-D con-
volutional neural networks to capture local temporal de-
pendencies then make predictions.

• Spatial 1-D CNN Only (S-CNN): We replace the trans-
former in the above S-Only with stacked 1-D CNN to
verify the significance of global spatial correlations.

• Temporal Transformer Only (T-Only): This variant only
includes temporal Transformer layers to verify the ef-
fectiveness of our global temporal feature modeling and
hierarchical temporal learning.

• Spatial Transformer Only (S-Only): We implement this
variant including only spatial transformer layers to ex-
plore the effectiveness of global spatial information.

The performance of different variants is shown in Table 3. We
can observe that T-Only can achieve a comparable result that
contribute most to our HSTTN, which demonstrates the effec-
tiveness of our hourglass-shaped hierarchical framework for
capturing long-range temporal dependencies. We explore to
extract spatial temporal features by CNN structure, which is
widely used for local feature extraction. The performance of
T-CNN and S-CNN can not match with T-Only ,S-Only and
not to mention HSTTN on both datasets, which proves the
importance of global information for wind power forecast-
ing. Spatial features is only supplemental to WPF, so S-Only
and S-CNN performs poorly.

Effectiveness of Spatial-Temporal Contextual Fusion
• Spatial-Temporal Transformer Only (ST-Only): To ver-

ify the effectiveness of our CFB, we implement a simple
fusion variant without the contextual fusion block inte-
grated in between. Then the outputs of the last RSTDL
are simply concatenated to make predictions.

The experiments results are illustrated in Table 3. ST-Only
slightly improves T-Only demonstrates the effectiveness of
the global spatial information. Our HSTTN outperforms both

Hyper-
Settings

SDWPF Engie
parameter MAE(MW) RMSE(MW) MAE(MW) RMSE(MW)

Kernel Size
1×1 33.07 40.16 0.91 1.08
3×3 35.94 42.65 0.96 1.20
5×5 36.29 43.04 1.10 1.30

Layer Num
1, 1 33.67 40.45 0.96 1.12
2, 1 33.07 40.16 0.95 1.10
2, 2 34.92 41.03 0.91 1.08

Dimensions

8 36.17 42.16 0.95 1.12
16 33.07 40.16 0.91 1.08
32 35.41 41.64 1.03 1.23
64 38.67 44.47 1.12 1.32

Table 4: Performance of three primary hyperparameters.

T-Only and ST-Only reveals that the temporal and spatial fea-
tures can not be casually combined and our CFBs that prop-
erly fuses spatiotemporal context features is effective.

Analysis of Different Hyperparameters
We conduct extensive experiments on three important hyper-
parameters in HSTTN to find the best settings.

• Kernel Size: the kernel size in contextual fusion block.

• Layer Num: the number of repeated residual spatiotem-
poral encoder/decoder layers.

• Dimensions: the number of embedded feature dimen-
sions after the 1×1 convolution.

Table 4 records the hyperparameters settings and results. Ac-
cording to the results, we decide the kernel size, encoder lay-
ers, decoders layers and embed feature dimension as 1, 2, 1
and 16 for SDWPF and as 1, 2, 2, 16 for Engie.

6 Conclusion
In this work, we propose a hourglass-shaped encoder-decoder
model termed Hierarchical Spatial-Temporal Transformer
Network to deal with the challenging long-term wind power
forecasting problem. The model design is motivated by two
main limitations of existing works. First, most of these works
are designed for short-term while lack of effective long-term
prediction solutions. Second, existing wind power forecast-
ing works lack properly designed module for spatial-temporal
context feature mining. Thus, we adopt Transformer mecha-
nism to capture both long-range temporal dependencies and
global spatial correlations and carefully design a hierarchical
temporal learning structure to facilitate long-term forecasting
with complementary coarse-grained semantics. Moreover,
we design a Contextual Fusion Block to further enhance the
learned features and improve the performance.
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Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[De Caro et al., 2021] Fabrizio De Caro, Jacopo De Stefani,
Alfredo Vaccaro, and Gianluca Bontempi. Daft-e: feature-
based multivariate and multi-step-ahead wind power fore-
casting. IEEE Transactions on Sustainable Energy, 2021.

[Deng et al., 2020] Xing Deng, Haijian Shao, Chunlong Hu,
Dengbiao Jiang, and Yingtao Jiang. Wind power forecast-
ing methods based on deep learning: A survey. Computer
Modeling in Engineering and Sciences, 2020.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In NAACL, 2019.

[Ding, 2019] Yu Ding. Data science for wind energy. 2019.
[Du et al., 2023] Dazhao Du, Bing Su, and Zhewei Wei. Pre-

former: Predictive transformer with multi-scale segment-
wise correlations for long-term time series forecasting. In
ICASSP. IEEE, 2023.

[Geng et al., 2022] Zhicheng Geng, Luming Liang, Tianyu
Ding, and Ilya Zharkov. Rstt: Real-time spatial tempo-
ral transformer for space-time video super-resolution. In
CVPR, 2022.

[Ghoushchi et al., 2021] Saeid Jafarzadeh Ghoushchi, Sob-
han Manjili, Abbas Mardani, and Mahyar Kamali Saraji.
An extended new approach for forecasting short-term
wind power using modified fuzzy wavelet neural network:
a case study in wind power plant. Energy, 2021.

[He and Wang, 2021] Yaoyao He and Yun Wang. Short-term
wind power prediction based on eemd–lasso–qrnn model.
Applied Soft Computing, 2021.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 1997.

[Hu et al., 2015] Qinghua Hu, Shiguang Zhang, Man Yu,
and Zongxia Xie. Short-term wind speed or power fore-
casting with heteroscedastic support vector regression.
IEEE Transactions on Sustainable Energy, 2015.

[Jiang et al., 2023a] Ruixiang Jiang, Lingbo Liu, and Chang-
wen Chen. Clip-count: Towards text-guided zero-shot ob-
ject counting. arXiv preprint arXiv:2305.07304, 2023.

[Jiang et al., 2023b] Wenjun Jiang, Dongqin Zhang, Gang
Hu, Tiantian Wu, Lingbo Liu, Yiqing Xiao, and Zhong-
dong Duan. Transformer-based tropical cyclone track and
intensity forecasting. Journal of Wind Engineering and
Industrial Aerodynamics, 238:105440, 2023.

[Jones et al., 2022] Dave Jones, Aditya Lolla, Alison Can-
dlin, Bryony Worthington, Charles Moore, Hannah Broad-
bent, Harry Benham, Muyi Yang, and Phil MacDonald.
Global electricity review 2022. 2022.

[Li et al., 2018] Yaguang Li, Rose Yu, Cyrus Shahabi, and
Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In ICLR, 2018.

[Li et al., 2021] Shuaicheng Li, Qianggang Cao, Lingbo Liu,
Kunlin Yang, Shinan Liu, Jun Hou, and Shuai Yi. Group-
former: Group activity recognition with clustered spatial-
temporal transformer. In ICCV, pages 13668–13677,
2021.

[Li et al., 2022] Haofeng Li, Junjia Huang, Guanbin Li,
Zhou Liu, Yihong Zhong, Yingying Chen, Yunfei Wang,
and Xiang Wan. View-disentangled transformer for brain
lesion detection. In ISBI, pages 1–5. IEEE, 2022.

[Liu et al., 2021] Lingbo Liu, Mengmeng Liu, Guanbin Li,
Ziyi Wu, and Liang Lin. Road network guided fine-
grained urban traffic flow inference. arXiv preprint
arXiv:2109.14251, 2021.

[Liu et al., 2022a] Lingbo Liu, Yuying Zhu, Guanbin Li,
Ziyi Wu, Lei Bai, and Liang Lin. Online metro origin-
destination prediction via heterogeneous information ag-
gregation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022.

[Liu et al., 2022b] Ye Liu, Siyuan Li, Yang Wu, Chang Wen
Chen, Ying Shan, and Xiaohu Qie. Umt: Unified multi-
modal transformers for joint video moment retrieval and
highlight detection. In CVPR, pages 3042–3051, 2022.

[Lobo and Sanchez, 2012] Miguel G Lobo and Ismael
Sanchez. Regional wind power forecasting based on
smoothing techniques, with application to the spanish
peninsular system. IEEE Transactions on Power Systems,
2012.

[Luo et al., 2023] Yan Luo, Ye Liu, Fu-lai Chung, Yu Liu,
and Chang Wen Chen. End-to-end personalized next loca-
tion recommendation via contrastive user preference mod-
eling. arXiv preprint arXiv:2303.12507, 2023.

[Ng et al., 2022] William T Ng, K Siu, Albert C Cheung,
and Michael K Ng. Expressing multivariate time series
as graphs with time series attention transformer. arXiv
preprint arXiv:2208.09300, 2022.

[Nie et al., 2022] Yuqi Nie, Nam H Nguyen, Phanwadee
Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. arXiv
preprint arXiv:2211.14730, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6315



[Ouyang et al., 2019] Tinghui Ouyang, Heming Huang, and
Yusen He. Ramp events forecasting based on long-term
wind power prediction and correction. IET Renewable
Power Generation, 2019.

[Shahid et al., 2021] Farah Shahid, Aneela Zameer, and
Muhammad Muneeb. A novel genetic lstm model for wind
power forecast. Energy, 2021.

[Shao et al., 2016] Haijian Shao, Xing Deng, and Fang Cui.
Short-term wind speed forecasting using the wavelet de-
composition and adaboost technique in wind farm of east
china. IET Generation, Transmission & Distribution,
2016.

[Tastu et al., 2013] Julija Tastu, Pierre Pinson, Pierre-Julien
Trombe, and Henrik Madsen. Probabilistic forecasts of
wind power generation accounting for geographically dis-
persed information. IEEE Transactions on Smart Grid,
2013.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. NeurIPS, 2017.

[Vinuesa et al., 2020] Ricardo Vinuesa, Hossein Azizpour,
Iolanda Leite, Madeline Balaam, Virginia Dignum, Sami
Domisch, Anna Felländer, Simone Daniela Langhans,
Max Tegmark, and Francesco Fuso Nerini. The role of
artificial intelligence in achieving the sustainable develop-
ment goals. Nature communications, 11(1):233, 2020.

[Wang et al., 2017] Huai-zhi Wang, Gang-qiang Li, Gui-bin
Wang, Jian-chun Peng, Hui Jiang, and Yi-tao Liu. Deep
learning based ensemble approach for probabilistic wind
power forecasting. Applied energy, 2017.

[Wang et al., 2021] Yun Wang, Runmin Zou, Fang Liu,
Lingjun Zhang, and Qianyi Liu. A review of wind speed
and wind power forecasting with deep neural networks.
Applied Energy, 2021.

[Wu et al., 2021] Haixu Wu, Jiehui Xu, Jianmin Wang, and
Mingsheng Long. Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting.
NeurIPS, 2021.

[Wu et al., 2022] Zhengtao Wu, Lingbo Liu, Yang Zhang,
Mingzhi Mao, Liang Lin, and Guanbin Li. Multimodal
crowd counting with mutual attention transformers. In
ICME, pages 1–6. IEEE, 2022.

[Xu et al., 2020] Mingxing Xu, Wenrui Dai, Chunmiao Liu,
Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai Xiong.
Spatial-temporal transformer networks for traffic flow
forecasting. arXiv preprint arXiv:2001.02908, 2020.

[Yu et al., 2020] Yixiao Yu, Xueshan Han, Ming Yang, and
Jiajun Yang. Probabilistic prediction of regional wind
power based on spatiotemporal quantile regression. IEEE
Industry Applications Society Annual Meeting, 2020.

[Zeng and Qiao, 2011] Jianwu Zeng and Wei Qiao. Support
vector machine-based short-term wind power forecasting.
In PSCE, 2011.

[Zhang et al., 2023] Jiacheng Zhang, Xiangru Lin, Wei
Zhang, Kuo Wang, Xiao Tan, Junyu Han, Errui Ding, Jing-
dong Wang, and Guanbin Li. Semi-detr: Semi-supervised
object detection with detection transformers. In CVPR,
pages 23809–23818, 2023.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi
Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long
sequence time-series forecasting. In AAAI, 2021.

[Zhou et al., 2022] Jingbo Zhou, Xinjiang Lu, Yixiong Xiao,
Jiantao Su, Junfu Lyu, Yanjun Ma, and Dejing Dou. Sd-
wpf: A dataset for spatial dynamic wind power fore-
casting challenge at kdd cup 2022. arXiv preprint
arXiv:2208.04360, 2022.

[Zhu et al., 2019] Qiaomu Zhu, Jinfu Chen, Dongyuan Shi,
Lin Zhu, Xiang Bai, Xianzhong Duan, and Yilu Liu.
Learning temporal and spatial correlations jointly: A uni-
fied framework for wind speed prediction. IEEE Transac-
tions on Sustainable Energy, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6316


	Introduction
	Related Work
	Problem Specification
	Method
	Hourglass-shaped Encoder-decoder
	Contextual Fusion Block
	Wind Power Regression Module

	Experiments
	Experimental Setup
	Baselines
	Ablation Studies
	Effectiveness of Hierarchical Temporal Learning
	Importance of Capturing Global Information
	Effectiveness of Spatial-Temporal Contextual Fusion
	Analysis of Different Hyperparameters


	Conclusion

