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Abstract

Demand-Responsive Transport (DRT) has grown
over the last decade as an ecological solution to
both metropolitan and suburban areas. It provides
a more efficient public transport service in
metropolitan areas and satisfies the mobility needs
in sparse and heterogeneous suburban areas.
Traditionally, DRT operators build the plannings
of their drivers by relying on myopic insertion
heuristics that do not take into account the
dynamic nature of such a service. We thus
investigate in this work the potential of a Demand
Prediction Framework used specifically to build
more flexible routes within a Dynamic Dial-a-Ride
Problem (DaRP) solver. We show how to obtain a
Machine Learning forecasting model that is
explicitly designed for optimization purposes. The
prediction task is further complicated by the fact
that the historical dataset is significantly sparse.
We finally show how the predicted travel requests
can be integrated within an optimization scheme in
order to compute better plannings at the start of the
day. Numerical results support the fact that,
despite the data sparsity challenge as well as the
optimization-driven constraints that result from the
DaRP model, such a look-ahead approach can
improve up to 3.5% the average insertion rate of
an actual DRT service.

1 Introduction
Individual cars, buses and taxis were held responsible for
around 45% of the CO2 emitted around the world by the
transportation sector in 2020, which accounts for 24% of all
CO2 emissions globally [Agency, 2023]. One solution to
tackle this environmental issue is to have a better use of the
existing transportation resources through shared mobility
systems. In particular, Demand-Responsive Transport
defines shared transport systems where the vehicles adapt
their routes dynamically to the demand rather than using
fixed routes and timetables. It aims at improving public
transportation in areas with a low population density such as
the suburbs of large cities [Feigon and Murphy, 2016].

This work has been performed in collaboration with
Padam Mobility, an international company that has
developed software solutions to efficiently manage
Demand-Responsive Transport services for almost a decade
in partnership with local and regional public transport
authorities. Such a long lasting collaboration allows us to
leverage a large volume of data to define a proper Big Data
analysis project with regards to the mobility needs in some
of their oldest territories.

2 Overview
We explain in this work how we can take advantage of some
historical records to enable Demand-Responsive Transport
services to be more flexible and thus more available.

In short, travel requests can be performed days in advance
as well as just a few minutes before the requested departure
time. We are interested in building an initial planning for
the drivers at the start of the operational day that takes into
account predicted requests that could happen during the day.

We first present some statistics using the available data
and we show how the pre-processing can manage the
sparsity and the heterogeneity of the demand, the two main
challenges related to the forecasting task on the considered
territories. We then discuss how the Dial-a-Ride Problem,
that is the optimization model used in Demand-Responsive
Transport, is affected by the obtained prediction. In light of
that relation, we investigate how the available data should be
pre-processed to have the most beneficial impact on the
optimization model. We present the performances of a
Moving Average and a LSTM models used as Demand
Prediction Frameworks that are precisely tailored for
obtaining an optimization model able to provide high-quality
solutions. Finally, we prove the overall effectiveness of the
proposed framework by plugging this prediction into the
Offline Optimization Process and by performing simulations
that pinpoint the margin for improvement with respect to the
myopic insertion algorithms currently used in practice.

The major contributions of this work are the following:

• We depict the particularities of Demand-Responsive
Transport services in suburban areas through a detailed
numerical study of the available data;

• We explain how a Demand Prediction Framework can
be used in tandem with a Dynamic Dial-a-Ride
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Problem solver and how this interaction drastically
affects the requirement on the prediction model itself;

• We pinpoint the difficulties met when modeling such a
Machine Learning model in terms of performance;

• We present numerical insights based on simulations into
the potential of developing a Demand Prediction tool for
Demand-Responsive Transport systems.

3 Data Analysis
In the transportation field, most of the works that can be
found in the literature around “Origin-Destination-TimeSlot”
prediction revolve around large scale service offers, such as
taxis [Liu et al., 2019], subways [Yang et al., 2017] or public
transport services [Toqué et al., 2016] in big cities. Most of
the closely-related works focus on “Origin-TimeSlot”
prediction only [Tong et al., 2017; Yao et al., 2018]. Those
datasets have the advantage of being open access and
massive in terms of volume: for instance, New-York yellow
taxis account for hundreds of millions of historical travel
requests over the years [Ferreira et al., 2013]. Such
quantities allow Deep Learning techniques to be considered
to forecast future mobility needs. Additionally, those papers
mostly target short-term predictions with a rolling horizon of
15 to 60 minutes and can consider wide departure and
destination zones up to a few km2 [Wang et al., 2019].

Our work is focused on suburban areas where mobility
needs are way more heterogeneous and sparse. Hence,
instead of having more than a hundred million travel
requests performed each year in a rather small and dense
area, we consider only up to a few hundred thousands travel
requests performed each year in a really wide area. We also
focus on “Origin-Destination-TimeSlot” prediction because
we want to obtain an estimation of the demand for the whole
next operational day to optimize the initial plannings.

To understand the specificities and complexities of rural
and suburban mobility needs through a detailed numerical
analysis, we first introduce a few concepts.

We note N = {Ni = (lati, lngi)}i∈[[1,nbus stops]]
the set of

bus stops where travelers can be served, defined by their
latitude and longitude coordinates. The set N defines the
geography of the considered transportation offer. We then
note R as the set of historical travel requests for this
Demand-Responsive Transport service. For each r ∈ R, we
know

(
latdeparture

r , lngdeparture
r

)
the coordinates of the departure

location,
(
latdestination

r , lngdestination
r

)
the coordinates of the

destination location, and timedeparture
r the requested time of

pick-up at the associated departure bus stop.
The N and R sets constitute the raw data that we have.
Regarding the raw data, most of the travel requests are

unique if we only look at the bus stop of departure, the bus
stop of arrival and the requested departure time.
Consequently, in order to bring out patterns in the mobility
needs from our dataset, we decide to group the travel
requests into clusters of similar demand so that they do not
all look like distinct and exceptional events.

We thus define the concept of “Aggregated Travel
Requests” based on a geographical threshold ∆D in meters

N1

N2

Requested Departure Zone

N3

N4

N5

Requested Destination Zone

R1

R2

R3

Departure Time Slot 1

10:00 10:15×
timedeparture

R1 ×
timedeparture

R2

Departure Time Slot 2

10:20 10:25×
timedeparture

R3

Figure 1: From “Travel Requests” to “Aggregated Travel Requests”

and a temporal threshold ∆T in minutes. Aggregations are
performed sequentially, geographically first and temporally
second. As shown in Figure 1, we want to cluster the
historical travel requests into travel requests from a
departure zone to a destination zone with a departure time
slot in the day. In this example, R1 and R2 are grouped
together in ({N1, N2} , {N3, N4, N5} , [10:00, 10:15]) while
R3 is put in ({N1, N2} , {N3, N4, N5} , [10:20, 10:25]).

To achieve this objective, we first compute a clustering Z
of the bus stops such that the diameter of each cluster is
below the ∆D threshold, as described in Equation (1). For
this clustering phase, distanceG is the Haversine formula.

argmin
Z∈P(N )

|Z|

such that
⋃
Z∈Z

Z = N

and ∀Z ∈ Z, ∀ (N,N ′) ∈ Z2, distanceG (N,N ′) ≤ ∆D

(1)

This particular aggregation of bus stops can be heuristically
obtained using Hierarchical Clustering [Johnson, 1967].

Based on this geographical clustering, we can assign each
historical travel request r ∈ R to a departure Zr

departure and a
destination Zr

destination zones as detailed in Equations (2-3).

Zr
departure = argmin

Z∈Z

[
min
N∈Z

distance (departurer, N)

]
(2)

Zr
destination = argmin

Z∈Z

[
min
N∈Z

distance (destinationr, N)

]
(3)

Based on those definitions, we can aggregate a first time
the historical travel requests based on their departure and
destination zones, as written in Equation (4).

AG =
{
r ∈ R | Zr

departure = Z1 ∧ Zr
destination = Z2

}
(Z1,Z2)∈Z2

(4)

We can then aggregate those spatially clustered travel
requests per similar requested times of pick-up as described
in Equation (5). For each (Z1, Z2) ∈ Z2, we search time
slots of departure smaller than ∆T to obtain AT

Z1,Z2
, a set of

clusters of travel requests from Z1 to Z2 with close enough
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requested departure times, such as [10:00, 10:15]. Here,
distanceT is the difference in minutes between two daily
timings. For instance, distanceT (23:42, 00:07) = 25.

∀ (Z1, Z2) ∈ Z2,AT
Z1,Z2

= argmin
T ∈P

(
AG

Z1,Z2

) |T |

such that
⋃
T∈T

T = AG
Z1,Z2

and ∀T ∈ T , ∀ (r, r′) ∈ T 2, distanceT (r, r′) ≤ ∆T

(5)

Those definitions allow us to properly define and study
A =

⋃
(Z1,Z2)∈Z2

AT
Z1,Z2

the “Aggregated Travel Requests”

depending on the values of ∆D and ∆T.
In particular, as our objective is to forecast travel requests

for the next day, we want to look at mobility needs that
present some regularity. Consequently, we take a look at the
“Aggregated Travel Requests” that happen at least once a
month in the historical records of one of the local authorities
managed by Padam Mobility.

To simplify notations in the rest of this paper, we define
Amonthly = {T ∈ A | T.frequency ≥ 1/month}.

Figure 2: |Amonthly| = f (∆D,∆T)

Figure 2 shows the evolution of the number of
“Aggregated Travel Requests” that happen at least once a
month depending on the values of ∆D and ∆T used in
their computation. For example, if we decide to have clusters
with a time width ∆T of 5 minutes and a diameter ∆D of
1000 meters we would obtain approximately 4000 distinct
space-time clusters. The graph shows that ∆T has overall
more impact than ∆D on this metric. We also distinguish an
equilibrium between ∆D and ∆T where the number of
distinct “Aggregated Travel Requests” that happen at least
once a month is maximized. This is logical when
considering extreme cases: when both ∆D and ∆T are set
to 0 then only travel requests that are exactly the same are
aggregated together. This leads to a small number of regular

travel requests. On the other hand, when both ∆D and ∆T
increases significantly, the number of “Aggregated Travel
Requests” itself becomes smaller because travel requests
start to be grouped all together in the same clusters.

Figure 3: |{r∈T |T∈Amonthly}|
|R| = f (∆D,∆T)

Additionally, Figure 3 shows the evolution of the
proportion of the whole demand represented by the
“Aggregated Travel Requests” that happened at least once a
month depending on the values of ∆D and ∆T used in
their computation. Figure 3 can be viewed as a “weighted”
version of Figure 2, where to each cluster is associated a
weight proportional to the number of travel requests
associated with it. In this case, we can see that if we decide
to have clusters with a time width ∆T of 5 minutes and a
diameter ∆D of 1000 meters we would cover approximately
40% of the whole set of requests.

Logically, the larger the clusters of travel requests are, the
larger the proportion of the demand represented by those
travel requests gets. However, we can see that less than half
of the whole dataset is depicted by those regular clustered
travel requests for most of the low values of ∆D and ∆T.

Consequently, it is clear that “Aggregated Travel Requests”
are necessary to be able to describe our historical records in a
manageable way: even though they do not completely remove
the presence of sparsity and heterogeneity, they drastically
reduce their magnitude.

The main question is how should we choose the values of
∆D and ∆T? If our objective was solely to perform a
demand prediction, we would probably choose the settings
large enough to get nicely preprocessed data. Although, our
goal is to provide those “Aggregated Travel Requests” to an
optimization model afterwards.

To decide the correct values of ∆D and ∆T, we need to
consider the Operational Research model to which those
predicted travel requests will be fed.
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4 Dial-a-Ride Problem vs. Machine Learning
The Dial-a-Ride Problem is the mathematical model at the
core of the optimization frameworks in Demand-Responsive
Transport systems [Cordeau and Laporte, 2007;
Ho et al., 2018]. The Pick-up and Delivery Problem has
several specific constraints consisting of arrivals time
windows at the pick-up and drop-off locations, plus a
maximum onboard time for each reservation. These are the
comfort constraints used to satisfy the travelers with regards
to their waiting time and pick-up/drop-off distances. For
example, once a traveler has been communicated a pick-up
time at 10:00, this timing can be delayed reasonably up to
10:06, but the scheduled transport cannot be too late such as
10:53. Furthermore, customers cannot be kept indefinitely
onboard: a deviation can be performed to serve other
travelers on the way but it must stay reasonable with regards
to the direct travel time without any deviation. In practice,
those constraints are what allows the system to insert other
travelers and actually group passengers together in the
planning of a driver.

More precisely, when a user books a trip from A to B with
a departure time at tP , a “Pick-up Time Window” of service
is usually designed as follows: [tP − P−, tP + P+] where
P− (resp. P+) is the tolerable advance (resp. lateness) to be
imposed on the user. In actual services, P− is often close to
0 while P+ is often between 10 and 15 minutes.

Requested Departure Timings
Represented by this Time Slot

t1 t2

MACHINE LEARNING
DIAL-A-RIDE PROBLEM

Pick-up Time Window for a departure at t1

Pick-up Time Window for a departure at t2

Pick-up Time Window for a departure at t3 ∈ [t1, t2]

Globally Valid

Pick-up Time Window

Figure 4: From “Departure Time Slot” to “Pick-up Time Window”

Figure 4 shows how a “Departure Time Slot” of an
“Origin-Destination-TimeSlot” Machine Learning model
can be converted into a “Pick-up Time Window” of a
Dial-a-Ride Problem model. More precisely, in order to
build such a time window that can depict any requested
departure time within a given “Departure Time Slot” [t1, t2],
t1 and t2 should be selected in a way that
[t2 − P−, t1 + P+] is a valid temporal interval.

This means that the maximum value for ∆T in our
“Aggregated Travel Requests” computation is constrained by
the Dial-a-Ride Problem model settings: ∆T ≤ P+ + P−.

Using this “Pick-up Time Window”, the “Drop-off Time
Window” of this travel request from A to B is usually
designed based on dtt (A,B) the direct travel time from A to
B and mot (A,B) the maximum onboard time from A to B:
[tP − P− + s + dtt (A,B) , tP + P+ + s + mot (A,B)]
where s is the service time associated with this customer.

Figure 5 shows how the geographical clustering also
constrains the definition of the “Drop-off Time Window” to

N1

N2

Requested Departure Zone

N3

N4

N5

Requested Destination Zone

Departure
Time Slot

t1 t2

MACHINE LEARNING
DIAL-A-RIDE PROBLEM

Pick-up Time Window

Drop-off Time Window
from N1 to N4

s+ dtt (N1, N4)

s+mot (N1, N4)

Drop-off Time Window
from N2 to N5

s+ dtt (N2, N5)

s+mot (N2, N5)

Drop-off Time Window

Figure 5: From “Pick-up” to “Drop-off” Time Windows

use in the Dial-a-Ride Problem model based on the “Pick-up
Time Window” defined previously. This constraint comes
from the fact that the direct travel time is different between
all pairs of departure and destination bus stops.

Consequently, we also have to consider the intersection
between all of the possible time windows of drop-off. This
leads us to define the following constraint in Equation (6) on
the “Aggregated Travel Requests” design.

∀ (Z1, Z2) ∈ Z2,MinTime (Z1, Z2) ≤ MaxTime (Z1, Z2)

where MinTime (Z1, Z2) = P− + max
(N1,N2)∈Z1×Z2

dtt (N1, N2)

and MaxTime (Z1, Z2) = P+ + min
(N1,N2)∈Z1×Z2

mot (N1, N2)

(6)

Furthermore, to keep the triangular inequalities valid in the
optimization model, the direct travel time from a departure
zone to a destination zone must be the maximum direct travel
time from any departure to any destination bus stop.

To conclude, we have explained how the Dial-a-Ride
Problem, by its mathematical definition, constrains the
maximal sizes that we can actually consider for the
geographical and temporal clustering steps when
preprocessing the data for the Machine Learning model.

In our practical case, we choose ∆D = 500 meters and
∆T = 10 minutes based on the territory configuration. This
gives us around 5000 regular “Aggregated Travel Requests”
for the Demand Prediction Framework to work with.

5 Demand Prediction Framework
Based on the Data Analysis results presented in Section 3 and
the constraints on the Data Aggregation settings explained in
Section 4, we can build a matrix of daily “Aggregated Travel
Requests”. This matrix, noted MA, has 2 dimensions:

• Axis 1: Historical day d, such as March, 18th 2021;
• Axis 2: “Aggregated Travel Requests” that happened at

least once a month, such as “From Z4 to Z9 with a
departure time between 10:02 and 10:07”.
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In the cell at line d and column T of MA, we store the ratio
between the number of historical travel requests represented
by T that happened during d and the total number of travel
requests that happened during d. Each line of this matrix thus
depicts the probability that a travel request happening a given
day belongs to each of those “Aggregated Travel Requests”.

It is that line for the next coming day that we aim to predict.

Figure 6:

∑
T∈Amonthly

|{r.date|r∈T}|

|{r.date|r∈R}|×|Amonthly| = f (∆D,∆T)

Figure 6 shows the evolution of the sparsity of MA
depending on the values of ∆D and ∆T. This is also an
important metric when considering that this matrix is used
afterwards in the Demand Prediction Framework. It is
noticeable that, in any case, sparsity is always an issue, even
the largest clustering considered still leads to more than 98%
of sparsity which is way higher than what can be found in
the literature [Zhuang et al., 2022].

As our time step is the whole day, the size of the Training
Set is necessarily limited: 8 years of data, which is the
maximum that we dispose of in our case, can only account
for roughly 2500 lines of data. Based on this dataset size
constraint, we decide to consider two Machine Learning
models to build this Demand Prediction Framework.

The first one is a basic Moving Average (MA) model.
The second one is a Long Short-Term Memory (LSTM)

model [Hochreiter and Schmidhuber, 1997]. For the latter,
we provide additional information about each historical day
to enrich the model: position of the year in cosinus and sinus
representation, presence of holidays and weather details. We
also design a custom trainable Threshold Layer based on the
sigmoid function that we add in output of the LSTM model
to reduce the noise within its predictions.

To compare the performance of both models, we use all of
our dataset as a Training Set except the last month that we use
as a Test Set to analyze their generalization capacities.

The input data is always the last 4 weeks of the historical
demand that precede the day to predict.

We consider the following metrics to compare M̂A the

Model MSE PCP WCP

MA 4.2E − 7 74.1% 27.3%
LSTM 4.6E − 7 71.5% 27.6%

Table 1: Demand Prediction Framework Global Performance

output of a Demand Prediction Framework with the ground
truth MA extracted from the historical records:

• Mean Squared Error (MSE)

MSE = 1
|A|

∑
T∈A

(
MA [next day, T ]− M̂A [next day, T ]

)2

(7)
• Proportion of Correct Predictions (PCP)

PCP =
|{T∈A|[MA[next day,T ]>0]∧[M̂A[next day,T ]>0]}|

|A|
(8)

• Weight of Correct Predictions (WCP)

WCP =

∑
T∈A,MA[next day,T ]>0

M̂A [next day, T ]∑
T∈A

M̂A [next day, T ]
(9)

Those 3 metrics indicate the quality of a prediction with
regards to how Machine Learning techniques are usually
evaluated (MSE) but also how the rightfully predicted travel
requests will be taken into account within the optimization
framework (PCP and WCP) as travel requests with higher
probability of happening have higher chances to be taken
into account within the plannings of the drivers.

Table 1 shows the average values for the three proposed
indicators over the complete set of considered case studies.
What we can see here is that the MA model detects more
correct travel requests but their weight among the incorrect
travel requests is lower. Hence, the LSTM model predicts
less correct travel requests but give them better probabilities
of happening in comparison with what the MA model does.

In both cases, the overall numerical quality of the
prediction seems pretty low when we look at those numbers.
However, the purpose of this prediction is to be used within
an Offline Optimization Algorithm to make space in the
initial planning of the vehicles. Consequently, if it is just the
global noise that leads us to those values while the predicted
travel requests with the highest estimated probabilities of
happening and thus the highest weights in the objective
function of the optimization scheme are all rightfully
predicted travel requests then this could actually be fine.

Figure 7 shows an example of how the weights of the
predicted travel requests are balanced across the 500
predicted travel requests with the highest probability of
happening according to the MA model for the service of
February, 12th 2023. We scale those weights so that their
sum is equal to 1 to simplify reading. In this specific
example, we have PCP = 76.5% and WCP = 36.2% when
we consider the complete prediction but PCP = 21.9% and
WCP = 51.7% when we consider only the top 500 predicted
travel requests. Furthermore, when we compare the weights
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of the predicted travel requests that are associated with a
historical travel request that happened during that day (in
blue circles) with the ones of the other predicted travel
requests that can be considered as false positives (in red
crosses), we can see here that most of the top predicted
travel requests are in fact good predictions.

Hence, even though a lot of predicted travel requests are
not interesting to us, their weights are actually low and we
could simply cut the prediction at a high enough level to
consider as few of them as possible.

In the end, even though we have a lot of noisy wrongfully
predicted travel requests in output of both Demand
Prediction Frameworks, they are still able to put forward
rightfully predicted travel requests in terms of estimated
probability of happening, which should be enough for the
Offline Optimization Process. We decide to use the output of
the LSTM-based model in the optimization phase as the best
ranked travel requests are more often rightfully predicted
than in the output of the MA model.

6 Look-ahead Offline Optimization Process
Our work targets the optimization of the plannings of the
drivers at the start of the day in a dynamic context where
new travel requests will happen during their shifts. Various
approaches to tackle this problem have been considered in
the “Vehicle Routing Problem” literature: two-stage
[Bernardo and Pannek, 2018] and multi-stage stochastic
optimization [Saint-Guillain et al., 2015], an objective
function based on simulations [Zigrand et al., 2021] as well
as adding fake travel requests into the list of travel requests
to serve in order to make space in the already validated
bookings [Tensen, 2015]. It is on that last idea that we have
designed our Look-ahead Offline Optimization Process.

Figure 8 displays why we optimize the initial plannings of
the drivers by considering predicted travel requests within
their routes. In this example, we design the virtual path of
the vehicle in black dotted arrows. In this planning, an
in-advance travel request from N4 to N7 and another one
from N7 to N1 have been taken into account alongside a
predicted travel request from Z3 to Z1. Consequently, this
planning allows the driver to perform this trip:
D → N4 → {N5, N6} → {N1, N2} → N7 → N1 → D
where D is the depot of the vehicle. The actual initial
planning is D → N4 →→ N7 → N1 → D but we have
made space in that planning so that any travel request
represented by the optional one in red in the picture can
easily be inserted in the current schedule.

The baseline of our work is the traditional optimization
scheme where the Total Duration of the Rides objective
function is used in the Offline Optimization Process to
rework the plannings of the drivers at the start of the day
[Vallée, 2019]. Our approach is an optimization scheme
where the Look-ahead Offline Optimization Process is used
to rework the plannings of the drivers at the start of the day
by saturating their routes with the most probable travel
requests for the coming day and then removing those virtual
stops from their routes. In both cases, the traditional Online
Insertion Algorithm based on the Total Duration of the Rides
minimization is used the rest of the time to answer the travel
requests performed by customers.

We implemented a Dynamic Dial-a-Ride Problem solver
based on a Combinatorial Benders Decomposition [Codato
and Fischetti, 2006] inspired by recent publications on
Vehicle Routing Problems [Fachini and Armentano, 2020]
and the Selective Dial-a-Ride Problem [Riedler and Raidl,
2018]. This solver follows a “cluster-first, route-second”

Figure 7: Top 500 Predicted Travel Requests sorted by Estimated Weight
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Figure 8: Look-ahead Offline Optimization Process

approach where a Master Problem dispatches travel requests
to available vehicles while Subproblems, one per vehicle, are
responsible for checking the feasibility of these assignments.
This decomposition approach allows us to obtain optimal
solutions for medium-sized instances, up to a few hundred
travel requests, and good solutions for large-scale instances,
up to a thousand travel requests, in reasonable computation
time and resources. The objective function is to maximize
the expected insertion rate of a given set of start plannings
for the drivers. In-advance travel requests must be served
while predicted travel requests are optional.

We consider all of the historical days of service of the last
month available in our dataset, where between 2000 and 3000
travel requests are performed daily, and run on each one of
them the following simulation procedure:

• Optimize the initial plannings of the drivers using either
the traditional or the look-ahead approach;

• Simulate the sequential arrival of the historical travel
requests into the system as they actually happened;

• Report the proportion of the travel requests that were
successfully inserted into the plannings of the drivers.

Approach Average Insertion Rate

Total Duration of the Rides 58%
Look-ahead 60%
Theoretical Upper Bound 70%

Table 2: Average simulated performance over 20 scenarios

On average, our approach was able to answer positively
60% of the travel requests while the traditional approach was
able to answer positively 58% of the travel requests, the
maximum possible being 70% according to our solver. In
other words, we obtain a relative improvement in
comparison with current practices of 3.5% and a first step
towards closing the gap with regards to the upper bound of
what is actually possible to do.

7 Conclusion
In this work we discussed how optimization-driven
predictions can be radically constrained in their design by
the mathematical model that defines the considered problem.
We also provided new numerical insights into the mobility
needs of suburban areas and how complicated it is to manage
them within a Demand Prediction Framework.

Plugged into an Dynamic Dial-a-Ride Problem solver, we
also showed the potential of such a look-ahead approach in
terms of improved flexibility for the service.

In the future, we first aim to develop a new online insertion
policy that takes advantage of the optimization performed at
the start of the day. We also want to improve the Demand
Prediction Framework used to feed the solver with potential
travel requests to serve.
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Université de Lorraine, 2019.

[Wang et al., 2019] Yuandong Wang, Hongzhi Yin, Hongxu
Chen, Tianyu Wo, Jie Xu, and Kai Zheng. Origin-
destination matrix prediction via graph convolution: a
new perspective of passenger demand modeling. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages
1227–1235, 2019.

[Yang et al., 2017] Chao Yang, Fenfan Yan, and Xiangdong
Xu. Daily metro origin-destination pattern recognition

using dimensionality reduction and clustering methods. In
2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pages 548–553. IEEE,
2017.

[Yao et al., 2018] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng
Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and
Zhenhui Li. Deep multi-view spatial-temporal network
for taxi demand prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[Zhuang et al., 2022] Dingyi Zhuang, Shenhao Wang,
Haris Koutsopoulos, and Jinhua Zhao. Uncertainty
quantification of sparse travel demand prediction with
spatial-temporal graph neural networks. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 4639–4647, 2022.

[Zigrand et al., 2021] Louis Zigrand, Pegah Alizadeh,
Emiliano Traversi, and Roberto Wolfler Calvo. Machine
learning guided optimization for demand responsive
transport systems. In Machine Learning and Knowledge
Discovery in Databases. Applied Data Science Track:
European Conference, ECML PKDD 2021, Bilbao, Spain,
September 13–17, 2021, Proceedings, Part IV 21, pages
420–436. Springer, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6342


	Introduction
	Overview
	Data Analysis
	Dial-a-Ride Problem vs. Machine Learning
	Demand Prediction Framework
	Look-ahead Offline Optimization Process
	Conclusion

