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Abstract

The conservation and the restoration of biodiver-
sity, in accordance with human well-being, is a nec-
essary condition for the realization of several Sus-
tainable Development Goals. However, there is still
an important gap between biodiversity research and
the management of natural areas. This research
project aims to reduce this gap by proposing spa-
tial planning methods that robustly and accurately
integrate socio-ecological issues. Aurtificial intelli-
gence, and notably Constraint Programming, will
play a central role and will make it possible to re-
move the methodological obstacles that prevent us
from properly addressing the complexity and het-
erogeneity of sustainability issues in the manage-
ment of ecosystems. The whole will be articulated
in three axes: (i) integrate socio-ecological dynam-
ics into spatial planning, (ii) rely on adequate land-
scape metrics in spatial planning, (iii) scaling up
spatial planning methods performances. The main
study context of this project is the sustainable man-
agement of tropical forests, with a particular focus
on New Caledonia and West Africa.

1 Problematic: The Global Biodiversity Crisis
and Our Failure To Address It

We are facing a biodiversity crisis unprecedented in our his-
tory. The current rate of species extinction is a thousand times
higher than the background extinction rate, and more than
one million species are threatened with extinction [Diaz et al.,
2020]. Human activities are the principal driver of this crisis,
land use change (e.g. agricultural expansion, urbanization,
mineral resources exploitation) being the most impacting of
these activities. Besides, the Aichi targets for 2020 to halt
biodiversity loss have not been met. One of the reasons that
have been identified to explain this failure is the persisting gap
between research and operational management, the so-called
“research-implementation gap” [Williams et al., 2020]. In-
deed, when it comes to biodiversity, only a few studies take
into account socio-economic factors as part of the problem
[Arlettaz et al., 2010]. Even fewer studies involve stakehold-
ers (e.g. land managers, associations, local populations) and
social sciences [Balmford and Cowling, 2006].

6370

However, these failures to conserve and restore biodiver-
sity globally taught us several things. The most important les-
son is that biodiversity research must be involved and trans-
disciplinary, and based on sound socio-ecological knowledge.
In the last decades, computer sciences have played an es-
sential role in advancing biodiversity research, which in re-
turn became a source of inspiration for these theoretical dis-
ciplines. Most advances have occurred in data management
and analysis, from global biodiversity databases (GBIF) to
advanced analytical models (e.g. species distribution mod-
els). Like in many other disciplines, Al has been a game
changer in many of these advances. However, one aspect of
Al remains less explored than the others in biodiversity re-
search: symbolic Al and its capabilities for decision support.

To the best of my knowledge, one of the first usages of
symbolic Al in biodiversity research was the identification of
representative protected area networks through spatial plan-
ning [Kirkpatrick, 1983]. In this regard, an interesting anec-
dote is that Kirkpatrick was a forest ecologist who probably
did not know that his approach could fit within the scope of
symbolic Al. A few years after this work, computer scien-
tists highlighted this fact [Cocks and Baird, 1989]. More
than thirty years after, and after a few heated debates be-
tween computed scientists and ecologists, spatial planning is
an established topic within biodiversity research [Margules
and Pressey, 2000], yet still a niche domain with few con-
crete applications. I, therefore, argue that greater involvement
of Al research in a transdisciplinary way with ecologists, so-
cial scientists, and non-academic stakeholders could usher in
a new era for spatial planning.

2 SDGs and LNOB Principles: Why Spatial
Planning Is So Important?

From the most rural populations to those in large megaci-
ties, we, humans, are all dependent on biodiversity in many
aspects. Although only two of the UN Sustainable Devel-
opment Goals (SDGs) are directly focused on biodiversity
(SDG 14: Life below water, SDG 15: Life on land), almost all
SDGs are indirectly related to ecosystem health. For exam-
ple, healthy ecosystems provide services that can help alle-
viate poverty (SDG 1) [Schreckenberg et al., 2018]. Oceans
and forests provide food resources and are a source of in-
spiration to design sustainable food systems (SDG 2) [Fran-
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cis and Porter, 2011]. Finally, forests are known to protect
watersheds and provide clean water (SDG 6) [Katila et al.,
2019], and their exploitation and degradation are related to
the emergence of zoonotic epidemics (e.g. Ebola, COVID-
19) [Zinsstag et al., 2011] (SDG 3).

As explained in Section 1, land use change is the most
detrimental human activity to biodiversity and ecosystem
health. It is therefore clear that more sustainable land use
management strategies are one of the most important prereq-
uisites if we want to reach the UN SDGs. This is why spatial
planning, used to identify sustainable socio-ecosystem tra-
jectories, is so important. Not only it could help to reach
the SDGs but also contribute to the rebalancing of inequali-
ties between countries. Indeed, a large proportion of habitat
degradation and biodiversity loss nowadays occur in tropical
regions, mainly covered by developing countries. In this re-
spect, the case of forest ecosystems is striking. Indeed, trop-
ical forests are the richest, the most productive, and a vital
resource for many societies. Yet, between 1990 and 2015,
about 129 million hectares were lost, and most of this loss
occurred in tropical forests [Keenan et al., 2015].

3 Overview of Current Spatial Planning
Approaches and Their Limitations

In its most general and abstract form, spatial planning can
be defined as a constrained space partitioning problem, with
or without optimization objective(s). From biodiversity con-
servation and restoration (see Figure 1) to ecological agri-
culture and sustainable cities design, spatial planning ap-
plications are various, highly diverse, and involve complex
spatial and heterogeneous datasets such as ecological data
(e.g. species occurrences, habitat quality, dispersal capa-
bilities) or socioeconomic data (e.g. land/sea acquisition
and opportunity costs, traditional land-use, land/sea legisla-
tion). They also involve solving complex and interrelated
combinatorial problems, such as set covering and multi-
connected graph partitioning problems [Church er al., 1996;
Bessiére er al., 2015].

Current spatial planning approaches mainly focus on
identifying candidate areas for biodiversity conservation or
restoration, taking into account the spatial distribution of bio-
diversity features and basic socioeconomic criteria such as
land acquisition cost and land accessibility. [Margules and
Pressey, 2000; Justeau-Allaire, 2020]. The methods used to
solve these problems are various and include greedy algo-
rithms [Moilanen et al., 2009], metaheuristics [Ball et al.,
2009], mixed-integer linear programming (MILP) [Hanson et
al., 2020], constraint programming (CP) [Justeau-Allaire et
al., 2019], and reinforcement learning [Silvestro ef al., 2022].

Given the wide variety and heterogeneity of real-world
problems, flexibility and expressiveness are two essential as-
pects of spatial planning tools, along with their availability as
free and open software packages. In this regard, declarative
approaches such as MILP or CP are well-adapted paradigms
to design such tools, but there remain several technical chal-
lenges to tackle in order to fully address sustainability stakes
in spatial planning. Among the various limitations of exist-
ing spatial planning models, I identified three main method-
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Figure 1: Spatial planning example: identification of reforestation
areas in the “Cdte Oubliée — “Woen Vul — Pwa Pereel” provincial
park in New Caledonia, minimizing forest fragmentation and subject
to socio-economical constraints [Justeau-Allaire et al., 2021].

ological obstacles which, if removed, would make it possi-
ble to propose spatial planning approaches better adapted to
the complexity and diversity of real-world socio-ecological
issues. These obstacles are:

1. The lack of a robust integration of socio-ecological dy-
namics.

2. The lack of accuracy with which socio-ecological chal-
lenges are taken into account.

3. The currently inadequate balance between modelling
accuracy and computational efficiency.

These obstacles highlight three important attributes of spa-
tial planning: socio-ecological challenges, robustness, and
accuracy. Indeed, the main objective of spatial planning is to
provide decision support in addressing socio-ecological chal-
lenges. The proposed solutions must be robust over space and
time. Moreover, real-world issues must be accurately repre-
sented, and this accuracy must be robust to different space and
time scales. In figure 2, I summarized these three obstacles
and attributes and suggested three research axes that could
help build a new generation of spatial planning approaches.
The next section develops and details these axes.

4 Towards a New Generation of CP-Based
and Al-Powered Spatial Planning
Approaches

While it is clear that Al can greatly contribute to empow-
ering spatial planning, underlying sustainability issues also
are ideal terrain for cross-fertilization and new Al technical
developments. In this respect, this project’s strategy is to
build upon Constraint Programming (CP) as an integrative
paradigm to develop advanced spatial planning approaches
that rely on techniques from different areas of Al. CP is a
declarative paradigm for modelling and solving constraint
satisfaction and constrained optimization problems. Flexibil-
ity, expressiveness, and extensibility are among the greatest
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Figure 2: Three proposed research axes to improve the relevance of
spatial planning. Each of these axes aims to remove a methodologi-
cal barrier encountered by current approaches.

strengths of this approach. Indeed, the CP paradigm is built
around an abstract modelling language which allows repre-
senting decision and optimization problems with a wide vari-
ety of variables types (e.g. integers, sets, graphs, tasks) and
a wide variety of constraints types (e.g. logical, arithmetic)
[Rossi et al., 2006; Freuder, 2018]. Because CP solvers en-
capsulate independent logic in variables and constraints, the
possibilities for extension and hybridization with other ap-
proaches are virtually infinite [Fages er al., 2013; Lombardi
and Milano, 2018]. Consequently, the CP paradigm is an ex-
cellent candidate to integrate the high variety of spatial plan-
ning issues into a flexible and expressive framework. In the
following, I detail each research axis depicted in Figure 2,
its associated methodological challenges, and my strategy
to overcome them through promising extensions of the CP
paradigm.

4.1 Acxis 1: Integrate Socio-Ecological Dynamics
Into Spatial Planning

Spatial planning is a prescriptive analysis tool that relies
on constrained optimization procedures and ecological, en-
vironmental, social and economic data. To provide reliable
and robust management plans, it is essential to take into ac-
count socio-ecological dynamics (i.e. the way human soci-
eties and their environment interact over space and time) in
their design. These dynamics are currently not, or hardly,
taken into account, and the proposed approaches are case-
specific and applied at a small scale [Albert er al., 2017;
Haider et al., 2018]. Predictive models are useful to de-
scribe and forecast socio-ecological dynamics (e.g. popula-
tion dynamics, climate change, deforestation, predictive agri-
culture). However, their integration in spatial planning is cur-
rently only possible (i) upstream of the optimization proce-
dure, in the form of a static input layer, or (ii)) downstream of
the optimization procedure, to evaluate the impact of a sce-
nario. In the first case, the prediction does not take into ac-
count the actions that one seeks to plan. In the second case,
the prescription cannot take advantage of the predictions to
identify the best trade-offs. A recent approach based on re-
inforcement learning [Silvestro et al., 2022] addresses this
issue but at the price of many missing additional constraints
that are essential in most spatial planning projects (e.g. con-
nectivity). To properly address socio-ecological interactions
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and their dynamics, it is, therefore, necessary to go beyond
the current approaches, by integrating predictive models into
constrained optimization procedures. In practice, this implies
being able to anticipate the impact of a partial spatial man-
agement plan on socio-ecological dynamics and rely on this
impact to guide its further construction. This result can only
be achieved through a closer coupling between the methods
that construct spatial management plans (constrained opti-
mization) and the ones that analyse their impact on socio-
ecological dynamics (predictive models).

To achieve the objectives of this research axis, I plan
to develop methods that combine techniques from machine
learning (ML) and automated reasoning (AR). On the one
hand, ML approaches are based on data and can perform
complex tasks in short amounts of time, which makes them
well-adapted to implement predictive models. On the other
hand, AR approaches are based on models and can solve
complex problems in a generic way and with a high level
of interpretability. To benefit from the advantages of both
paradigms in the context of spatial planning, the Empiri-
cal Model Learning (EML) approach, which allows the in-
tegration of ML models in constrained optimization proce-
dures [Lombardi er al., 2017] is a promising research di-
rection. The main idea behind EML is to embed ML mod-
els into constraint filtering algorithms in order to estimate
bounds and detect contradictions during the combinatorial
search procedure. While several existing ML models could
already be useful for spatial planning, such as species dis-
tribution or deforestation models [Vancutsem et al., 2021;
Estopinan et al., 2022], the main challenge is to ensure their
ability to output reliable bounds from a spatial plan’s partial
instantiation.

4.2 Axis 2: Rely on Adequate Landscape Metrics
in Spatial Planning

The increasing availability of high-resolution spatiotemporal
landscape data opens up many perspectives for spatial plan-
ning. In this regard, several landscape metrics can help to un-
derstand and measure socio-ecological processes from land-
scape patterns [Hesselbarth er al., 2019]. In addition, sev-
eral advanced simulation models are available to systemat-
ically explore the relationships between landscape patterns
and socio-ecological processes [Zurell et al., 2010]. De-
spite the existence of these advanced tools for assessment,
spatial planning approaches rely on very simple landscape
metrics with little ecological relevance. This methodologi-
cal gap leads to a mismatch between the amount of avail-
able data and our ability to use it for decision support. Re-
cent approaches based on CP have shown promising re-
sults in this regard thanks to the integration of complex and
non-linear habitat fragmentation and connectivity indices in
ecological restoration planning [Justeau-Allaire et al., 2021;
Justeau-Allaire et al., 2023]. However, a lot remains to
achieve in this direction. Indeed, numerous landscape indices
are available to evaluate socio-ecological processes [Frazier
and Kedron, 2017]. This variety is necessary, as it allows us
to understand the high diversity of contexts that can arise in
different case studies. Therefore, it appears necessary to fill
the current methodological gap between assessment and pre-
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scription tools through the integration of as many landscape
indices as possible in spatial planning to address this diversity
in decision support.

This axis will mainly involve designing and implement-
ing constraint filtering algorithms for advanced landscape in-
dices. Such indices can be computationally expensive in a
constraint propagation context, as they involve tasks such
as computing all-pairs-shortest paths in large spatial graphs
[Saura and Pascual-Hortal, 2007]. They also involve a spa-
tial dimension for which CP solvers are currently not very
well adapted. Consequently, the main challenge of this re-
search axis will be the design of suited data structures and al-
gorithms to handle efficiently the spatial dimension of land-
scape indices. The EML approach described in Axis 1 has
great potential to advance in this direction, especially for ef-
ficient spatial pattern identification, where ML approaches
are particularly relevant. Another promising perspective is
the adaptation of algorithms from algorithmic geometry and
computer vision for filtering. To my knowledge, none or very
few studies have explored the potential of this research direc-
tion. However, we already had encouraging results with the
implementation of a linear time propagator for the smallest
enclosing circle problem relying on Welzl’s algorithm [Welzl,
19911, and its application in a reforestation planning project
[Justeau-Allaire et al., 2021]. In this use case, the aim was to
identify optimal areas for reforestation subject to operational
constraints, such as spatial compactness. The filtering based
on algorithmic geometry was much more efficient than the
naive approach based on pairwise distance constraints, and
the adaptation of Welzl’s algorithm for filtering was straight-
forward and particularly suitable for propagation due to its
incremental nature.

4.3 Axis 3: Scaling Up Spatial Planning Methods
Performances

Symbolic Al approaches, such as MILP or CP, offer guar-
antees and a level of flexibility that can be critical in spatial
planning projects. Moreover, their expressiveness (i.e. the
breadth and variety of problems that can be represented and
solved) is a great asset to reflect the diversity of issues into
generic modelling frameworks. However, the spatial resolu-
tion of the problems that can be solved with such approaches
is still limited. On the other hand, heuristic approaches are
computationally efficient, but they offer much less flexibility
and expressiveness than symbolic approaches. While expres-
siveness is essential for reliable decision support, spatial res-
olution is also necessary to provide accurate and large-scale
solutions. To better address real spatial planning issues, it is
thus necessary to readjust the balance between model accu-
racy and computational efficiency.

In this respect, I expect that the methodological develop-
ments planned in Axis 1 and Axis 2 will help to move in
this direction. First, the implementation of EML techniques
in CP-based spatial planning will help improve the perfor-
mances of the optimization procedure by delegating tasks
that are currently expensive to compute symbolically to ML
models. On the other hand, the strengthening of spatial rea-
soning with techniques from algorithmic geometry and com-
puter vision will also be beneficial for spatial planning per-

formances. Finally, I plan to investigate the application of
high-performance computing (HPC), and in particular par-
allelization (on CPU and GPU) in CP-based spatial plan-
ning. Although there is currently no general efficient solu-
tion for parallel constraint solving [Gent et al., 2018], its re-
striction to spatial planning could greatly benefit from HPC.
Indeed, spatial planning is based on raster and graph data
structures, which are both suitable for parallel computing on
CPU and GPU, with considerable gains over sequential algo-
rithms [Zhang er al., 2015; Allegretti et al., 2018]. Even if
the most obvious perspective is the parallelization of filter-
ing algorithms, it is also likely that the careful design of data
structures tailored for high-performance spatial planning will
lead to many advances.

5 Study Context: Tropical Forests and Their
People

Deforestation is a particularly alarming consequence of land-
use change, as forests are home to about 50% of the world’s
species, contain about 50% of the world’s carbon stocks, and
provide ecosystem services essential to our well-being. Glob-
ally, forest area declined by 129 million hectares between
1990 and 2015, mainly in tropical forests, which are the rich-
est, the most productive, and on which many societies from
developing countries depend [Keenan et al., 2015]. Conse-
quently, this biome will be my main study context, and my
main motivation to use and improve spatial planning as a
decision-support tool to identify sustainable management tra-
jectories for tropical forests.

In particular, T will focus on the biodiversity hotspot
”Guinean Forest of West Africa” (see Figure 3 and 4), with a
focus on sustainability issues in the Ziama Biosphere Reserve
in Guinea (Conakry). In this area, local populations depend
on the ecosystem services provided by the forest. Further-
more, development and capacity-building issues are impor-
tant in Guinea, one of the least developed countries in the
world (178th out of 189 according to the UN). At the same
time, I will remain involved in the biodiversity hotspot of
New Caledonia (see Figure 3 and 5), a study area in which,
with the AMAP Lab, we have been developing and apply-
ing spatial planning approaches with local stakeholders over

I Intact forest lafidscapes
[Z71 Potential areas of reforestation
" Biodiversity hotspots

1: New Caledonia
2: Guinean Forest of West Africa

Figure 3: Biodiversity hotspots [Mittermeier et al., 2005], intact for-
est landscapes [Potapov ef al., 2017] and global forest restoration
potential [Griscom et al., 2017]. Guinean Forest of West Africa and
New Caledonia are the two main study area of this project.
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Figure 4: Urban expansion in Guinea (city of Conakry).

Figure 5: Forest landscape in New Caledonia (Ouaime massif).

the past decade. This well-established network of collabora-
tions in New Caledonia includes local scientists, NGOs (e.g.
WWFE, Conservation International), private companies (e.g.
mining companies, environmental consultancies), and local
authorities. A large amount of data is also already avail-
able, making New Caledonia an ideal laboratory for short-
term testing. Incidentally, I will also explore potential col-
laborations with researchers from the Smithsonian Tropical
Research Institute in Panama, who have implemented large-
scale experimental reforestation plots (Agua Salud project
[Stallard et al., 2007]), providing many opportunities to test
and evaluate spatial planning methods.

6 Expected Results, Challenges, Evaluation
Criteria, and Limitations

In this project, I expect results at different time scales. In
the short term, I plan to improve the CP-based spatial plan-
ning approaches that we have been developing over the past
decade with the AMAP Lab [Justeau-Allaire et al., 2019;
Justeau-Allaire, 2020; Justeau-Allaire et al., 2021] with the
methods described in Section 4. In particular, I will rely on
the restoptr restoration planning software, which we recently
released [Justeau-Allaire et al., 2023], to make new method-
ological results widely available as quickly as possible. The
research Axis 1 is, to my opinion, the most technically chal-
lenging, and thus will be developed with a long-term perspec-
tive. However, simple proofs of concepts could be tested as
we move forward in the field, given the strong network of
collaborations of the AMAP Lab with stakeholders in New
Caledonia. The research Axis 2 is probably the simplest from
a technical point of view, but its application is more tedious.
Indeed, the reliability of a given landscape pattern for deci-
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sion support needs to be assessed with field data collection
campaigns, which takes time. Therefore, the strategy will
consist in relying as much as possible on existing datasets to
test and apply the methods developed. Finally, Axis 3 is not
as exploratory as Axis 1, but I expect it to involve more tech-
nical work than Axis 2, especially in what refers to HPC. 1
expect to publish the first contributions from this Axis within
a year or two. Overall, the main evaluation criteria will be:

* The number of successful applications of spatial plan-
ning approaches in real case studies.

* The level of satisfaction with the proposed results by lo-
cal stakeholders, and the quality of the discussions they
will open up between scientists, associations, environ-
mental managers, and local populations.

e The number of collaborations with stakeholders from
developing regions.

e The number of students trained, particularly students
from developing regions.

* At the academic level, the number of publications, espe-
cially those published in sustainability journals and con-
ferences, co-authored with partners from study areas.

I wish to emphasize that this project is a long-term one, if
not a lifelong one. The main motivations are the successful
applications of the developed methods and their contributions
to decision-support in the field. This implies building strong
and long-term partnerships based on mutual trust. Such a
thing requires a lot of time and an investment that goes far
beyond academic work. From the long-term experience of
the AMAP Lab in New Caledonia, we know that human fac-
tors can be the most limiting. As researchers, the greatest
challenges are a lot of patience, major communication and
outreach efforts, and perseverance. Being out of the comfort
zone as much as possible and setting up working contexts
where different disciplines and cultural backgrounds interact
daily are, to my opinion, two necessary conditions for reach-
ing transdisciplinarity.

7 Ethical Considerations

I aim to conduct this project in the most ethical way possi-
ble, by making equity a core principle of partnerships. Al-
though this project was initiated by ecology and Al, it aims
for transdisciplinarity in an international and multi-cultural
context. The role of each discipline, academic or not, will be
fairly recognized in this project. Another important principle
will be the respect of everyone involved, regardless of gender,
nationality, beliefs or opinions. Finally, this project aims to
defend common interests, through SGDs and the LNOB prin-
ciples. Particular care will be taken to avoid corruption and
conflicts of interest.

8 Implementation Plan

The first three years of this project will be devoted to strength-
ening spatial planning methods, according to the three re-
search axes described in Section 4. During this period, I will
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Figure 6: Implementation schedule for the first three years of the
project. New Caledonia and Guinea are the two main study areas,
and Panama will be the subject of collaborations around existing
experimental projects and their associated data. In New Caledonia,
partnerships are already well established and a large amount of data
is already available. It is therefore a “laboratory” study area, where
first experiments can be implemented quickly.

take advantage of established collaborations in New Caledo-
nia to apply, test, and improve technical development accord-
ing to feedback from the field. I will also establish collabo-
rations with researchers from the Smithsonian Tropical Re-
search Institute in Panama, and experiment with the potential
of the data collected in their experimental reforestation plot
network to address new spatial planning issues. In parallel, I
will devote part of my time to building new partnerships, col-
lecting data, and initiating experiments in the long-term study
area of this project: the Ziama Biosphere Reserve. These
partnerships in Guinea will be reinforced, after the first three
years, by a period of expatriation of at least two years, to work
with stakeholders on-site. The technical developments intro-
duced in Section 4 will be conducted over the entire course
of the project, and their practical application will be carried
out through different experiments in the study areas, as illus-
trated in Figure 6. In practice, this will involve the establish-
ment of partnerships with local stakeholders (local scientists,
NGOs, private companies, and local authorities), the partic-
ipatory identification of relevant case studies with high eco-
logical and societal impact, the collection of necessary data,
and an iterative and participatory decision support process
where spatial planning tools will be, above all, a catalyst for
discussions and identification of trade-offs.

Focusing on three contrasted study areas is both a chal-
lenge and a strength. Indeed, the differences in terms of
ecosystems, accessible data, societal issues and institutional
context will inevitably increase the complexity of the orga-
nization and implementation of the project. However, since
being able to deal with this complexity is one of the objec-
tives of this project, confronting it is a necessary condition to
ensure that the objectives are achieved. Moreover, differences
in partnership maturity and access to data will allow us to im-
plement various experiments throughout the project, starting
with New Caledonia, where both partnerships and access to
data are already well established.

9 Reproducibility and Application Potential
to Other Study Contexts

Particular attention will be given to ensure reproducibility
and open access to the research results and methodologies.

First, all software contributions will rely on open-source tech-
nologies and will also be distributed as open-source soft-
ware. Whenever possible, attention will be paid to distribut-
ing extensively documented and user-friendly tools (e.g. R or
Python packages, two widely used programming languages
by ecologists and conservation scientists). Finally, all scien-
tific publications resulting from this project will be published
as far as possible in open access.

Although this project focuses on spatial planning in the
context of tropical forests and their people, the methods will
be generic and will therefore be applicable to other types of
ecosystems (e.g. marine, freshwater, savanna). Moreover, as
pointed out in Section 2, spatial planning also has applica-
tions in sustainable agricultural systems design, poverty al-
leviation through ecosystem service optimization, or sustain-
able city design. The application potential of this project to
other disciplines and problems is therefore guaranteed.

10 Project Team Description

Currently, the team is mainly composed of me, Dimitri
Justeau-Allaire, recruited permanently by the French Na-
tional Research Institute for Sustainable Development (IRD)
to conduct this project. This position includes possibilities for
funding field missions and expatriation periods, which guar-
antees the long-term feasibility of this project. I am a com-
puter scientist, with a strong background in CP and conser-
vation planning, which was the subject of my PhD thesis. I
will be supported by my laboratory, the AMAP Lab, which
is a joint interdisciplinary research unit that conducts basic
and applied research on plants and plant communities and
has a long history of interdisciplinarity, with the involvement
of ecological sciences, mathematics, and computer sciences.
I will also rely on historical collaborations with the Labo-
ratory of Computer Science, Robotics and Microelectronics
of Montpellier (LIRMM), the IMT Atlantique, and the New
Caledonian Institute of Agronomy (IAC). As the project is
just starting, I will also look for additional sources of funding
to involve more people in the projects (e.g. PhDs, postdocs,
engineers, technicians) and expect new team members to join
as soon as possible.
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There are no ethical issues.
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