
Data-Driven Invariant Learning for Probabilistic Programs
(Extended Abstract)

Jialu Bao1 , Nitesh Trivedi2 , Drashti Pathak3 , Justin Hsu1 and Subhajit Roy2

1Cornell University, Ithaca, NY, USA
2Indian Institute of Technology (IIT) Kanpur, India

3Amazon, Bengaluru, India
jb965@cornell.edu, email@justinh.su, {nitesht,subhajit}@iitk.ac.in

Abstract
The weakest pre-expectation framework from Mor-
gan and McIver for deductive verification of proba-
bilistic programs generalizes binary state assertions
to real-valued expectations to measure expected
values of expressions over probabilistic program
variables. While loop-free programs can be ana-
lyzed by mechanically transforming expectations,
verifying programs with loops requires finding an
invariant expectation.
We view invariant expectation synthesis as a regres-
sion problem: given an input state, predict the aver-
age value of the post-expectation in the output dis-
tribution. With this perspective, we develop the first
data-driven invariant synthesis method for proba-
bilistic programs. Unlike prior work on probabilis-
tic invariant inference, our approach learns piece-
wise continuous invariants without relying on tem-
plate expectations. We also develop a data-driven
approach to learn sub-invariants from data, which
can be used to upper- or lower-bound expected val-
ues. We implement our approaches and demon-
strate their effectiveness on a variety of benchmarks
from the probabilistic programming literature.

1 Introduction
Probabilistic programs are standard imperative programs
augmented with a sampling command—a mechanism to draw
random samples from a probability distribution. Probabilis-
tic programs provide a formal way to describe randomized
computations. While the mathematical semantics of such
programs is fairly well-understood [Kozen, 1981], verifica-
tion methods remain an active area of research. Existing au-
tomated techniques are either limited to specific properties
(e.g., [Smith et al., 2019; Albarghouthi and Hsu, 2018; Carbin
et al., 2013; Roy et al., 2021]), or target simpler computa-
tional models [Baier et al., 1997; Kwiatkowska et al., 2011;
Dehnert et al., 2017].
Reasoning about Expectations. One of the earliest meth-
ods for reasoning about probabilistic programs is through ex-
pectations. Originally proposed by Kozen [Kozen, 1985],
expectations generalize standard, binary assertions to quan-
titative, real-valued functions on program states. Morgan and

McIver further developed this idea into a powerful framework
for reasoning about probabilistic imperative programs, called
the weakest pre-expectation calculus [Morgan et al., 1996;
McIver and Morgan, 2005]. The weakest pre-expectation cal-
culus defines the weakest pre-expectation (wpe) operator that
takes an expectation E and a program P to produce an ex-
pectation E′ such that E′(σ) is the expected value of E in
the output distribution JP Kσ . In this way, the wpe opera-
tor can be viewed as a generalization of Dijkstra’s weakest
pre-conditions calculus [Dijkstra, 1975] to probabilistic pro-
grams. The wpe operator has two key strengths: first, it en-
ables reasoning about probabilities and expected values; sec-
ond, when P is a loop-free program, it is possible to trans-
form wpe(P,E) into a form that does not mention the pro-
gram P via simple, mechanical manipulations, essentially an-
alyzing the effect of the program on the expectation through
syntactically transforming E. However, there is a caveat: the
wpe of a loop is defined as a least fixed point, and it is gener-
ally difficult to simplify this into a more tractable form. For-
tunately, the wpe operator satisfies a loop rule that simplifies
reasoning about loops: if we can find an expectation I sat-
isfying an invariant condition, then we can easily bound the
wpe of a loop. Checking the invariant condition involves an-
alyzing just the body of the loop, rather than the entire loop.
Thus, finding invariants becomes the primary bottleneck to-
wards automated reasoning about probabilistic programs.

Our Approach. Our approach to synthesizing loop invari-
ants for probabilistic programs is inspired by data-driven
invariant learning techniques [Flanagan and Leino, 2001;
Ernst et al., 2007] for regular programs. In these methods, the
program is executed with a variety of inputs to produce a set
of execution traces. This data is viewed as a training set, and a
machine learning algorithm is used to find a classifier describ-
ing the invariant. Data-driven techniques reduce the reliance
on templates, and can treat the program as a black box—the
precise implementation of the program need not be known,
as long as the learner can execute the program to gather input
and output data. But to extend the data-driven method to the
probabilistic setting, there are a few key challenges:

• Quantitative invariants. While the logic of expecta-
tions resembles the logic of standard assertions, an im-
portant difference is that expectations are quantitative:
they map program states to real numbers, not a binary

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6415

yes/no. While invariant learning for deterministic pro-
grams is a classification task (i.e., predicting a binary
label given a program state), our probabilistic invariant
learning is closer to a regression task (i.e., predicting a
number given a program state).

• Stochastic data. Invariant learning for deterministic
programs assumes that the program behaves like a func-
tion: a given input state always leads to the same output
state. In contrast, a probabilistic program takes an input
state to a distribution over outputs. Since we are only
able to observe a single draw from the output distribu-
tion each time we run the program, execution traces in
our setting are inherently noisy. Accordingly, we cannot
hope to learn an invariant that fits the observed data per-
fectly, even if the program has an invariant—our learner
must be robust to noisy training data.

• Complex learning objective. To fit a probabilistic in-
variant to data, the logical constraints defining an invari-
ant must be converted into a regression problem with
a loss function suitable for standard machine learning
algorithms and models. While typical regression prob-
lems relate the unknown quantity to be learned to known
data, the conditions defining invariants are somehow
self-referential: they describe how an unknown invari-
ant must be related to itself. This feature makes casting
invariant learning as machine learning a difficult task.

Contributions. The contributions of our work are:

• We provide a general algorithm, EXIST (EXpectation
Invariant SynThesis), for learning invariants for proba-
bilistic programs. EXIST executes the program multiple
times on a set of input states, and then uses machine
learning algorithms to learn models encoding possible
invariants. A counterexample guided inductive synthe-
sis (CEGIS) loop iteratively expands the dataset after en-
countering incorrect candidate invariants.

• We describe instantiations of EXIST tailored for han-
dling two problems: learning exact invariants, and learn-
ing sub-invariants. Our method for exact invariants
learns a model tree [Quinlan, 1992], a generalization of
binary decision trees to regression. The constraints for
sub-invariants are more difficult to encode as a regres-
sion problem, and our method learns a neural model
tree [Yang et al., 2018] with a custom loss function.
While the models differ, both algorithms leverage off-
the-shelf learning algorithms.

• We evaluate our implementation of EXIST on a large set
of benchmarks. EXIST learns invariants for examples
considered in prior work and new, more difficult ver-
sions that are beyond the reach of prior work.

This article is the extended abstract of the conference pa-
per [Bao et al., 2022a] published in CAV’22. An extended
version of the article is also available [Bao et al., 2022b].

2 Preliminaries
Probabilistic Programs. We will consider programs writ-
ten in pWhile, a basic probabilistic imperative language

with the following grammar, where e is a boolean or numeri-
cal expression.

P := skip | x← e | x $← d | P ; P

| if e then P else P | while e : P

All commands P are interpreted into maps from memories
to distributions over memories [Kozen, 1981]. We write JP Kσ
for the output distribution of program P from initial state σ.
Since we will be interested in running programs on concrete
inputs, we will assume throughout that all loops are almost
surely terminating; this property can often be established by
other methods (e.g., [Chatterjee et al., 2016a; Chatterjee et
al., 2016b; McIver et al., 2018]).
Weakest Pre-expectation Calculus. Morgan and McIver’s
weakest pre-expectation transformer (wpe) takes a program
P and an expectation E to another expectation E′, called
the pre-expectation; wpe is defined in Fig. 1. The case for
loops involves the least fixed-point (lfp) of Φwpe

E := λX.([e] ·
wpe(P,X)+ [¬e] ·E), the characteristic function of the loop
with respect to wpe [Kaminski et al., 2016]. The characteris-
tic function is monotone on the complete lattice E , so the least
fixed-point exists by the Kleene fixed-point theorem. The key
property of the wpe transformer is that for any program P ,
wpe(P,E)(σ) is the expected value of E over the output dis-
tribution JP Kσ . Intuitively, the weakest pre-expectation cal-
culus provides a syntactic way to compute the expected value
of an expression E after running a program P , except when
the program is a loop. For a loop, the least fixed point defini-
tion of wpe(while e : P,E) is hard to compute.

3 Problem Statement
Analogous to when analyzing the weakest pre-conditions of
a loop, knowing a loop invariant or sub-invariant expec-
tation enables one to easily bound the loop’s weakest pre-
expectations. However, (sub)invariant expectations can be
difficult to find. We develop an algorithm to synthesize invari-
ants and sub-invariants of probabilistic loops. More specifi-
cally, our algorithm tackles the following two problems:

1. Finding exact invariants: Given a loop while G : P
and an expectation postE as input, we want to find an
expectation I such that

I = Φwpe
postE(I) := [G] · wpe(P, I) + [¬G] · postE. (1)

Such an expectation I is an exact invariant of the loop
with respect to postE. Since wpe(while G : P, postE)
is a fixed point of Φwpe

postE, wpe(while G : P, postE) has
to be an exact invariant of the loop. Furthermore, when
while G : P is almost surely terminating and postE is
upper-bounded, the existence of an exact invariant I im-
plies I = wpe(while e : P,E).

2. Finding sub-invariants: Given a loop while G : P
and expectations preE, postE, we aim to learn an expec-
tation I such that

I ≤ Φwpe
postE(I) := [G] · wpe(P, I) + [¬G] · postE (2)

preE ≤ I. (3)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6416

wpe(skip, E) := E wpe(x← e, E) := E[e/x]

wpe(x $← d,E) := λσ.
∑
v∈V

JdKσ(v) · E[v/x] wpe(P ; Q,E) := wpe(P,wpe(Q,E))

wpe(if e then P else Q,E) := [e] · wpe(P,E) + [¬e] · wpe(Q,E)

wpe(while e : P,E) := lfp(λX. [e] · wpe(P,X) + [¬e] · E)

Figure 1: Morgan and McIver’s weakest pre-expectation transformer (wpe)

The first inequality says that I is a sub-invariant: on
states that satisfy G, the value of I lower bounds the
expected value of itself after running one loop iteration
from initial state, and on states that violate G, the value
of I lower bounds the value of postE. Any sub-invariant
lower-bounds the weakest pre-expectation of the loop,
i.e., I ≤ wpe(while G : P,E) [Kaminski, 2019]. To-
gether with the second inequality preE ≤ I , the ex-
istence of a sub-invariant I ensures that preE lower-
bounds the weakest pre-expectation.

4 Methodology
Our data-driven method runs a Counterexample Guided In-
ductive Synthesis (CEGIS), but differs from conventional
CEGIS tools in two ways. First, candidates are synthe-
sized by fitting a machine learning model to data consist-
ing of program traces starting from random input states.
Our target programs are also probabilistic, introducing a sec-
ond source of randomness to program traces. Second, our
approach seeks high-quality counterexamples—violating the
target constraints as much as possible—in order to improve
synthesis. For synthesizing invariants and sub-invariants,
such counterexamples can be generated by using a computer
algebra system to solve an optimization problem.

EXIST takes a probabilistic program P , a post-expectation
or a pair of pre/post-expectation pexp, to produce a loop
(sub)invariant expectations. The user can provide two hyper-
parameters, Nruns andNstates , to control the data-generation
process. With these inputs, EXIST proceeds below:

Generate Features. EXIST starts by generating a list of
features feat , which are numerical expressions formed by
program variables used in P .

Sample Initial States. Next, EXIST samples Nstates num-
ber of initial states by uniformly sampling values of program
variables from their respective domains.

Sample Training Data. For learning exact invariants, from
each initial state si, EXIST runsP until termination forNruns

times to get the list of final states {σ1, . . . , σNruns} and then
produces the training example:

(si, vi) :=

si, 1

Nruns

Nruns∑
j=1

postE(σj)

 .

Above, the value vi is the empirical mean of postE in the
output state of running P from initial state si; asNruns grows

large, this average value approaches the true expected value
wpe(P, postE)(si).

For learning subinvariants, from each si, EXIST runs single
iteration of P (and then restart at si) for Nruns times to get
a list of output states {σ1, . . . , σNruns} and then produces the
training example:

(si, vi) := (si, {σ1, . . . , σNruns}) .

(Machine) Learn an Invariant. In each iteration of the
CEGIS loop, first the learner learnInv trains models to min-
imize violation of the required inequalities (i.e., Eq. (1) for
learning exact invariants; Eqs. (2) and (3) for learning sub-
invariants) on data .

For learning exact invariants, we choose regression mod-
els to be model trees, which are decision trees with cus-
tomizable models instead of labels on leaves. While our
methods can potentially work for other leaf models, we
focus on linear models or multiplicative models (which
are linear models on the logarithm space of the data) be-
cause of their simplicity and expressiveness. This class
of model trees suits our goal because they can be easily
translated into numerical expressions, which are usually the
form people use to encode expectations. With the training
data = {(s1, v1), . . . , (sNstates

, vNstates
)}, where each vi ap-

proximates wpe(P, postE)(si), we train a model tree T that
takes the feature vector of si, denotedF(si), as input and pre-
dicts vi. We use the standard mean-square-error to measure
the error between predicted values T (F(si)) and the target
value vi and apply off-the-shelf tools for training.

For learning sub-invariants, we initially also want to use
model trees, but the loss is more complicated and the standard
model tree training mechanism based on divide-and-conquer
no longer applies. A remedy is to apply gradient descent
to train on that loss, but standard model trees are not dif-
ferentiable. To bridge the gap, EXIST trains neural model
trees [Yang et al., 2018], which are neural networks for ap-
proximating model trees, to fit the data and then translate the
learned neural networks back to model trees.

Extract Expectation Invariants from Models. EXIST
now translates the learned models into numerical expressions
and regards them as the set of candidate(sub)invariants .

Verification. For each generated candidate invariant inv,
EXIST attempts to verify if inv satisfies the required con-
straints. If it cannot find any program state where inv vio-
lates the required set of constraints, the verifier returns inv as
a valid invariant (or sub-invariant).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6417

Name postE Learned Invariant

Bin1 n x+ [n < M] · (M · p− n · p)

Fair count
(count+ [c1 + c2 == 0]·

(p1 + p2)/(p1 + p2− p1 · p2))

Gambler z z + [x > 0 and y > x]· x · (y − x)

Geo0 z z + [flip == 0] · (1− p1)/p1

Sum0 x x+ [n > 0] · (0.5 · p · n2 + 0.5 · p · n)

Table 1: Exact Invariants generated by EXIST

Data Augmentation. If inv violates any inequalities,
EXIST produces a set of counterexample program states that
are added to the set of initial states. To ensure that the gener-
ated counterexamples are effective data-points, EXIST looks
for program states that maximize inv’s violation of required
inequalities. EXIST then adds states in counterexamples to
states and augments the existing data with new data points
generated on these counterexample states. The data aug-
mentation process ensures that the synthesis algorithm col-
lects more and more initial states, some randomly gener-
ated (sampleStates) and some from prior counterexamples,
guiding the learner towards better candidates.

EXIST repeats the CEGIS loop by re-learning new models
on the augmented dataset. Like most of the other CEGIS-
based tools, our method is sound but not complete, i.e., if the
algorithm returns an expectation then it is guaranteed to be
an exact invariant or sub-invariant, but the algorithm might
never return an answer; in practice, we set a timeout to force
the procedure to terminate.

5 Evaluations
We implemented our prototype in Python, using sklearn and
tensorflow to fit model trees and neural model trees, and Wol-
fram Alpha to verify and perform counterexample generation.
We have evaluated our tool on a set of 18 benchmarks drawn
from different sources in prior work [Gretz et al., 2013;
Chen et al., 2015; Kaminski and Katoen, 2017]. We sum-
marize our findings as follows:

• EXIST successfully synthesized and verified exact in-
variants for 14/18 benchmarks within a timeout of 300
seconds. Our tool was able to generate these 14 invari-
ants in reasonable time, taking between 1 to 237 sec-
onds. The sampling phase dominates the time in most
cases. We also compare EXIST with a tool from prior
literature, MORA [Bartocci et al., 2020]. We found that
MORA can only handle a restrictive set of programs and
cannot handle many of our benchmarks. We also discuss
how our work compares with a few others in (Section 6).

• To evaluate sub-invariant learning, we created multiple
problem instances for each benchmark by supplying dif-
ferent pre-expectations. On a total of 34 such problem
instances, EXIST was able to infer correct invariants in
27 cases, taking between 7 to 102 seconds.

Table 1 and Table 2 contain some of the exact invariants
and sub invariants generated by EXIST.

Name postE preE Learned Sub-invariant

Gambler z x · (y − x) z + [x > 0 and y > x]·
x · (y − x)

Geo0 z
[flip == 0]·
(1− p1))

z + [flip == 0]·
(1− p1)

LinExp z
z + [n > 0] · 2 [n > 0] · (n+ 1)

z + [n > 0] · 2 · n z + [n > 0] · 2 · n

RevBin z
z + [x > 0] · x z + [x > 0] · x/p

z z

Table 2: Sub-invariants generated by EXIST

6 Related Work
Invariant Generation for Probabilistic Programs. The
PRINSYS system [Gretz et al., 2013] employs a template-
based approach to guide the search for probabilistic invari-
ants. [Chen et al., 2015] proposed a counterexample-guided
approach to find polynomial invariants, by applying Lagrange
interpolation. Unlike PRINSYS, this approach does not need
templates; however, invariants involving guard expressions—
common in our examples—cannot be found, since they are
not polynomials. Additionally, [Chen et al., 2015] uses a
weaker notion of invariant, which only needs to be correct
on certain initial states; our tool generates invariants that are
correct on all initial states. [Feng et al., 2017] improves on
[Chen et al., 2015] by using Stengle’s Positivstellensatz to
encode invariants constraints as a semidefinite programming
problem. However, their approach cannot synthesize piece-
wise linear invariants.

Another line of work applies martingales to derive insights
of probabilistic programs. [Chakarov and Sankaranarayanan,
2013] showed several applications of martingales in program
analysis, and [Barthe et al., 2016] gave a procedure to gen-
erate candidate martingales for a probabilistic program; how-
ever, this tool gives no control over which expected value is
analyzed – the user can only guess initial expressions and the
tool generates valid bounds, which may not be interesting.

Data-driven Invariant Synthesis. We are not aware of
other data-driven methods for learning probabilistic invari-
ants, but a recent work [Abate et al., 2021] proves probabilis-
tic termination by learning ranking supermartingales encoded
as two-layer neural networks from trace data.

Data-driven inference of invariants for deterministic
programs has been an area of interest, starting from
DAIKON [Ernst et al., 2007]. For inductive invariants, ICE
learning [Garg et al., 2016] uses a modified decision tree
learning algorithm and HANOI [Miltner et al., 2020] uses a
CEGIS-based engine that alternates between weakening and
strengthening candidates. Recent work uses neural networks
to learn invariants [Si et al., 2018]. Data from fuzzing has
been used for almost correct inductive invariants [Lahiri and
Roy, 2022] for programs with closed-box operations. As a
data-driven learning task, invariant inference for determinis-
tic programs can be treated as a classification problem while
that for probabilistic programs becomes a regression task.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6418

References
[Abate et al., 2021] Alessandro Abate, Mirco Giacobbe, and Dip-

tarko Roy. Learning probabilistic termination proofs. In CAV,
2021.

[Albarghouthi and Hsu, 2018] Aws Albarghouthi and Justin Hsu.
Synthesizing coupling proofs of differential privacy. In POPL,
2018.

[Baier et al., 1997] Christel Baier, Edmund M. Clarke, Vasiliki
Hartonas-Garmhausen, Marta Z. Kwiatkowska, and Mark Ryan.
Symbolic model checking for probabilistic processes. In ICALP,
1997.

[Bao et al., 2022a] Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin
Hsu, and Subhajit Roy. Data-driven invariant learning for proba-
bilistic programs. In CAV, 2022.

[Bao et al., 2022b] Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin
Hsu, and Subhajit Roy. Data-driven invariant learning for proba-
bilistic programs. In arXiv 2106.05421, 2022.

[Barthe et al., 2016] Gilles Barthe, Thomas Espitau, Luis Marı́a
Ferrer Fioriti, and Justin Hsu. Synthesizing probabilistic invari-
ants via Doob’s decomposition. In CAV, 2016.

[Bartocci et al., 2020] Ezio Bartocci, Laura Kovács, and Miroslav
Stankovič. Mora-automatic generation of moment-based invari-
ants. In TACAS, 2020.

[Carbin et al., 2013] Michael Carbin, Sasa Misailovic, and Mar-
tin C. Rinard. Verifying quantitative reliability for programs that
execute on unreliable hardware. In OOPSLA, 2013.

[Chakarov and Sankaranarayanan, 2013] Aleksandar Chakarov
and Sriram Sankaranarayanan. Probabilistic program analysis
with martingales. In CAV, 2013.

[Chatterjee et al., 2016a] Krishnendu Chatterjee, Hongfei Fu, and
Amir Kafshdar Goharshady. Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In CAV, 2016.

[Chatterjee et al., 2016b] Krishnendu Chatterjee, Hongfei Fu, Petr
Novotný, and Rouzbeh Hasheminezhad. Algorithmic analysis of
qualitative and quantitative termination problems for affine prob-
abilistic programs. In POPL, 2016.

[Chen et al., 2015] Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw
Wang, and Lijun Zhang. Counterexample-guided polynomial
loop invariant generation by Lagrange interpolation. In CAV,
2015.

[Dehnert et al., 2017] Christian Dehnert, Sebastian Junges, Joost-
Pieter Katoen, and Matthias Volk. A storm is coming: A modern
probabilistic model checker. In CAV, 2017.

[Dijkstra, 1975] Edsger W. Dijkstra. Guarded commands, non-
determinancy and a calculus for the derivation of programs. In
Language Hierarchies and Interfaces, 1975.

[Ernst et al., 2007] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo,
Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Sci. Comput. Program., 2007.

[Feng et al., 2017] Yijun Feng, Lijun Zhang, David N Jansen, Nai-
jun Zhan, and Bican Xia. Finding polynomial loop invariants for
probabilistic programs. In ATVA, 2017.

[Flanagan and Leino, 2001] Cormac Flanagan and K. Rustan M.
Leino. Houdini, an annotation assistant for ESC/Java. In FME,
2001.

[Garg et al., 2016] Pranav Garg, Daniel Neider, P. Madhusudan,
and Dan Roth. Learning invariants using decision trees and im-
plication counterexamples. In POPL, 2016.

[Gretz et al., 2013] Friedrich Gretz, Joost-Pieter Katoen, and
Annabelle McIver. Prinsys - on a quest for probabilistic loop
invariants. In QEST, 2013.

[Kaminski and Katoen, 2017] Benjamin Lucien Kaminski and
Joost-Pieter Katoen. A weakest pre-expectation semantics for
mixed-sign expectations. In LICS, 2017.

[Kaminski et al., 2016] Benjamin Lucien Kaminski, Joost-Pieter
Katoen, Christoph Matheja, and Federico Olmedo. Weakest pre-
condition reasoning for expected run-times of probabilistic pro-
grams. In ESOP, 2016.

[Kaminski, 2019] Benjamin Lucien Kaminski. Advanced weak-
est precondition calculi for probabilistic programs. PhD thesis,
RWTH Aachen University, Germany, 2019.

[Kozen, 1981] Dexter Kozen. Semantics of probabilistic programs.
Journal of Computer and System Sciences, 22(3), 1981.

[Kozen, 1985] Dexter Kozen. A probabilistic PDL. Journal of
Computer and System Sciences, 30(2), 1985.

[Kwiatkowska et al., 2011] Marta Kwiatkowska, Gethin Norman,
and David Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In CAV, 2011.

[Lahiri and Roy, 2022] Sumit Lahiri and Subhajit Roy. Almost
correct invariants: Synthesizing inductive invariants by fuzzing
proofs. In ISSTA, 2022.

[McIver and Morgan, 2005] Annabelle McIver and Carroll Mor-
gan. Abstraction, refinement and proof for probabilistic systems.
Springer Science & Business Media, 2005.

[McIver et al., 2018] Annabelle McIver, Carroll Morgan, Ben-
jamin Lucien Kaminski, and Joost-Pieter Katoen. A new proof
rule for almost-sure termination. In POPL, 2018.

[Miltner et al., 2020] Anders Miltner, Saswat Padhi, Todd Mill-
stein, and David Walker. Data-driven inference of representation
invariants. In PLDI, 2020.

[Morgan et al., 1996] Carroll Morgan, Annabelle McIver, and
Karen Seidel. Probabilistic predicate transformers. TOPLAS,
1996.

[Quinlan, 1992] J. R. Quinlan. Learning with continuous classes.
In AJCAI, volume 92, 1992.

[Roy et al., 2021] Subhajit Roy, Justin Hsu, and Aws Albarghouthi.
Learning differentially private mechanisms. In SP, 2021.

[Si et al., 2018] Xujie Si, Hanjun Dai, Mukund Raghothaman,
Mayur Naik, and Le Song. Learning loop invariants for program
verification. In NeurIPS, 2018.

[Smith et al., 2019] Calvin Smith, Justin Hsu, and Aws Albargh-
outhi. Trace abstraction modulo probability. In POPL, 2019.

[Yang et al., 2018] Yongxin Yang, Irene Garcia Morillo, and Timo-
thy M. Hospedales. Deep neural decision trees. CoRR, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6419

	Introduction
	Preliminaries
	Problem Statement
	Methodology
	Evaluations
	Related Work

