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Abstract
Modern data processing applications often com-
bine information from a variety of complex sources.
Oftentimes, some of these sources, like Machine-
Learning systems or crowd-sourced data, are not
strictly binary but associated with some degree of
confidence in the observation. Ideally, reasoning
over such data should take this additional informa-
tion into account as much as possible. To this end,
we propose extensions of Datalog and Datalog± to
the semantics of Łukasiewicz logic Ł, one of the
most common fuzzy logics. We show that such an
extension preserves important properties from the
classical case and how these properties can lead to
efficient reasoning procedures for these new lan-
guages.

1 Introduction
Datalog and its extensions are important languages for
databases access and lie at the foundation of many rule-based
reasoning formalisms. Continuous theoretical and technical
improvements have led to the development of highly efficient
Datalog systems for widespread practical use in a variety of
applications (see e.g., [Maier et al., 2018]).

However, in many such real-world applications the ob-
servations and facts that serve as the input are not actu-
ally certain but rather associated with some (possibly un-
known) level of uncertainty. Particularly important in this
context are settings where observations are made by Machine
Learning (ML) systems. Consider a database that contains
a relation which labels images of animals with the class of
animal observed in the image. In modern settings, such la-
bels are commonly derived from the output of ML systems
that attempt to classify the image contents. Generally, such
systems output possible labels for an image, together with
a score that can be interpreted as the level of confidence
in the correctness of the label (cf., [Mishkin et al., 2017;
Lee et al., 2017]). When such labelling is used in further
logical inference, the level of confidence in the individual la-
bels would ideally also be reflected in any knowledge inferred
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from these uncertain observations. However, classical logical
reasoning provides no way to consider such information and
requires the projection of uncertainty levels to be either true
or false, usually via some simple numerical threshold. Beyond
the overall loss of information, this can also lead to prob-
lematic outcomes where logical conclusions are true despite
their derivation being based on observations made with only
moderate confidence. With observations from ML systems
becoming a commonplace feature of many modern reasoning
settings, the projection to binary truth values severely limits
the immense potential of integrating ML observations with
logic programming.

There are two natural ways to interpret uncertain obser-
vations as described in the example above. One can con-
sider them as the likelihood of the fact being true, i.e.,
the level of confidence in a fact is interpreted as a prob-
ability of the fact holding true. Such an interpretation has
been widely studied in the context of Problog [Raedt et al.,
2007], Markov Logic Networks [Richardson and Domin-
gos, 2006], and probabilistic databases [Suciu et al., 2011;
Cavallo and Pittarelli, 1987]. However, generally, such for-
malisms make strong assumptions on the pairwise probabilis-
tic independence of all tuples which can be difficult to satisfy.
An approach to probabilistic reasoning in Datalog± based on
the chase procedure was proposed recently by [Bellomarini et
al., 2020].

Alternatively, one can express levels of confidence in a fact
in terms of degrees of truth as in fuzzy logics (cf. [Hájek,
1998]). That is, a fact that is considered to be true to a cer-
tain degree, in accordance with the level of confidence in the
observation. A variety of approaches to combining logic pro-
gramming with fuzzy logic have been studied in the past. Pio-
neering work in this area by [Achs and Kiss, 1995], [Ebrahim,
2001], and [Vojtás, 2001] introduced an early foundational
idea for fuzzy logic programming. Similar ideas have also
been proposed in fuzzy description logics, see e.g., [Bo-
billo and Straccia, 2016; Borgwardt and Peñaloza, 2017;
Stoilos et al., 2007], or [Lukasiewicz and Straccia, 2008] for
an overview of fuzzy DLs.

One limiting factor of the existing logic programming ap-
proaches in our intended setting is the reliance on the Gödel
t-norm (see, [Preining, 2010]) as the basis for many-valued
semantics. The Gödel t-norm of two formulas φ, ψ is the min-
imum of the respective truth degrees of φ and ψ. While this
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simplifies the resulting logics in certain technical respects, the
resulting semantics are not ideal for our envisioned applica-
tions in which we want to combine uncertain observations
from AI systems with large certain knowledge bases.

Finally, Probabilistic Soft Logic (PSL) was introduced
by [Bach et al., 2017] as a framework for fuzzy reasoning
with semantics based on Łukasiewicz logic. PSL is a signif-
icantly different language with different use cases than our
proposed languages. It allows for negation in rule bodies as
well as disjunction in the head, in addition to certain forms of
aggregation. Semantically it treats all rules as soft constraints
(i.e., they might not hold true) and aims to find interpretations
that satisfy rules as much as possible. In the context of learn-
ing such behaviour is desirable but in terms of reasoning the
resulting formalism deviates from many typical characteristics
of the Datalog formalisms that we aim to generalise here.

In the following, we provide a high-level overview of our
proposed formalisms. Full details and further discussion are
available in the full version of this paper [Lanzinger et al.,
2022a].

2 Łukasiewicz Logic and K-fuzzy Models
In this paper, we will study the generalisations of Datalog and
Datalog± to infinite-valued Łukasiewicz logic Ł (see, [Hájek,
1998]). Some of our techniques are particular to Łukasiewicz
logic and do not readily apply to other many-valued semantics.
For some relational signature σ, we consider the following
logical language, where R is a relational atom (in σ) and a
formula ϕ is defined via the grammar

ϕ ::= R | ϕ� ϕ | ϕ⊕ ϕ | ϕ→ ϕ | ¬ϕ
For a signature σ and countably infinite domain Dom , let

GAtoms be the set of all ground atoms with respect to σ and
Dom . A truth assignment is a function ν : GAtoms → [0, 1],
intuitively assigning a degree of truth in the real interval [0, 1]
to every ground atom. By slight abuse of notation, we also
apply ν to formulas to express the truth of ground formulas γ,
γ′ according to the following inductive definitions.

ν(¬γ) = 1− ν(γ)
ν(γ � γ′) = max{0, ν(γ) + ν(γ′)− 1}
ν(γ ⊕ γ′) = min{1, ν(γ) + ν(γ′)}
ν(γ → γ′) = min{1, 1− ν(γ) + ν(γ′)}

That is, � is the usual Łukasiewicz t-norm and ⊕ is the cor-
responding t-conorm, which take the place of conjunction
and disjunction, respectively. Note that implication γ → γ′ is
equivalent to ¬γ ⊕ γ′.

For rational K ∈ (0, 1] we say that a formula ϕ is K-
satisfied by ν if for every grounding γ of ϕ over Dom it
holds that ν(γ) ≥ K. Whenever we make use of K in this
context we assume it to be rational. In the context of rule-
based reasoning, it may be of particular interest to observe
that an implication is 1-satisfied exactly when the head is at
least as true as the body. For a set of formulas Π, we say that
a truth assignment ν is a K-fuzzy model if all formulas in Π
are K-satisfied by ν.

In place of the database in the classical setting, we in-
stead consider (finite) partial truth assignments, that is, par-
tial functions τ : GAtoms → (0, 1] that are defined for a

finite number of ground atoms. Let (Π, τ) be a pair where
Π is a set of formulas and τ is a partial truth assignment, a
K-fuzzy model of (Π, τ) is a K-fuzzy model ν of Π where
ν(G) = τ(G) for every ground atom G for which τ is de-
fined. Whenever we talk about formulas Π and partial truth
assignments τ we use ADom to refer to their active do-
main, i.e., the subset of the domain that is mentioned in
either Π or {G ∈ GAtoms | τ(G) is defined.}. We write
GAtoms [Adom] to indicate GAtoms restricted to groundings
over Adom . K-fuzzy models and their theory were introduced
and studied in the context of logic programming by [Ebrahim,
2001] but under different many-valued semantics based on
the Gödel t-norm. For further discussion of the difference in
semantics see the full paper [Lanzinger et al., 2022a].

3 MV-Datalog
Definition 1 (MV-Datalog Program). An MV-Datalog pro-
gram Π is a set of Ł formulas of the form

B1 �B2 � . . .�Bn → H

where all Bi, for 1 ≤ i ≤ n, and H are relational atoms.
As partial truth assignments τ : GAtoms → (0, 1] take the

place of the database in a classical Datalog setting. we also
refer to such τ as databases in the context of MV-Datalog. We
call a pair Π, τ of an MV-Datalog program and database an
MV-instance. We can map a MV-Datalog program Π naturally
to a Datalog program by substituting � with ∧. We refer to
the resulting Datalog program as Πcrisp . For the respective
crisp version of τ , we write Dτ for the (classical) database
containing all facts G for which τ(G) is defined.

Analogous to fact entailment in classical Datalog, we con-
sider the following decision problem K-TRUTH, deciding
whether a fact is true to at least a degree c in all models.

K-TRUTH

Input MV-instance (Π, τ), ground atom G, c ∈ [0, 1]
Output ν(G) ≥ c for all K-fuzzy models ν of (Π, τ)?

MV-Datalog is a proper extension of Datalog in the sense
that for K = 1 and when all ground atoms in the database
are assigned truth 1, its models coincide exactly with those of
Datalog programs.

Fact entailment in Datalog is typically decided by deriving a
minimal model of program and database and checking whether
the fact holds true in the (unique) minimal model. The ability
to use minimal models as a representative to decide entailment
is the key to efficient reasoning in Datalog. In the rest of this
Section, we will discuss how the same is also possible for
MV-Datalog. For two truth assignment ν, µ we write ν ≤ µ
when for all G ∈ GAtoms , it holds that ν(G) ≤ µ(G). We
similarly write ν < µ if ν ≤ µ and ν(G) < µ(G) for at least
one G ∈ GAtoms .
Definition 2. Let Π, τ be an MV-instance. We say that a K-
fuzzy model µ of (Π, τ) is minimal if for everyK-fuzzy model
ν of (Π, τ) it holds that µ ≤ ν.

In contrast to Datalog, MV-instances do not always have
models. Consider a program consisting only of rule R(x)→
S(x). For any K > 0, there is a database τ that assigns truth 1
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to R(a) and some truth less than K to S(a) such that the rule
is not K-satisfied. This is a consequence of the definition of
a K-fuzzy model ν of (Π, τ), which requires the truth values
in ν to agree exactly with τ , for every fact for which τ is
defined. In some settings, it may be desirable to relax this
slightly and consider K-fuzzy models ν where ν(G) ≥ τ(G)
where τ(G) is defined. Our semantics cover such a relaxation
since it can be simulated by straightforward rewriting of the
program: for every relation symbol R that occurs in τ add
rule R(x) → R′(x), and replace all other occurrences of R
in the program by R′. Nonetheless, for satisfiable instances, a
suitable minimal model indeed always exists.
Proposition 1. Let Π, τ be an MV-instance. For every rational
K ∈ (0, 1], if (Π, τ) isK-satisfiable, then there exists a unique
minimal K-fuzzy model for (Π, τ).

It is not difficult to see that deciding K-TRUTH is straight-
forward once we have such a unique minimal K-fuzzy model
µ. From the definition of the minimality of such models, it di-
rectly follows that for every ground fact G we have µ(G) ≥ c
if and only if ν(G) ≥ c for all K-fuzzy models of (Π, τ). The
remaining question thus is how to find such models. To this
end, we provide a characterisation of the minimal K-fuzzy
model for some (Π, τ) in terms of a linear program OptKΠ,τ .
The constraints in the program are induced by the oblivious
chase procedure (see, [Calı̀ et al., 2013])1 for Πcrisp , Dτ .

Let (Π, τ) be an MV-instance. Let Γ = {γ1, . . . , γm} be
the ground rules that occur2 in an execution of the oblivious
chase on Πcrisp , Dτ . Let G = {G1, . . . , Gn} be all of the
ground atoms occurring in rules in Γ. For every Gi ∈ G we
associate Gi with a variable xi in our linear program that
intuitively will represent the truth degree of Gi. For γj of the
form Gj1 � · · · �Gj` → Gjhead define

Eval(γj) :=
∑̀
k=1

(1− xjk) + xjhead

which directly expresses the satisfaction of rule γj , with vari-
able xjk representing the truth of Gjk . The linear program
OptKΠ,τ is then defined as follows

minimise
∑n
i=1 xi

subject to Eval(γj) ≥ K for 1 ≤ j ≤ m
xi = τ(Gi) for i where τ(Gi) is defined
1 ≥ xi ≥ 0 for 1 ≤ i ≤ n

(1)
By construction, any feasible solutions x of OptKΠ,τ in-

duces a K-fuzzy model νx that assigns νx(Gi) = xi and 0
to all other ground atoms not in G and vice versa. In the full
paper, we additionally prove that optimality in the program
corresponds exactly to the minimality of the induced K-fuzzy
model. This then gives us a concrete and practical procedure
for finding K-fuzzy minimal models and thus deciding K-
TRUTH.

1While the use of the oblivious chase without existential quantifi-
cation is untypical we explicitly require all rules induced by oblivious
applications for our characterisation. Furthermore, this allows for a
simpler transition to the semantics for existential rules in the follow-
ing section.

2For a formal definition of this step see [Lanzinger et al., 2022a].

Theorem 2. Let Π, τ be an MV-instance. Then x is an optimal
solution of OptKΠ,τ if and only if νx is a minimal K-fuzzy
model of (Π, τ)

Corollary 3. Fix a rationalK ∈ (0, 1]. K-TRUTH is in P with
respect to data complexity. Moreover, 1-TRUTH is P-complete
in data complexity.

4 MV-Datalog±

Existential quantification in the head of rules provides a natural
way of dealing with the common problem of incomplete or
missing data by declaratively stating that certain facts must
exist. Such usage is especially powerful in applications where
rule-based reasoning is used for complex data analysis (see
e.g., [Bellomarini et al., 2017]). In the following, we introduce
MV-Datalog± as an extension of MV-Datalog with a focus on
providing a fuzzy reasoning language that is useful for such
applications.

To obtain semantics matching our intuition for such a sys-
tem, we propose an alternative to the commonly studied se-
mantics for existential quantification for Łukasiewicz logic.
We then identify certain preferred models that exhibit desired
conceptual and computational behaviour as the basis for rea-
soning in MV-Datalog±.

4.1 Strong Existential Quantification in
Łukasiewicz Semantics

The semantics of existential quantification in Łukasiewicz
logic is traditionally defined as ν(∃xϕ(x)) =

sup{ν(ϕ[x/c]) | c ∈ Dom |x|} where ϕ[x/c] is the
substitution of variables x in ϕ by constants c (cf. [Hájek,
1998]). However, with our focus set on practical applications,
we propose alternative semantics for existential quantification
that match the semantics of ⊕. To contrast between the
aforementioned semantics of ∃ we refer to our semantics as
strong existential quantification.

ν(∃x ϕ(x)) = min

1,
∑

c∈Dom|x|

ν(ϕ[x/c])


We refer to Ł extended with strong existential quantification as
Ł∃ (following standard syntax of first-order existential quan-
tification). Such semantics for quantification in Łukasiewicz
logic have also recently been studied more generally in a
purely logical context by [Fjellstad and Olsen, 2021].

Definition 3. A MV-Datalog± program is a set of Ł∃ formulas
that are either MV-Datalog rules or of the form

B1 �B2 � · · · �Bn → ∃x ϕ(x,y)

where Bi are relational atoms, y are the variables in the body,
and ϕ is a formula that contains only a relational atom that
uses all variables of x. We refer to a pair of a MV-Datalog±
program and a database as an MV±-instance.

As in Datalog±, our truth assignments are not constrained to
the active domain of Π and τ but allow for the introduction of
”new” constants (i.e., from Dom \Adom). As noted above, the
introduction of new constants provides a natural mechanism to
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deductively handle missing and incomplete data. We propose
the use of strong existential quantification to obtain specific
desirable behaviour in case of incomplete information, as
illustrated by the following example.
Example 1. We consider the following example rule, express-
ing that every company has a key person, to illustrate the
difference between the two semantics for ∃.

Company(y) → ∃x KeyPerson(x, y)

Suppose we have the following database, we know for certain
that Acme is a company and we are 0.8 degrees confident that
Amy is the key person of Acme.

τ(KeyPerson(Amy,Acme)) = 0.8, τ(Company(Acme)) = 1

We discuss the case in a 1-fuzzy model in the following.
With existential semantics via the supremum of matching
ground atoms, the first rule implies the existence of some new
KeyPerson(N1,Acme) with truth degree 1. With strong exis-
tential quantification, the first rule implies only truth degree
0.2 for some KeyPerson(N1,Acme) since the known ob-
servation KeyPerson(Amy,Acme) already contributes 0.8
degrees of truth to the head.

Intuitively, the new constant N1 assumes the role of the
unknown other object that possibly is the key person. In tradi-
tional semantics for ∃ we have to infer (in a 1-fuzzy model)
that N1 is certain to control Acme. In contrast, under strong
existential semantics, the confidence in N1 being the key per-
son is determined by the known observation that Amy might
be the key person.

4.2 Preferred Models for MV-Datalog±

When considered in full generality, our proposed strong exis-
tential quantification semantics create a number of complex
theoretical challenges. In particular, it can be necessary for
a model to introduce multiple new constants per ground rule
to satisfy an existential quantification in certain situations as
illustrated by the following example.
Example 2. Consider database τ with τ(S(a)) =
0.8, τ(T (a)) = 0.2 and program Π

S(x) → ∃y P (x, y)
P (x, y) → T (x)

Then there is no 1-fuzzy model with only one new
constant. However, there is a solution where the facts
P (a, n1), P (a, n2), P (a, n3), P (a, n4), with new constants
n1, . . . , n4, are all assigned truth degree 0.2.

We focus our development on desired behaviour for prac-
tical applications that avoids some of the theoretical corner
cases. We formalise this motivation via the notion of preferred
models, which are intended to capture the desired output of
an MV-Datalog± system in a way that is practically mean-
ingful while also admitting good computational properties.
Intuitively, a preferred model of Π, τ has two vital properties.
First, the model must relate to some execution of the oblivious
chase procedure on Πcrisp , Dτ (we say the model has an obliv-
ious base). This restricts the scope of the unusual behaviour
illustrated in Example 2. Second, a preferred model is minimal
with respect to some partial ordering of all models with an

oblivious base. Looking back at Example 2 again, it is easy
to see that plain minimality of models is no longer a useful
concept as we can arbitrarily ”shift” truth between any of the
four facts P (a, ni), e.g., have three of them be true to degree
0.1 and the fourth with truth 0.5. The partial order used in the
definition instead orders the models by truth assignments in
some ”core” part of the model.

Naturally then, an MV±-instance does not necessarily have
a unique preferred model. However, analogous to minimal
models in MV-Datalog we are still able to characterise them
via linear programs. That is, for MV±-instance Π, τ we show
how to construct a linear program ∃-OptKΠ,τ , extending the
ideas from the previous construction of OptKΠ,τ . Note that
any of the preferred models is a sensible representative solu-
tion that can be used to fact entailment for instances that are
satisfiable by a model with an oblivious base.
Theorem 4. Let Π, τ be a MV-Datalog program and database
where OLim(Πcrisp , Dτ ) is finite. The following two state-
ments hold.

1. If (Π, τ) has a preferred K-fuzzy model, then ∃-OptKΠ,τ
is feasible.

2. For any optimal solution x of ∃-OptKΠ,τ , we have that νx
is a preferred K-fuzzy model for (Π, τ).

5 Conclusion & Future Work
We introduced MV-Datalog and MV-Datalog± as generali-
sations of classical Datalog and Datalog± to the semantics
of infinite-valued Łukasiewicz logic. We propose semantics
for logic programming for both of these formalisms that are
motivated by applications for interfacing classical data with
data from ML systems and crowd-sourcing. Reconsidering
many-valued generalisations of Datalog± with traditional se-
mantics for existential quantification is an interesting next step
for future work. Such semantics would align with the most
prominent fuzzy DLs and it is of natural interest whether a
corresponding decidable fuzzy Datalog± language can cap-
ture such fuzzy DLs, analogous to how DL-Lite and EL are
captured by guarded Datalog±. Initial work in this direction
has been outlined in recent follow-up work [Lanzinger et al.,
2022b].
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[Borgwardt and Peñaloza, 2017] Stefan Borgwardt and
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[Hájek, 1998] Petr Hájek. Metamathematics of Fuzzy Logic,
volume 4 of Trends in Logic. Kluwer, 1998.

[Lanzinger et al., 2022a] Matthias Lanzinger, Stefano Sfer-
razza, and Georg Gottlob. Mv-datalog+-: Effective rule-
based reasoning with uncertain observations. Theory Pract.
Log. Program., 22(5):678–692, 2022.

[Lanzinger et al., 2022b] Matthias Lanzinger, Stefano Sfer-
razza, and Georg Gottlob. New perspectives for fuzzy
datalog (extended abstract). In Proce. Datalog-2.0, vol-
ume 3203 of CEUR Workshop Proceedings, pages 42–47.
CEUR-WS.org, 2022.

[Lee et al., 2017] Han S. Lee, Heechul Jung, Alex A. Agar-
wal, and Junmo Kim. Can deep neural networks match the
related objects?: A survey on imagenet-trained classifica-
tion models. CoRR, abs/1709.03806, 2017.

[Lukasiewicz and Straccia, 2008] Thomas Lukasiewicz and
Umberto Straccia. Managing uncertainty and vagueness in
description logics for the semantic web. J. Web Semant.,
6(4):291–308, 2008.

[Maier et al., 2018] David Maier, K. Tuncay Tekle, Michael
Kifer, and David Scott Warren. Datalog: concepts, history,
and outlook. In Declarative Logic Programming: Theory,
Systems, and Applications. ACM / Morgan & Claypool,
2018.

[Mishkin et al., 2017] Dmytro Mishkin, Nikolay Sergievskiy,
and Jiri Matas. Systematic evaluation of convolution neural
network advances on the imagenet. Comput. Vis. Image
Underst., 161:11–19, 2017.

[Preining, 2010] Norbert Preining. Gödel logics - A survey.
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