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Abstract
In this paper, we summarise the main technical re-
sults obtained for specification probability. That
is, we compute the probability that if a bounded
stochastic Petri net produces a trace, that trace sat-
isfies a given specification.

1 Introduction
Dealing with actions and processes under a stochastic inter-
pretation of (different forms of) nondeterminism is a long-
standing problem within AI and business process manage-
ment (BPM). In AI, Markov chains and richer stochastic
models such as MDPs are at the core of a number of tasks
related to reasoning, planning, and learning in dynamic sys-
tems. In BPM, stochastic extensions of Petri nets, studied
from the foundational point of view in the 70s and 80s, have
been recently revived in the context of process mining, where
models of processes and data about the execution of pro-
cesses are related to obtain insights about how organisations
work [van der Aalst, 2016].

Interestingly, both fields traditionally progressed with an
inherent dichotomy on the semantics of such stochastic pro-
cesses. On the one hand, when an agent has to plan how to
achieve a desired goal, or a work process is instantiated on
a particular case that has to be progressed towards one of the
final states of the process, the semantics is inherently that of
finite traces - that is, each trace consists of an unbounded,
yet finite, number of steps, each witnessing the execution of
an action or task. On the other hand, key reasoning tasks
such as static analysis/verification typically work under an
infinite-trace semantics, where temporal/dynamic properties
of interests are checked by assuming that every execution of
the system under scrutiny is non-terminating (see, e.g., [Bus-
tan et al., 2004; Baier and Katoen, 2008]). Such a dichotomy
is witnessed in several related lines of research, such as for
example that of linear temporal logics, which have been tra-
ditionally studied under an infinite-trace semantics, in recent
times also deeply exploring them under a finite-trace inter-
pretation [De Giacomo and Vardi, 2013a], which radically
changes the resulting framework [De Giacomo et al., 2014].

*This paper summarises [Leemans et al., 2022; Leemans et al.,
2023].

The formal analysis of such systems is not only deeply af-
fected by the adopted trace semantics, but also by the pres-
ence or absence of other features. In particular, when using
Petri nets to represent work processes, it is important to sup-
port the labelling of transitions with activity names, to ac-
count for duplicate labels (witnessing that the same activity
may be executed in different states of the process), and to ac-
count for silent steps, in the style of ϵ-moves in automata (to
deal with internal state changes that do not represent the exe-
cution of an activity). This calls for a careful reconsideration
of the system under scrutiny, as a visible trace of the system
(consisting of sequences of visible activities) may in general
correspond to infinitely many distinct underlying system runs
(consisting of sequences of transitions).

Our work [Leemans et al., 2022; Leemans et al., 2023]
starts precisely from these two considerations: we are inter-
ested in the formal analysis of stochastic systems, under the
following working hypotheses:

1. the system may contain duplicate activities - i.e., the
same activity may be executed in different system states;

2. the system is equipped with silent transitions - i.e., in-
ternal orchestration steps inducing state changes that are
not cause by a visible activity;

3. the system produces finite-length traces.
We ground these general notions within the framework
of (bounded generalised) stochastic Petri nets, extensively
studied in the 70s and 80s [Ajmone Marsan, 1988; Aj-
mone Marsan et al., 1995] but without considering the three
working hypotheses listed above. By formal analysis, we
consider the following essential problems, that are in turn rel-
evant to solve further problems in the spectrum of stochastic
process mining:

1. Outcome probability: what is the probability that the
stochastic system evolves from the initial marking to one
(or a subset) of its final markings?

2. Trace probability: what is the probability of a given
trace of the stochastic system?

3. Specification probability: what is the probability that
the stochastic system produces a trace that satisfies a
given qualitative specification that captures desired be-
haviour, expressed using a deterministic finite-state au-
tomaton?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6452



4. Stochastic compliance: is the stochastic system of in-
terest compatible, in behavioural and stochastic terms,
to a probabilistic declarative specification [Alman et al.,
2022] indicating which temporal properties are expected
to hold, and with which probability?

5. Stochastic conformance checking: how can we em-
ploy the previous analysis questions, in particular trace
probability, to improve the correctness and applicability
of existing stochastic conformance checking techniques
[Leemans et al., 2019] relating a reference stochastic
process model to a recorded log?

Our main contributions are the following. First, we show
that outcome probability can be solved through standard an-
alytic techniques from Markov chains. This calls for re-
visiting the connection between generalised stochastic Petri
nets and discrete-time Markov chains [Marsan et al., 1984;
Ajmone Marsan et al., 1995] for our working hypotheses, in
particular the class of absorbing Markov chains [Grinstead
and Snell, 1997, Chapter 11], which naturally capture the
computation of probabilities for finite traces. We also show
that when the input system is livelock-free (i.e., every inter-
mediate state can potentially reach one of the final states),
then the collective probability of all model traces (i.e., finite-
length traces of the system leading from the initial to one of
the final states) is indeed 1. Second, we show that the spec-
ification probability problem can be solved in three steps.
Firstly, we enrich the automaton of the property with addi-
tional transitions that handle silent steps of the system, thus
moving from an automaton that expresses desired traces to an
automaton that expresses desired runs. Secondly, we demon-
strate that standard cross product-based techniques can be
used to obtain the system runs that satisfy the desired prop-
erties. Thirdly, we show that the problem can now be solved
as an outcome probability problem over the cross product.
Third, we show that the other mentioned problems can be re-
duced to corresponding specification probability and, in turn,
outcome probability problems.

2 Related Work
Stochastic process-based models have been studied exten-
sively in literature. We use formal, Petri net-based stochas-
tic models that are used by some recent approaches in
stochastic process discovery [Burke et al., 2020; Rogge-Solti
et al., 2013; Burke et al., 2021] and conformance check-
ing [Leemans et al., 2021; Leemans and Polyvyanyy, 2020;
Bergami et al., 2021b; Alkhammash et al., 2022; Burke et
al., 2022]. Such approaches all refer to the model of (gener-
alised) stochastic Petri nets, or fragments thereof. A first ver-
sion of this model was proposed in [Molloy, 1982], extending
Petri nets by assigning exponentially distributed firing rates
to transitions. This was extended in [Marsan et al., 1984] by
distinguishing timed (as in [Molloy, 1982]) and immediate
transitions. Immediate transitions have priority over timed
ones, and have weights to define their relative likelihood. As
these two types of transitions, abstracting from time, behave
homogeneously, we may capture the stochastic behaviour of
the net through a discrete-time Markov chain [Marsan et al.,
1984].

Several variants of stochastic Petri nets have been investi-
gated starting from the seminal work in [Marsan et al., 1984].
These variants differ from each other depending on the fea-
tures they support (e.g., arbiters to resolve non-determinism,
immediate vs timed transitions) and the way they express
probabilities. Such nets may aid modellers in expressing
certain constructs. An orthogonal, important dimension is
to ensure that probabilities and concurrency interact prop-
erly. This can be achieved through good modelling princi-
ples [Marsan et al., 1984; Chiola et al., 1993] or automated
techniques [Bruni et al., 2019].

Contrasting these formal models with recent works in
stochastic process mining, key differences exist. Traditional
stochastic nets do not support transition labels nor silent tran-
sitions, and put emphasis on recurring, infinite executions and
the so-called steady-state analysis, focused on calculating the
probability that an execution is currently placed in a given
state. This is done by constructing a discrete-time Markov
chain that characterises the stochastic behaviour of the net
[Molloy, 1982; Marsan et al., 1984]. Finding the probability
of a finite-length trace in such nets is trivial, as every trace
corresponds to a single path. However, no transition labels
or silent steps are supported, which limits their usefulness
for process mining due to the omnipresence of such transi-
tions in process models. On the other hand, when these fea-
tures are incorporated in stochastic Petri nets, which is pre-
cisely what we target in this paper, computing the probabil-
ity of a trace cannot be approached directly anymore, as in-
finitely many paths would potentially need to be inspected.
At the same time, in business processes we are interested in
behaviour at the trace level rather than at the process level –
that is, we are not interested in the state that a process can
be in, but rather on the path that a trace follows through the
model – thus the large body of work on steady-state-based
analyses on Markov models does not apply for our purposes.
This explains why reasoning on the stochastic behaviour of
such extended nets has been conducted in an approximated
way [Leemans et al., 2021; Leemans and Polyvyanyy, 2020;
Bergami et al., 2021a], or by imposing restrictions on the
model [Bergami et al., 2021b].

In this paper we take the basic stochastic Petri nets: we do
not consider time or priority, but we add (duplicate) labels and
silent transitions. Importantly, our results seamlessly carry
over to bounded, generalised stochastic Petri nets, thanks
to the fact that incorporating priorities in bounded nets is
harmless, and that timed and immediate transitions are ho-
mogeneous from the stochastic point of view. To the best
of our knowledge, outside of recent work using stochas-
tic Petri nets with silent transitions [Leemans et al., 2021;
Leemans et al., 2019; Bergami et al., 2021b], such nets have
not been defined or studied before.

While intuitively stochastic conformance checking tech-
niques need to obtain the probability of a given trace in a
stochastic process model (for instance, [Leemans et al., 2019]
explicitly obtains this probability to compute a distance mea-
sure between a log and a stochastic process model), some
stochastic conformance checking techniques avoid comput-
ing the probability for a single trace, for instance by play-
ing out the model to obtain a sample of executions [Leemans
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et al., 2021], or by assuming that the model is determinis-
tic [Leemans and Polyvyanyy, 2020]. The results presented in
this paper therefore enable the practical application of [Lee-
mans et al., 2019], and may enable new types of analyses and
stochastic conformance checking techniques.

Silent steps have been studied in the context of automata.
For instance, in [Hanneforth and De La Higuera, 2010] an ad-
hoc method is described to iteratively remove all silent steps
from a stochastic automaton. Due to concurrency and confu-
sion, such techniques are not directly applicable to stochastic
Petri nets. A result of this paper is that silent steps can be
handled directly, without the need for ad-hoc techniques.

3 Preliminaries
We first coin some multiset machinery: let X be a set, then
XN is the set of all multisets over the elements of X . Given
two multisets A and B, for an element x, A(x) denotes the
multiplicity of x in A. Furthermore, we denote A ≤ B ≡
∀x∈AA(x) ≤ B(x), ∀x(A + B)(x) = A(x) + B(x) and,
when B ≤ A, then ∀x(A−B)(x) = A(x)−B(x).

Given an alphabet Σ of process steps (activities), an event
is the execution of an activity. A sequence of events, denoting
all activities executed for a particular process instance such as
an order, claim or application is a trace. A multiset of traces
is an event log.

Definition 1 (labelled stochastic Petri net). Let Σ be an al-
phabet of activities, such that τ /∈ Σ. Then, a labelled
stochastic Petri net is a tuple (P, T, F,m0,Mf , ℓ, w) in which
P is a set of places, T is a set of transitions such that
F ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P ) is a flow relation,
m0 ∈ PN is an initial marking, Mf ⊆ PN is a set of final
markings, ℓ : T → Σ ∪ {τ} is a labelling function that maps
each transition to either an activity of Σ or to the silent label
τ , and w : T → R+ is a weight function.

Semantically, the net starts its execution in the initial mark-
ing m0. In a particular marking m, a transition t ∈ T is
enabled if •t ≤ m. Let E(m) = {t ∈ T | •t ≤ m} de-
note the set of enabled transitions. An enabled transition t
can fire, which results in the marking m′ = m + t• − •t
and, if ℓ(t) ̸= τ , in the emitting of the activity ℓ(t). In a
marking m, the probability that an enabled transition t fires is
proportional to the weight of t vs. the weight of all enabled
transitions: Pm(t) = w(t)∑

t′∈E(m) w(t′) .

A run of the net is a sequence of transitions ⟨t0 . . . tn⟩
that brings the net from its initial marking m0 to a marking
in which no transitions are enabled: ∃1m1...mn+1

∀0 ≤i≤nti ∈
E(mi)∧mi+1 = mi+t•−•t∧E(mn+1) = ∅. A correspond-
ing trace of the net is a sequence of activities that denotes the
visible behaviour of the net: ⟨ai | ai = ℓ(tj) ∧ ℓ(tj) ̸= τ⟩.
The probability of the run is

∏
0≤i≤n Pmi

(ti).
In this paper, we consider labelled stochastic Petri nets

where each marking that is reachable from the initial marking
m0 has a bounded number of tokens. We refer to such nets
as bounded stochastic Petri net-based processes (bounded
stochastic PNPs). Figure 1 shows an example of a bounded
stochastic PNP. The circles are places, while the boxes are
transitions. Silent transitions are filled boxes.

Definition 2 (DFA, acceptance). A deterministic finite-state
automaton (DFA) over an alphabet Σ is a tuple A =
⟨S, s0, Sf , δ⟩, where: (i) S is a finite set of states, with
s0 ∈ S the initial state and Sf ⊆ S the set of final states;
(ii) δ : S × Σ → S is a transition function that, given a state
s ∈ S and an activity a ∈ Σ, returns the successor state
δ(s, a). A accepts a trace σ = ⟨a0, . . . , an⟩ over Σ⋆ if there
exists a sequence of states s0, . . . , sn+1 starting from the ini-
tial state and such that: (i) sn+1 ∈ Sf , and (ii) for every
0 ≤ i < n, we have si+1 = δ(si, li).

Figure 2 shows an example, stating that after every open
there is a pay. This definition accounts for non-deterministic
automata (NFAs), which can be encoded as DFAs. The same
holds for regular expressions, LTLf/LDLf temporal formulae
over finite traces [De Giacomo and Vardi, 2013b], and De-
clare models extended with meta-constraints [De Giacomo et
al., 2022]. We refer to a DFA representing a certain desired
behaviour as a specification.

4 Specification Probability
In this section, we tackle a fundamental problem: comput-
ing specification probabilities VERIFY-PROB(N , A), that is,
computing what the probability is that an arbitrary process
instance of the bounded stochastic PNP is accepted by the
specification:
Input: Bounded stochastic PNP N , DFA A;
Output: Probability

∑
σ trace of Ns.t. σ∈LA

PN (σ).
For example, we may be interested in the probability that

the bounded stochastic PNP Norder of our running example
(Figure 1) evolves an order from opening to payment, en-
coded in the DFA shown in Figure 2.

To solve the problem, we need to account for three different
aspects: (i) deal with the mismatch between runs over N and
traces of A; (ii) single out all and only those model traces of
N that are also traces of A; and (iii) compute the collective
probability of all such traces.

Where runs of a bounded stochastic PNP may contain
silent transitions, traces of a DFA do not. Therefore, we adapt
the DFA to allow arbitrary τs. We take the input DFA A over
Σ and turn it into a corresponding automaton Ā over Σ∪{τ},
by adding τ -labelled edges connecting every state to itself.

We now consider RG(N ) and Ā. Since they both gen-
erate runs, we can obtain a representation of all the runs of
N by constructing a product stochastic transition system that
generates the runs that are common to N and Ā, which in
turn are the runs of N that induce traces of A. This can be
done by the usual product automaton construction, with the
only difference that we need to retain the stochastic informa-
tion coming from N . This is straightforward as Ā does not
contain probabilities. (For a formal definition, please refer
to [Leemans et al., 2022].) Such a product system is not nec-
essarily a complete stochastic transition system, as there may
be states whose successor probabilities do not sum to one;
correcting this is not necessary for the consequent computa-
tion (as the state variable for such a sink state would be equal
to 0).

Lastly, we reduce the VERIFY-PROB problem to the prob-
lem of computing the probability that a marking from a set F
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Figure 1: Example of a bounded stochastic PNP (Norder) of an order-to-cash process. Transition t12 denotes the insertion of an item, but as it
is not logged, it has been modelled using a silent transition. From [Leemans et al., 2022].

s0 s1Σ \ open
open

Σ \ pay
pay

Figure 2: DFA, stating that after every open there is a pay.

is reached (OUTCOME-PROB):
Input: Bounded stochastic PNP N , set F ⊆ Mf of desired

final states;
Output: PN (F |m0) =

∑
η run of N ending in m∈F PN (η).

OUTCOME-PROB cannot be obtained through enumeration
of the potentially infinitely many runs. Instead, we build
upon the connection between bounded stochastic PNPs and
discrete-time Markov chains [Durrett, 2012], lifting [Marsan
et al., 1984] to our setting1. We exploit this, noticing that
the OUTCOME-PROB problem corresponds to the problem of
calculating exit distributions in a discrete-time Markov chain
[Durrett, 2012] (also called the problem of calculating ab-
sorption/hit probabilities [Fewster, 2008]). To analytically
solve the problem, we create a system of equations, starting
from the reachability graph. Specifically, each state of the
reachability graph gets a variable xsi denoting the probabil-
ity of reaching one of the states in F from that state. After
solving, xs0 contains the solution of the problem. The equa-
tions define the value of one of a state variable xs as follows:
Base case if s has no successor states, then xsi = 1 if s

corresponds to a final marking, otherwise xsi = 0;
Inductive case if s has successors, xsi is equal to sum of the

state variables of its successor states, weighted by the
transition probability to move to that successor.

There is always at least a solution, though there may be
infinitely many, requiring to pick the least committing (i.e.,
minimal non-negative) solution. The latter case happens
when N contains livelock markings. For correctness, unique-
ness of solutions in the case of livelock-free systems, and
techniques to suitably handle livelocks, please refer to [Lee-

1In case of generalised stochastic Petri nets, the resulting
discrete-time Markov chain is the so-called embedded/jump chain
obtained from the continuous-time Markov chain capturing the exe-
cution semantics of the net [Molloy, 1982; Marsan et al., 1984].

mans et al., 2023].

Example 1. Consider bounded stochastic PNP
Norder (Figure 1). We want to solve the problem
OUTCOME-PROB(Norder, [q6]) to compute the probabil-
ity that a created order eventually completes the process
by being paid (Figure 2). To do so, we solve the following
equations, derived from its reachability graph (shown
in [Leemans et al., 2022]) into:

xs8
= 0 xs5

= xs8
xs2

= ρmxs1
+ ρfxs3

xs7
= 0 xs4

= ρbxs1
+ ρdxs5

+ ρpxs6
xs1

= ρixs2
+ ρcxs5

xs6
= 1 xs3

= ρaxs4
+ ρrxs7

xs0
= xs1

This yields xs0 =
ρiρfρaρpxs6

+ρiρfρrxs7
+(ρiρfρaρd+ρc)xs8

1−ρiρm−ρiρfρaρb
=

ρiρfρaρp

1−ρiρm−ρiρfρaρb
, which is the only solution. If we assume

that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform,
leading to ρi = ρf = ρm = ρa = 1

2 and ρp = ρb = 1
3 ,

and, in turn, that the probability of completing the process
by paying the order is xs0 = 1

17 ∼ 0.06. With an analogous
approach, we can prove that the probability that an order
gets deleted is 13

17 , and the one that an order gets rejected
is 3

17 . Notice that the sum of all such probabilities is, as
expected, 1, that is, every order gets paid, deleted or rejected.

5 Conclusion
Stochastic Petri nets have been used extensively to model
business processes. In this paper, we introduced a method
to compute the probability that such a net produces a trace
that satisfies a given specification.

Notably, solving such a problem under our working hy-
potheses comes with two side results. On the one hand, we
obtain (to the best of our knowledge) the first technique for
model checking stochastic systems against qualitative prop-
erties expressed in Linear Temporal Logic and Linear Dy-
namic Logic over finite traces. On the other hand, we give an
alternative solution to an existing problem related to the re-
moval of silent transitions in stochastic finite-state automata,
so far only solved through ad-hoc algorithms [Hanneforth and
De La Higuera, 2010].
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