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Abstract
Minimizing a convex function with access to a first
order oracle—that returns the function evaluation
and (sub)gradient at a query point—is a canonical
optimization problem and a fundamental primitive
in machine learning. Gradient-based methods are
the most popular approaches used for solving the
problem, owing to their simplicity and computa-
tional efficiency. These methods, however, do not
achieve the information-theoretically optimal query
complexity for minimizing the underlying function
to small error, which are achieved by more expen-
sive techniques based on cutting-plane methods. Is
it possible to achieve the information-theoretically
query complexity without using these more com-
plex and computationally expensive methods? In
this work, we use memory as a lens to understand
this, and show that is is not possible to achieve op-
timal query complexity without using significantly
more memory than that used by gradient descent.

1 Introduction
Machine learning is intricately linked with continuous opti-
mization, and gradient-based optimization methods are the
main workhorse of modern machine learning. In this work,
our goal is to understand how computational considerations
affect the ability to efficiently optimize a function. A natu-
ral starting point to examine this is the canonical setting of
minimizing a convex function f : Rd → R given access to
a first-order oracle. A first-order oracle returns the function
evaluation and (sub)gradient (f(x),∇f(x)) when queried at
any point x. The goal is to understand how many queries to
the first-order oracle are necessary to minimize the function.

Understanding the first-order query complexity for mini-
mizing convex functions has been foundational in optimiza-
tion theory [Nemirovski and Yudin, 1983]. There are methods
that, given any 1-Lipschitz, convex f : Rd → R accessible
via a first-order oracle, compute an ϵ-approximate minimizer
over the unit ball with just O(min{ϵ−2, d log(1/ϵ)}) first or-
der queries. This query complexity is known to be worst-case
optimal [Nemirovski and Yudin, 1983].

∗This paper was initially published in the 35th Annual Confer-
ence on Learning Theory (COLT 2022).

O(ϵ−2) queries is achievable using (sub)gradient descent.
Variants of gradient-descent are the most widely used opti-
mization methods for modern machine learning settings, ow-
ing to their simplicity and computational efficiency. In partic-
ular, subgradient descent solves the problem using a total of
O(dϵ−2) computation time (assuming arithmetic operations
on O(log(d/ϵ))-bit numbers take constant time), and only re-
quires O(d log(1/ϵ))-bits of memory.

On the other hand, building on the O(d2 log(1/ϵ)) query
complexity of the well-known ellipsoid method [Yudin and
Nemirovskii, 1976; Shor, 1977], different cutting plane meth-
ods achieve a query complexity of O(d log(1/ϵ)), e.g. center
of mass with sampling based techniques [Levin, 1965; Bert-
simas and Vempala, 2004], volumetric center [Vaidya, 1989;
Atkinson and Vaidya, 1995], inscribed ellipsoid [Khachiyan
et al., 1988; Nesterov, 1989]; these methods are perhaps less
frequently used in practice and large-scale learning. This
is due to the fact that they are more complex than sim-
ple gradient descent based approaches, they all use at least
Ω(d3 log(1/ϵ))-time and Ω(d2 log(1/ϵ)) bits of memory.

Though state-of-the-art cutting plane methods have larger
computational overhead compared to gradient descent and are
sometimes regarded as impractical in different settings, for
small enough ϵ, they give the state-of-the-art query bounds.
Further, in different theoretical settings, e.g. semidefinite
programming [Anstreicher, 2000], submodular optimization
[McCormick, 2005] and equilibrium computation [Papadim-
itriou and Roughgarden, 2008], cutting-plane-methods have
yielded state-of-the-art runtimes at various points of time.
This leads to the natural question of what is needed of a
method to significantly outperform gradient descent and take
advantage of the improved query complexity enjoyed by cut-
ting plane methods? Can we design methods that obtain opti-
mal query complexities while maintaining the practicality of
gradient descent methods?

In this work, we take memory as a lens to understand the
computational complexity of first-order convex optimization.
Not only is memory usage one of the most fundamental mea-
sures of computational complexity for an algorithm, mem-
ory considerations can also play a crucial role in contempo-
rary learning and optimization settings. In addition, as we
show in this work, using memory as a lens offers the possibil-
ity of proving a clean unconditional separation between sim-
ple/complex techniques—as also judged by other measures
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Figure 1: Tradeoffs between available memory and first-order oracle complexity for minimizing 1-Lipschitz convex functions over the
unit ball (adapted from [Woodworth and Srebro, 2019]). The dashed red region corresponds to information-theoretic lower bounds on the
memory and query-complexity. The dashed green region corresponds to known upper bounds. This work shows that the solid red region is
not achievable for any algorithm.

such as their running time. This perspective on the role of
memory in optimization is also well-articulated in the open-
problem paper of [Woodworth and Srebro, 2019].

We show that memory plays a critical role in attaining op-
timal query complexity for convex optimization. Our main
result is the following theorem which shows that any algo-
rithm whose memory usage is sufficiently small (though still
superlinear) must make polynomially more queries to a first-
order oracle than cutting plane methods. Specifically, any al-
gorithm that uses significantly less than d1.25 bits of memory
requires a polynomial factor more first order queries than the
optimal O(d log(d)) queries achieved by quadratic memory
cutting plane methods.
Theorem 1 For some ϵ ≥ 1/ poly(d) and any δ ∈ [0, 1/4] the
following is true: any algorithm which outputs an ϵ-optimal
point with probability at least 2/3 given first order oracle ac-
cess to any 1-Lipschitz convex function must use either at
least d1.25−δ bits of memory or make Ω̃(d1+

4
3 δ) first order

queries (where the Ω̃ notation hides poly-logarithmic factors
in d).
Beyond shedding light on the complexity of a fundamental
memory-constrained optimization problem, we provide sev-
eral tools for establishing such lower bounds. In particular,
we introduce a set of properties which are sufficient for an
optimization problem to exhibit a memory-lower bound and
provide an information-theoretic framework to prove these
lower bounds. We hope these tools are an aid to future work
on the role of memory in optimization.

This work fits within the broader context of understanding
fundamental resource tradeoffs for optimization and learning.
For many settings, establishing (unconditional) query/time or
memory/time tradeoffs is notoriously hard—perhaps akin to
P vs NP (e.g. providing time lower bounds for cutting plane

methods). Questions of memory/query and memory/data
tradeoffs, however, have a more information theoretic nature
and hence seem more approachable. Together with the in-
creasing importance of memory considerations in large-scale
optimization and learning, there is a strong case for pinning
down the landscape of such tradeoffs, which may offer a new
perspective on the current suite of algorithms and inform the
effort to develop new ones.

1.1 Technical Overview and Contributions
To prove Theorem 1, we provide an explicit distribution over
functions that is hard for any memory-constrained random-
ized algorithm to optimize. Though the proof requires care
and we introduce a variety of machinery to obtain it, this
lower bounding family of functions is simple to state. The
function is a variant of the so-called “Nemirovski” func-
tion, which has been used to show lower bounds for highly
parallel non-smooth convex optimization [Nemirovski, 1994;
Bubeck et al., 2019; Balkanski and Singer, 2018].

Formally, our difficult class of functions for memory size
M is constructed as follows: for some γ > 0 and some N =
Õ
(
d2/M

)
let v1, . . . ,vN be unit vectors drawn i.i.d. from

the d dimensional scaled hypercube vi
i.i.d.∼ Unif

(
d−1/2Hd

)
and let a1, . . . , a⌊d/2⌋ be drawn i.i.d. from the hypercube,
aj ∼ Unif (Hd) where αHd := {±α}d. Let A =(
a1, . . . , a⌊d/2⌋

)
and define

F (x) = (1/d6)max

{
d5 ∥Ax∥∞ − 1,max

i∈[N ]
v⊤
i x− iγ

}
.

Rather than give a direct proof of Theorem 1 using this ex-
plicit function we provide a more abstract framework which
gives broader insight into which kinds of functions could lead
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to non-trivial memory-constrained lower bounds, and which
might lead to tighter lower bounds in the future. To that end
we introduce the notion of a memory-sensitive class which
delineates the key properties of a distribution over functions
that lead to memory-constrained lower bounds. We show that
for such functions, the problem of memory constrained opti-
mization is at least as hard as the following problem of find-
ing a set of vectors which are approximately orthogonal to
another set of vectors:

Definition 2 ( Orthogonal Vector Game, informal version)
Given A ∈ {±1}d/2×d, the Player’s objective is to return a
set of k vectors {y1, . . . ,yk} which satisfy

1. ∀i ∈ [k],yi is approximately orthogonal to all the rows
of A : ∥Ayi∥∞ / ∥yi∥2 ≤ d−4.

2. The set of vectors {y1, . . . ,yk} is robustly linearly in-
dependent: denoting S0 = ∅, Si = span(y1, . . . ,yi),∥∥∥ProjSi−1

(yi)
∥∥∥
2
/ ∥yi∥2 ≤ 1− 1/d2,

where the notation ProjS(x) denotes the vector in the sub-
space S which is closest in ∥·∥2 to x. The game proceeds as
follows: The Player first gets to observe A and store a M -bit
long Message about A. She does not subsequently have free
access to A, but can adaptively make up to m queries as fol-
lows: for i ∈ [m], based on Message and all previous queries
and their results, she can request any row i ∈ [d/2] of the
matrix A. Finally, she outputs a set of k vectors as a function
of Message and all m queries and their results.

Note that the Player can trivially win the game for M ≥
Ω(dk),m = 0 (by just storing a satisfactory set of k vec-
tors in the Message) and for M = 0,m = d/2 (by querying
all rows of A). We show a lower bound that this is essen-
tially all that is possible: for A sampled uniformly at ran-
dom from {±1}d/2×d, if M is a constant factor smaller than
dk, then the Player must make at least d/5 queries to win
with probability at least 2/3. Our analysis proceeds via an
intuitive information-theoretic framework, which could have
applications for showing query lower bounds for memory-
constrained algorithms in other optimization and learning set-
tings.

2 Related Work
2.1 Memory-sample Tradeoffs for Learning
There is a recent line of work to understand learning under
information constraints such as limited memory or commu-
nication constraints [Balcan et al., 2012; Duchi et al., 2013;
Zhang et al., 2013; Garg et al., 2014; Shamir, 2014; Arjevani
and Shamir, 2015; Steinhardt and Duchi, 2015; Steinhardt et
al., 2016; Braverman et al., 2016; Dagan and Shamir, 2018;
Dagan et al., 2019; Woodworth et al., 2021]. Most of these
results obtain lower bounds for the regime when the avail-
able memory is less than that required to store a single dat-
apoint (with the notable exception of [Dagan and Shamir,
2018] and [Dagan et al., 2019]). However the breakthrough
paper [Raz, 2017] showed an exponential lower bound on
the number of random examples needed for learning pari-
ties with memory as large as quadratic. Subsequent work

extended and refined this result to multiple learning prob-
lems over finite fields [Moshkovitz and Moshkovitz, 2017;
Beame et al., 2018; Moshkovitz and Moshkovitz, 2018;
Kol et al., 2017; Raz, 2018; Garg et al., 2018].

Most related to our line of work is [Sharan et al., 2019],
which considers the continuous valued learning/optimization
problem of performing linear regression given access to ran-
domly drawn examples from an isotropic Gaussian. They
show that any sub-quadratic memory algorithm for the prob-
lem needs Ω(d log log(1/ϵ))) samples to find an ϵ-optimal
solution for ϵ ≤ 1/dΩ(log d), whereas in this regime an al-
gorithm with memory Õ(d2) can find an ϵ-optimal solution
with only d examples. Since each example provides an un-
biased estimate of the expected regression loss, this trans-
lates to a lower bound for convex optimization given access
to a stochastic gradient oracle. However the upper bound
of d examples is not a generic convex optimization algo-
rithm/convergence rate but comes from the fact that the linear
systems can be solved to the required accuracy using d exam-
ples.

There is also significant work on memory lower bounds for
streaming algorithms, e.g. [Alon et al., 1999; Bar-Yossef et
al., 2004; Clarkson and Woodruff, 2009; Dagan et al., 2019],
where the setup is that the algorithm only gets a single-pass
over a data stream.

2.2 Lower Bounds for Convex Optimization
Starting with the early work of [Nemirovski and Yudin,
1983], there is extensive literature on lower bounds for con-
vex optimization. Some of the key results in this area in-
clude classical lower bounds for finding approximate min-
imizers of Lipschitz functions with access to a subgradi-
ent oracle [Nemirovski and Yudin, 1983; Nesterov, 2003;
Braun et al., 2017], including recent progress on lower
bounds for randomized algorithms [Woodworth and Srebro,
2016; Woodworth and Srebro, 2017; Simchowitz et al., 2018;
Simchowitz, 2018; Braverman et al., 2020; Sun et al., 2021].
For more details, we refer the reader to surveys such as [Nes-
terov, 2003] and [Bubeck, 2014].

2.3 Memory-limited Optimization Algorithms
While the focus of this work is lower bounds, there is
a long line of work on developing memory-efficient opti-
mization algorithms, including various techniques that lever-
age second-order structure via first-order methods such as
Limited-memory-BFGS [Nocedal, 1980; Liu and Nocedal,
1989] and the conjugate gradient (CG) method for solving
linear systems [Hestenes and Stiefel, 1952] and various non-
linear extensions of CG [Fletcher and Reeves, 1964] and
methods based on subsampling and sketching the Hessian
[Pilanci and Wainwright, 2017; Xu et al., 2020].

3 Proof Strategy
We describe a broad family of optimization problems which
may be sensitive to memory constraints (also see Fig. 2 for
an overview). As suggested by the Orthogonal Vector Game
(Definition 2), the primitive we leverage is that finding vec-
tors orthogonal to the rows of a given matrix requires either
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Figure 2: A high-level overview of our proof approach. The rows of A and the Nemirovski vectors {v1, . . . ,vN} are sampled uniformly
at random from the hypercube. We show that this function class is “memory-sensitive” and has the following properties: (1) to successfully
minimize the function, the algorithm must see a sufficiently large number of Nemirovski vectors, (2) to reveal new Nemivoski vectors, an
algorithm must make queries which are robustly linearly independent and orthogonal to A. Using these properties, we show that minimizing
the function is at least as hard as winning the Orthogonal Vector Game (Definition 2) about N/k times. We then show memory-query tradeoffs
for the Orthogonal Vector Game.

large memory or many queries to observe the rows of the ma-
trix. With that intuition in mind, let f : Rd → R be a convex
function, let A ∈ Rn×d, let η be a scaling parameter, and let
ρ be a shift parameter; define Ff,A,η,ρ(x) as the maximum of
f(x) and η ∥Ax∥∞ − ρ:

Ff,A,η,ρ(x) := max {f(x), η ∥Ax∥∞ − ρ} . (3.1)
We often drop the dependence of η and ρ and write Ff,A,η,ρ

simply as Ff,A. Intuitively, for large enough scaling η and
appropriate shift ρ, minimizing the function Ff,A(x) requires
minimizing f(x) close to the null space of the matrix A. Any
algorithm which uses memory Ω(nd) can learn and store A
in O(d) queries so that all future queries are sufficiently or-
thogonal to A; thus this memory rich algorithm can achieve
the information-theoretic lower bound for minimizing f(x)
roughly constrained to the nullspace of A.

However, if A is a random matrix with sufficiently large
entropy then A cannot be compressed to fewer than Ω(nd)
bits. Thus, for n = Ω(d), an algorithm which uses only
memory o(d2−δ) bits for some constant 0 < δ ≤ 1 cannot
remember all the information about A. Suppose the function
f is such that in order to continue to observe new informa-
tion about the function, it is insufficient to submit queries that
belong to some small dimensional subspace of the null space
of A. Then a memory constrained algorithm must re-learn
enough information about A in order to find new vectors in
the null space of A and make queries which return new infor-
mation about f .

To show our lower bound, we take f in (3.1) to be the Ne-
mirovski function:

f(x) = max
i∈[N ]

(
v⊤
i x− iγ

)

where the vectors v1, . . . ,vN are unit vectors drawn
i.i.d. from the d dimensional scaled hypercube vi

i.i.d.∼
Unif

(
d−1/2Hd

)
and we refer to them as “Nemirovski vec-

tors”. With this choice of f , the overall function Ff,A(x)
has certain “memory-sensitive” properties. In particular, to
reveal new Nemirovski vectors an algorithm cannot make
queries which lie in a low-dimensional subspace. In addition,
because of the ∥Ax∥∞ term in the definition of Ff,A(x),
queries which reveal new Nemirovski vectors must also be
sufficiently orthogonal to A. Together, these properties im-
ply that a sequence of queries which reveals a new set of Ne-
mirovski vectors must also be winning queries for the Orthog-
onal Vector Game (Definition 2). This allows us to leverage
our information-theoretic memory-query tradeoffs for the Or-
thogonal Vector Game. We show that the algorithm must re-
veal a sufficiently large number of Nemirovski vectors to op-
timize Ff,A(x), therefore we can repeatedly apply the lower
bound for the Orthogonal Vector Game to show our final
lower bound.
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