
SANCUS: Staleness-Aware Communication-Avoiding Full-Graph Decentralized
Training in Large-Scale Graph Neural Networks (Extended Abstract)∗

Jingshu Peng1 , Zhao Chen1 , Yingxia Shao2 , Yanyan Shen3 , Lei Chen1 and Jiannong Cao4

1The Hong Kong University of Science and Technology
2Beijing University of Posts and Telecommunications

3Shanghai Jiao Tong University
4The Hong Kong Polytechnic University

{jpengab, zchenah,leichen}@cse.ust.hk, shaoyx@bupt.edu.cn, shenyy@sjtu.edu.cn,
csjcao@comp.polyu.edu.hk

Abstract

Graph neural networks (GNNs) have emerged due
to their success at modeling graph data. Yet, it is
challenging for GNNs to efficiently scale to large
graphs. Thus, distributed GNNs come into play.
To avoid communication caused by expensive data
movement between workers, we propose SANCUS,
a staleness-aware communication-avoiding decen-
tralized GNN system. By introducing a set of novel
bounded embedding staleness metrics and adap-
tively skipping broadcasts, SANCUS abstracts de-
centralized GNN processing as sequential matrix
multiplication and uses historical embeddings via
cache. Theoretically, we show bounded approx-
imation errors of embeddings and gradients with
convergence guarantee. Empirically, we evaluate
SANCUS with common GNN models via different
system setups on large-scale benchmark datasets.
Compared to SOTA works, SANCUS can avoid up
to 74% communication with at least 1.86× faster
throughput on average without accuracy loss.

1 Introduction

The success of Graph Neural Networks (GNNs) [Kipf and
Welling, 2017] has laid the foundation of recent advancement
in the state of the art to model real-life graphs. In essence,
GNNs are structure-aware models that construct the network
architectures adapted to the original topology of the input
graphs. By iteratively aggregating the neighbors of the tar-
gets, GNNs can exploit the structure and feature information
at the same time. Despite the promising performance, the ma-
jor challenge that limits the adoption of GNNs to large-scale
graphs lies in the inability to utilize all data in finite time and
the scalability of the algorithm itself. To mitigate the mem-
ory requirement with ever-increasing data and model size,
distributed GNN processing is the inevitable remedy.

∗This is an abridged version of a paper that won the Best Re-
search Paper Award at VLDB 2022 [Peng et al., 2022].

GPU 1GPU 0

GPU 3 GPU 2

𝑨 𝑩
𝑪

𝑫𝑬
𝑭

𝑨

𝑩

𝑫

𝑬

𝑪
𝑫
𝑨
𝑩
𝑬
𝑨
𝑫
𝑭

𝑬

𝑭 𝑬

𝑨

𝑩
𝑪
𝑫
𝑬

𝑫
𝑬
𝑨
𝑩

𝑨

Figure 1: Distributed full-GNN example: nodes in same color are on
same GPU. On the left, a 6-node graph is stored on 4 GPUs. On the
right are the computational graphs of a 2-layer GNN for Node A and
E. During GNN neighborhood aggregation, intensive cross-device
visits (10 times to update Node A and 9 for E) to fetch neighbor data
cause expensive communication overhead.

Compared to traditional graph processing or machine
learning, new issues have emerged for distributed full-GNNs
from the system perspective. Aside from the substantial
memory footprint, distributed GNNs are memory-intensive as
well as compute-intensive [Wang et al., 2020; Thorpe et al.,
2021] due to coupled irregular neighbor fetching and itera-
tive learning procedure. Consequently, the intensive commu-
nication, including not only gradients or parameters but also
embeddings, makes efficient distributed GNN training more
challenging. As exemplified by Figure 1, the training process
needs to constantly query the target nodes, their neighbors,
and their farther neighbors, to transfer both embeddings and
gradients among workers. Thus, by virtue of such data move-
ment, cross-device data communication can be one archen-
emy of efficient GNN processing. The incurred communi-
cation cost may account for 80% and even more of the total
training time [Tripathy et al., 2020; Gandhi and Iyer, 2021;
Cai et al., 2021].

In distributed training, the underlying system architec-
ture of how workers communicate is crucial, especially for
GNNs with substantial communication overhead. In gen-
eral, two approaches exist: centralized and decentralized.
Though most distributed GNN systems [Ma et al., 2019;
Zhu et al., 2019; Jia et al., 2020; Zheng et al., 2020;
Gandhi and Iyer, 2021; Min et al., 2021] work in the popular
centralized parameter server (PS) scheme, they often pay the
price of heavy preprocessing and complex workflow, in pur-
suit of efficiency and scalability. By nature of GNNs, the in-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6480

tensive communication between all the workers and the cen-
tral PS plus the waiting time for stragglers may lead to high
communication overhead [Cai et al., 2021]. Decentralized ar-
chitectures, however, can be more robust and easier to deploy,
by avoiding the inconvenience in implementing and tuning a
PS and centralized bottleneck bandwidth [Li et al.,]. Hence,
Tripathy et al. [Tripathy et al., 2020] offer CAGNET – so far
the only SOTA decentralized parallel algorithms [Gholami et
al., 2018] adapted to GNNs. However, it calls for redundant
and unnecessary broadcasts of all embeddings and gradients.
Besides, all the workers must wait for stragglers to synchro-
nize, leading to extra communication overhead.

In this paper, to fill this gap in efficient GNN process-
ing, we propose SANCUS, a staleness-aware communication-
avoiding decentralized GNN training system via adaptively
skipping broadcast and caching historical embeddings with
bounded staleness. To bypass the irregular communication
between GPUs, we firstly revisit the parallel algorithms to
distribute GNNs [Tripathy et al., 2020] and decrease commu-
nication overhead in a fundamentally distinct way. As Fig-
ure 2 shows, each GPU loads the split submatrices without
taking the semantic meaning into account, regarding the de-
centralized GNN processing purely as a sequence of matrix
multiplication operations. The excessively large adjacency
and embedding matrices are sliced into Ai and Hi (i ∈ [1, 4])
and distributed to GPUi−1 with the full weight matrix W.
Then H1 to H4 are sequentially one-to-all broadcast to all
GPUs in parallel. After 4 broadcasts, the whole H updates
for a layer. By moving intact sub-matrices, SANCUS takes ad-
vantage of data parallelism to avoid communication of inten-
sive neighbor fetching in Figure 1. Secondly, to further avoid
communication under a decentralized scheme, we propose
to cache and skip-broadcast the histrocial embeddings. We
define historical embeddings as the embedding sub-matrices
from earlier epochs in each distributed process, i.e., the sub-
matrix Hi individually computed on GPUi−1 in Figure 2. We
utlize caching and design a novel skip-broadcast operator to
support historical embeddings in SANCUS. Thirdly, to man-
age the system staleness caused by using mixed-version emb-

G
P

U
 0

𝑨𝟏
𝑾

GPU 1 GPU 3GPU 2

𝑨𝟏
𝑨𝟐
𝑨𝟑
𝑨𝟒

𝑯𝟏
𝑯𝟐
𝑯𝟑
𝑯𝟒

𝑾

𝑯𝟐
𝑨𝟐 𝑨𝟑 𝑨𝟒

𝑾𝑾𝑾 𝑯𝟑 𝑯𝟒

𝑯𝟏

B
ro

ad
cast

O
rd

e
r

Input

Figure 2: A toy 2-layer GNN example on SANCUS: GPUi−1 keeps
its shards of Hi and Ai, with a full W ; Hi are sent to all GPUs in
order via one-to-all broadcast (arrows omitted without loss of gen-
erality). After 4 sequential broadcasts →,→,→,→ and on-device
computation, since the broadcasts are in parallel, all Hi updates for
GPUi−1. Next, SANCUS may tolerate H3 to skip 1 broadcast as
shown by 99K. In total, only 4 + 3 = 7 broadcasts are needed.

eddings on each GPU, we propose the generalization of
the widely-used bounded gradient staleness in centralized
schemes [Cipar et al.,], to historical embeddings. We in-

troduce a set of novel bounded embedding staleness metrics
in decentralized GNNs. Particularly, to directly avoid com-
munication, SANCUS adaptively skip-broadcasts embeddings
within bounds and automatically reuses cached historical em-
beddings; otherwise, if embeddings become too stale, the re-
sults are broadcast and updated in cache among GPUs to keep
the system staleness within bounds. Taking Figure 2 as a toy
example, the embeddings H3 is not too stale, then SANCUS
can skip broadcast once, now SANCUS only needs 7 broad-
casts to update all embeddings in the 2-layer GNN. Again, it
should be emphasized that there is no individual embedding
fetching in GNN aggregation with SANCUS. Compared to
the conventional distributed GNN in Figure 1, only to obtain
the embeddings for node A and E, 10 and 9 request-and-send
operations are needed. To update all, 59 request-and-send
operations are needed. However, SANCUS only needs as less
as 7 broadcasts in total as Figure 2 shows. Also, it should
be pointed out that SANCUS has few burden of preprocessing
and can be easily applied to any distributed GNNs based on
arbitrary matrix blocking and direct matrix operations.

In summary, our major contributions are: (1) Problem Ex-
ploration. We share a new perspective to accelerate GNNs
by introducing historical embeddings with bounded staleness
to decentralized GNNs, treating GNN processing purely as
sequential matrix operations. (2) Novel Metrics. We intro-
duce a set of novel bounded embedding staleness metrics in
decentralized GNNs to effectively manage the system stale-
ness caused by historical embeddings. (3) New Criterion.
We provide the communication cost bound of SANCUS. We
prove the approximation errors of the embeddings and gradi-
ents are bounded with convergence guarantee. (4) Prominent
Performance. We evaluate SANCUS on large-scale bench-
mark datasets with prevalent GNN models via different sys-
tem setups, to show its ability to generalize and superiority
in efficiency while preserving effectiveness. SANCUS’s per-
formance with little or no accuracy loss demonstrates consis-
tency with our theoretical findings.

2 Preliminaries
In this section, we introduce the related concepts of node-
level graph representation learning. Let G = (V, E) be an
undirected graph of order N with a set of edges E ⊆ V × V
and nodes V = {v1, v2, ..., vN}. Consider the graph adjacency
matrix A, where the element Aij in the matrix specifies the
relation between the nodes vi and vj with Aij = 1 if there ex-
ists an edge (vi, vj) ∈ E or otherwise Aij = 0. A is symmetric
since G is undirected. Denote Â = D̄−

1
2 ĀD̄−

1
2 as the ad-

jacency matrix after symmetric normalization in GCN [Kipf
and Welling, 2017], where Ā = A + IN denotes the adja-
cency matrix with self-connections and D̄ ∈ RN×N = D+IN
denotes the diagonal node degree matrix.

Without loss of generality, the `-th layer propagation pro-
cess of such GNNs [Abadal et al., 2022; Wu et al., 2021] can
be formulated in matrix form as:

H(`) = σ
(
H(`−1), Â;W(`−1)

)
(1)

where σ denotes the activation function such as ReLU and
W ∈ RF×F denotes the weight matrix. Initially, H(0) = X

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6481

where X ∈ RN×F is the node embedding matrix whose i-th
row represents the length-F embedding vector of node vi.

3 The SANCUS Framework
In this work, we propose SANCUS, an adaptive staleness-
aware communication-avoiding decentralized GNN system.
Fundamentally, SANCUS is simple yet effective which caches
and reuses the stale historical embeddings and skips broad-
cast accordingly during the decentralized GNN training,
based on a general communication-avoiding matrix blocking
algorithm for parallel computing. The details can be referred
in the original paper [Peng et al., 2022].

We provide the overview of SANCUS in Figure 3. Primar-
ily, there are five steps: (1) data loading, (2) staleness bound
checking, (3) embedding broadcasting, (4) GNN model com-
puting, and (5) results caching. Here, we briefly clarify these
steps: (1) to begin with, the whole sparse adjacency ma-
trix of the full graph and the dense embedding matrix are
split into matrix blocks, then loaded to individual worker.
Each worker keeps its own replica of the full model; (2) on
each GPU, before broadcasting the last computing results,
we check whether the staleness of historical embeddings are
within proposed bounds. If the staleness is within bounds,
the embedding broadcast is skipped and the cached histori-
cal embeddings are reused for this iteration’s model comput-
ing; (3) otherwise, if the staleness exceeds the limit, the lat-
est results are broadcast to all workers and updated in cache;
(4) thus either latest embeddings or cached historical embed-
dings are loaded to the GNN model to compute; (5) finally,
updated embeddings are dispatched to next iteration’s stale-
ness check before the broadcast.

…

Embedding Broadcast

Process(1) Process(2)

Data Loading

Staleness
Check

Data Loading

Results
Cache

Staleness
Check

Process(4) Process(3)

Data Loading

Staleness
Check

Data Loading

Staleness
Check

W W

WW

Model
Compute

Results
Cache

Results
Cache

Results
Cache

Model
Compute

Model
Compute

Model
Compute

Figure 3: The overall architecture.

3.1 Historical Embeddings
Inspired by historical embeddings h̃(`) [Chen et al., 2018;
Fey et al., 2021], we generalize the idea to stale intermediate
embedding results computed by other workers in distributed
GNNs. Thus, the embedding matrix H(`) in Equation (1) con-
sists of two parts – the latest embedding submatrices from ac-
tive workers which just broadcast the results and the historical
embedding submatrices from stale workers whose embedding
variation is small enough to be neglected. Historical embed-
dings are stored in cache on each GPU, preserving only the
fresh ones. Let [] denotes the vertical concatenation of matrix
blocks, then:

H(`) = σ

([
H

(`−1)
i

]P
i=1

, Â;W(`−1)

)
≈ σ

([
H

(`−1)

i:P (i)⇐ACTIVE | H̃
(`−1)

i:P (i)⇐STALE

]P
i=1

, Â;W(`−1)

)
.

(2)

3.2 Skip-Broadcast
We propose a communication primitive Skip-Broadcast that
is efficient to implement and requires no centralized parame-
ter servers. Skip-Broadcast allows seamless reshaping of the
communication topology during training. To realize Skip-
Broadcast, SANCUS keeps the state flag Flag(i) on each
worker i to indicate the corresponding worker status for the
embeddings Hi computed on that worker, where i ∈ [1, p].
Specifically, Flag(i)==ACTIVE means worker i needs to
broadcast its latest version of embeddings Hi. During the
broadcast, the latest embeddings Hi should be sent to all
other workers and cached there respectively. If Flag(i)
turns to STALE, SANCUS can Skip-Broadcast Hi and let
other workers utilize their cached stale embeddings.

3.3 Bounded Embedding Staleness
To manage system staleness, SANCUS supports bounded
embedding staleness. Though bounded gradient staleness
is deeply investigated [Cipar et al., ; Jiang et al., 2017;
Xian et al., 2021] in traditional distributed ML for stochastic
gradient descent (SGD), its main purpose is to help SGD con-
verge, mitigating negative effects from stale gradients. How-
ever, we actively utilize stale embeddings to avoid communi-
cation. By introducing a set of novel bounded embedding
staleness metrics ε, we control the errors caused by stale-
ness. We provide three staleness [Peng et al., 2022] of histor-
ical embeddings, Epoch-Fixed εE , Epoch-Adaptive εA, and
Epoch-Adaptive Variation-Gap εH . All metrics are defined
and checked locally on each worker, we need no centralized
or global monitor to break the decentralized scheme. Partic-
ularly, one can easily adapt the general definitions above to
any specific distributed GNN systems as the metrics to study
how the stale results affect the distributed training.

4 Theoretical Results
With SANCUS, we first obtain a tighter communication cost
bound. Then, we bound the approximation errors of the em-
beddings and gradients and guarantee the convergence. The
comprehensive theoretical results can be found in the original
paper [Peng et al., 2022].

5 Experiments
We evaluate SANCUS on five commonly-used [Abadal et
al., 2022] large-scale benchmark datasets Flickr, Reddit,
Amazon, ogbn-products, and ogbn-papers100M [Zeng et al.,
2020; Hu et al.,]. We implement defined bounded stale-
ness εE as SCS-E, εA as SCS-A, and εH as SCS-H cor-
respondingly. Additionally, we implement SkipG [Miao et
al., 2021] on bounded gradient staleness from traditional dis-
tributed training. Our experiments are performed on four dif-
ferent GPU configurations: ¬ eight RTX 2080 Ti connected

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6482

CAGNET SkipG SCS-E123 SCS-A123 SCS-H123
0

5

10

15

20

25
Ti

m
e

(s
ec

on
ds

)
Flickr (hidden feature=16, layer=3, GPU=)

CAGNET SkipG SCS-E123 SCS-A123 SCS-H123
0

10

20

30

40

50

Ti
m

e
(s

ec
on

ds
)

Reddit (hidden feature=16, layer=3, GPU=)

CAGNE SkipG SCS-E123 SCS-A123 SCS-H123
0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

Amazon (hidden feature=256, layer=4, GPU=)

CAGNET SkipG SCS-E123 SCS-A123 SCS-H123
0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

ogb-products(hidden feature=16,layer=3,GPU=)

Figure 4: Communication-avoiding performance using all 8 GPUs. In each subplot, x-axis denotes the methods compared: CAGNET [2020],
SkipG [2021], SCS-E1/E2/E3 with εE = {1, 2, 3}, SCS-A1/A2/A3 with εA = {1, 2, 3}, SCS-H1/H2/H3 with εH = {0.01, 0.02, 0.03};
y-xis denotes time proportion during training, blue bar denotes computation cost, and orange bar denotes communication cost.

50
0

CAGNET/ C/ C/ SCS-A1/ S/ S/

100

150

200

250

300

Ti
m

e
(s

ec
on

ds
)

ogbn-products(hidden feature=16,total layer=3)

COMP
COMM

(a) GPU Configurations.

5

25

30

Ti
m

e
(s

ec
on

ds
)

Flickr (hidden feature=16, layer=3)
COMP
COMM

0
CAGNET/2 SCS-A 1/2 C /4 S-A 1/4 C/8 S-A 1/8

10

15
20

(b) Number of GPUs.

C/3 C/4 S-E1/3 E1/4 S-H1/3 H1/4 S-A1/3 A1/4

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

Reddit (hidden feature=16, GPU=)
COMP
COMM

0

(c) Number of Total GNN Layers.

 C/64 SCS-A1/16 S/32 S/64CAGNET/16 C/32

500

1000

1500

2000

Ti
m

e
(s

ec
on

ds
)

ogbn-100m-papers (total layer=3, GPU=)
COMP
COMM

0

(d) Size of Hidden Feature.

Figure 5: The performance with system variants compared to CAGNET. In each subplot, y-axis denotes the time proportion during training,
where blue bar denotes model computation cost and orange bar denotes communication cost. For the x-axis, we denote the method/GPU
configurations in Fig. 5a, method/number of GPUs in Fig. 5b, method/layer number in Fig. 5c, and method/hidden feature size in Fig. 5d.

by PCIe 3.0 × 16; two servers connected by 10Gbps Eth-
ernet - each has four RTX 2080 Ti via PCIe 3.0; ® four A100
40GB via NVLink; ¯ four V100 32GB via NVLink.

First, we demonstrate the effectiveness on communica-
tion reduction of SANCUS on different benchmark datasets.
In Figure 4, we show SANCUS results with accuracy loss
within 0.01. Compared to the SOTA CAGNET and bounded-
gradient method SkipG, all our system variants further avoid
communication by at least 35% to 74% with bounded embed-
ding staleness. SANCUS can preserve the GNN performance
on all datasets. Considering the better performance preserv-
ing, the more adaptive SCS-A/H are in fact more robust.

Also, we demonstrate the generality of SANCUS with its
worst-behaved baselines to study the influence of different
system configurations. Figure 5 shows SANCUS achieves
consistent communication avoiding in all configurations.
As Figure 5b shows, with increasing GPU number, the total
cost compared to CAGNET are reduced continually. Though
communication cost increases with the GPU number, with
SCS-H, we can reduce the communication cost using all 8
GPUs to get close to the communication cost of CAGNET
using 2 GPUs, together with 67% reduction on the compu-
tation cost. Importantly, the communication proportion we
avoid increases with the number of GPU used, which is hard
for centralized architectures [Lian et al., 2017] to achieve.

In Section 5, we give an overall throughput comparison of
SANCUS (SCS-A1) to five SOTA distributed GNN systems
over their commonly-used Reddit dataset. The worst-behaved
baseline SCS-A1, in fact, still outperforms all related SOTA
systems. SCS-A1 processes the fastest 10.3 epochs per sec-
ond with an average 1.86× throughput. As compared to Do-
rylus which aims at low-cost training, we are 68.7× faster

and 80% cheaper. We refer interested readers to the original
paper [Peng et al., 2022] for more experiments.

System Config TP Reference

SCS-A V100*4 10.3 —

CAGNET V100*4 9 Fig 1 [2020]

RoC P100*4 5 Fig 5 [2020]

Dorylus Lambda on CPU*2 0.15 Sec 7.2 Table 4 [2021]

PaGraph 1080ti*4 5 Sec 5.2 5.5; Fig 9 [2020]

DGCL V100*4 ∼ 7 Fig 8(a) [2021]

Table 1: TP is the throughput (epochs/s) of GCN on Reddit dataset
over SOTA distributed GNN systems.

6 Conclusion

We present SANCUS, the first staleness-aware communication
avoiding decentralized GNN system that adaptively avoids
communication by caching historical embeddings and man-
aging embedding staleness, while preserving model perfor-
mance. We propose a set of novel bounded embedding stal-
eness metrics. Then, we integrate the historical embedding
cache and bounded embedding staleness check into decen-
tralized GNNs to adaptively skip broadcast among GPUs. We
present theoretical analysis to bound communication costs
and approximation errors and conduct extensive experiments
over large-scale benchmark datasets to demonstrate the effi-
ciency and effectiveness of SANCUS, as well as the necessity
of the adaptive strategy to manage system staleness.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6483

Acknowledgments
Yingxia Shao’s work is supported by the National Natural
Science Foundation of China (Nos. U1936104, 62192784)
and CCF-Baidu Open Fund. Yanyan Shen is partially sup-
ported by Shanghai Municipal Science and Technology Ma-
jor Project (2021SHZDZX0102). Lei Chen’s work is par-
tially supported by National Key Research and Development
Program of China Grant No. 2018AAA0101100, the Hong
Kong RGC GRF Project 16202218, CRF Project C6030-
18G, C1031-18G, C5026-18G, CRF C2004-21GF, AOE
Project AoE/E-603/18, RIF Project R6020-19, Theme-based
project TRS T41-603/20R, China NSFC No. 61729201,
Guangdong Basic and Applied Basic Research Foundation
2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX
and ITS/470/18FX, Microsoft Research Asia Collabora-
tive Research Grant, HKUST-NAVER/LINE AI Lab, Didi-
HKUST joint research lab, HKUST-Webank joint research
lab grants and HKUST Global Strategic Partnership Fund
(2021 SJTU-HKUST).

References
[Abadal et al., 2022] Sergi Abadal, Akshay Jain, Robert

Guirado, Jorge López-Alonso, and Eduard Alarcón. Com-
puting graph neural networks: A survey from algorithms
to accelerators. ACM Comput. Surv., 54(9):191:1–191:38,
2022.

[Cai et al., 2021] Zhenkun Cai, Xiao Yan, Yidi Wu, Kai-
hao Ma, James Cheng, and Fan Yu. DGCL: an efficient
communication library for distributed GNN training. In
EuroSys ’21: Sixteenth European Conference on Com-
puter Systems, Online Event, United Kingdom, April 26-
28, 2021, pages 130–144. ACM, 2021.

[Chen et al., 2018] Jianfei Chen, Jun Zhu, and Le Song.
Stochastic training of graph convolutional networks with
variance reduction. In ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pages 941–949.
PMLR, 2018.

[Cipar et al.,] James Cipar, Qirong Ho, Jin Kyu Kim, Se-
unghak Lee, Gregory R. Ganger, Garth Gibson, Kimberly
Keeton, and Eric P. Xing. Solving the straggler problem
with bounded staleness. In HotOS XIV, Santa Ana Pueblo,
New Mexico, USA, May 13-15, 2013. USENIX Associa-
tion.

[Fey et al., 2021] Matthias Fey, Jan Eric Lenssen, Frank We-
ichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings.
In ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages
3294–3304. PMLR, 2021.

[Gandhi and Iyer, 2021] Swapnil Gandhi and Anand Pad-
manabha Iyer. P3: distributed deep graph learning at scale.
In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2021, July 14-16, 2021, pages
551–568. USENIX Association, 2021.

[Gholami et al., 2018] Amir Gholami, Ariful Azad, Peter H.
Jin, Kurt Keutzer, and Aydin Buluç. Integrated model,
batch, and domain parallelism in training neural networks.
In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2018, Vienna, Aus-
tria, July 16-18, 2018, pages 77–86. ACM, 2018.

[Hu et al.,] Weihua Hu, Matthias Fey, Marinka Zitnik, Yux-
iao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for ma-
chine learning on graphs. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

[Jia et al., 2020] Zhihao Jia, Sina Lin, Mingyu Gao, Matei
Zaharia, and Alex Aiken. Improving the accuracy, scal-
ability, and performance of graph neural networks with
roc. In Proceedings of Machine Learning and Systems
2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020.
mlsys.org, 2020.

[Jiang et al., 2017] Jiawei Jiang, Bin Cui, Ce Zhang, and
Lele Yu. Heterogeneity-aware distributed parameter
servers. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Confer-
ence 2017, Chicago, IL, USA, May 14-19, 2017, pages
463–478. ACM, 2017.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017.

[Li et al.,] Hao Li, Asim Kadav, Erik Kruus, and Cristian
Ungureanu. MALT: distributed data-parallelism for exist-
ing ML applications. In EuroSys 2015, Bordeaux, France,
April 21-24, 2015. ACM.

[Lian et al., 2017] Xiangru Lian, Ce Zhang, Huan Zhang,
Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentral-
ized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient de-
scent. In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5330–5340, 2017.

[Lin et al., 2020] Zhiqi Lin, Cheng Li, Youshan Miao,
Yunxin Liu, and Yinlong Xu. Pagraph: Scaling GNN train-
ing on large graphs via computation-aware caching. In
SoCC ’20: ACM Symposium on Cloud Computing, Virtual
Event, USA, October 19-21, 2020, pages 401–415. ACM,
2020.

[Ma et al., 2019] Lingxiao Ma, Zhi Yang, Youshan Miao, Ji-
long Xue, Ming Wu, Lidong Zhou, and Yafei Dai. Neu-
graph: Parallel deep neural network computation on large
graphs. In 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019.
USENIX Association, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6484

[Miao et al., 2021] Xupeng Miao, Xiaonan Nie, Yingxia
Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, and Bin Cui.
Heterogeneity-aware distributed machine learning training
via partial reduce. In SIGMOD ’21: International Confer-
ence on Management of Data, Virtual Event, China, June
20-25, 2021, pages 2262–2270. ACM, 2021.

[Min et al., 2021] Seungwon Min, Kun Wu, Sitao Huang,
Mert Hidayetoglu, Jinjun Xiong, Eiman Ebrahimi, Dem-
ing Chen, and Wen-mei W. Hwu. Large graph convo-
lutional network training with gpu-oriented data commu-
nication architecture. Proc. VLDB Endow., 14(11):2087–
2100, 2021.

[Peng et al., 2022] Jingshu Peng, Zhao Chen, Yingxia Shao,
Yanyan Shen, Lei Chen, and Jiannong Cao. SANCUS:
staleness-aware communication-avoiding full-graph de-
centralized training in large-scale graph neural networks.
Proc. VLDB Endow., 15(9):1937–1950, 2022.

[Thorpe et al., 2021] John Thorpe, Yifan Qiao, Jonathan Ey-
olfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang
Wei, Keval Vora, Ravi Netravali, Miryung Kim, and
Guoqing Harry Xu. Dorylus: Affordable, scalable,
and accurate GNN training with distributed CPU servers
and serverless threads. In OSDI 2021, pages 495–514.
USENIX Association, 2021.

[Tripathy et al., 2020] Alok Tripathy, Katherine A. Yelick,
and Aydin Buluç. Reducing communication in graph neu-
ral network training. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2020, Virtual Event, Novem-
ber 9-19, 2020. IEEE/ACM, 2020.

[Wang et al., 2020] Zhao Wang, Yijin Guan, Guangyu Sun,
Dimin Niu, Yuhao Wang, Hongzhong Zheng, and Yinhe
Han. Gnn-pim: A processing-in-memory architecture for
graph neural networks. In Conference on Advanced Com-
puter Architecture, pages 73–86. Springer, 2020.

[Wu et al., 2021] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and Philip S. Yu. A com-
prehensive survey on graph neural networks. IEEE Trans.
Neural Networks Learn. Syst., 32(1):4–24, 2021.

[Xian et al., 2021] Lintao Xian, Bingzhe Li, Jing Liu,
Zhongwen Guo, and David H. C. Du. H-PS: A
heterogeneous-aware parameter server with distributed
neural network training. IEEE Access, 9:44049–44058,
2021.

[Zeng et al., 2020] Hanqing Zeng, Hongkuan Zhou, Ajitesh
Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning
method. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020.

[Zheng et al., 2020] Da Zheng, Chao Ma, Minjie Wang, Jin-
jing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng
Zhang, and George Karypis. Distdgl: Distributed graph
neural network training for billion-scale graphs. pages 36–
44, 2020.

[Zhu et al., 2019] Rong Zhu, Kun Zhao, Hongxia Yang, Wei
Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: A comprehensive graph neural network plat-
form. Proc. VLDB Endow., 12(12):2094–2105, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6485

	Introduction
	Preliminaries
	The Sancus Framework
	Historical Embeddings
	Skip-Broadcast
	Bounded Embedding Staleness

	Theoretical Results
	Experiments
	Conclusion

