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Abstract
We approach instantaneous mapping, converting
images to a top-down view of the world, as a trans-
lation problem. We show how a novel form of
transformer network can be used to map from im-
ages and video directly to an overhead map or
bird’s-eye-view (BEV) of the world, in a single
end-to-end network. We assume a 1-1 correspon-
dence between a vertical scanline in the image,
and rays passing through the camera location in an
overhead map. This lets us formulate map gen-
eration from an image as a set of sequence-to-
sequence translations. This constrained formula-
tion, based upon a strong physical grounding of
the problem, leads to a restricted transformer net-
work that is convolutional in the horizontal direc-
tion only. The structure allows us to make efficient
use of data when training, and obtains state-of-the-
art results for instantaneous mapping of three large-
scale datasets, including a 15% and 30% relative
gain against existing best performing methods on
the nuScenes and Argoverse datasets, respectively.

1 Introduction
Many tasks in autonomous driving are substantially easier
from a top-down, map or bird’s-eye view (BEV). As many au-
tonomous agents are restricted to the ground-plane, an over-
head map is a convenient low-dimensional representation,
ideal for navigation, that captures relevant obstacles and haz-
ards. For scenarios such as autonomous driving, semantically
segmented BEV maps must be generated on the fly as an in-
stantaneous estimate, to cope with freely moving objects and
scenes that are visited only once.

Inferring BEV maps from images requires determining
the correspondence between image elements and their loca-
tion in the world. Multiple works guide their transformation
with dense depth and image segmentation maps [Sengupta et
al.2012,Pan et al.2020,Liu et al.2020,Wang et al.2019,Schul-
ter et al.2018], while others [Lu et al.2019, Mani et al.2020,
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Roddick and Cipolla2020, Philion and Fidler2020, Saha et
al.2021] have developed approaches which resolve depth and
semantics implicitly. Although some exploit the camera’s
geometric priors [Roddick and Cipolla2020, Philion and Fi-
dler2020, Saha et al.2021], they do not explicitly learn the
interaction between image elements and the BEV-plane.

Unlike previous approaches, we treat the transformation to
BEV as an image-to-world translation problem, where the ob-
jective is to learn an alignment between vertical scan lines
in the image and polar rays in BEV. The projective geome-
try therefore becomes implicit to the network. For our align-
ment model, we adopt transformers [Vaswani et al.2017], an
attention-based architecture for sequence prediction. With its
attention mechanisms, we explicitly model pairwise interac-
tions between vertical scanlines in the image and their polar
BEV projections.

The contributions of our paper are (1) We formulate gener-
ating a BEV map from an image as a set of 1D sequence-to-
sequence translations. (2) By physically grounding our for-
mulation we construct a data-efficient transformer network
that is convolutional with respect to the horizontal x-axis, yet
spatially-aware. (3) We show how axial attention improves
performance by providing temporal awareness and demon-
strate state-of-the-art results across three large-scale datasets.

2 Related Work
BEV object detection: Early approaches detected objects
in the image and regressed 3D pose parameters [Mousavian
et al.2017, Kehl et al.2017, Simonelli et al.2019, Poirson et
al.2016, Palazzi et al.2017, Chen et al.2016]. OFTNet [Rod-
dick et al.2019] generated 3D features from a projected voxel
grid for 3D object detection. Our approach decouples the re-
lationship between the distance from the camera and the con-
text available to each voxel, allowing each BEV position to
access the entire vertical axis of the image.

Inferring semantic BEV maps: Current state-of-the-art
approaches can be categorized as either ‘compression’ [Rod-
dick and Cipolla2020, Saha et al.2021] or ‘lift’ [Philion and
Fidler2020,Hu et al.2021] approaches. ‘Compression’ meth-
ods vertically condense image features and expand into BEV,
implicitly relating an object’s depth to its available context.
However, they may ignore small, distant objects. ‘Lift’ ap-
proaches expand each image into a frustum of features to
learn pixel-wise depth distribution but lack spatial awareness
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and may overfit. We address this by (1) maintaining image
spatial structure for alignment with the BEV-plane and (2)
introducing spatial awareness to assign image context across
the ray space based on content and position.

Encoder-decoder transformers: Transformers [Vaswani
et al.2017] through their attention mechanisms [Bahdanau et
al.2015] have produced state-of-the-art performance in many
tasks [Devlin et al.2019,Dosovitskiy et al.2021]. Like us, the
2D detector DETR [Carion et al.2020] performs decoding in
a spatial domain through attention. However, their predicted
output sequences are sets of permutation invariant object de-
tections without any spatial order. In contrast, our predicted
BEV ray sequences is inherently spatial and so we need per-
mutation equivariance in our decoding.

3 Method
Our goal is to learn a model Φ that takes a monocular image I
and produces a semantically segmented birds-eye-view map
of the scene Y. Formally, given an input image I ∈ R3×H×W

and its intrinsic matrix C ∈ R3×3, our model predicts a set
of binary variables Yk ∈ RX×Z for each class k ∈ K:
p(Yk|I,C) = Φ(I,C), where Φ is a neural network trained
to resolve both semantic and positional uncertainties. The de-
sign of our network rests on our novel transformation between
the image-plane PI and BEV-plane PBEV . Our end-to-end
approach, as shown in Fig. 1a, is composed of the following
subtasks: (1) constructing representations in the image-plane
which encode semantics and some knowledge of depth, (2)
transforming the image-plane representation to BEV and (3)
semantically segmenting the BEV-representation.

3.1 Image-to-BEV Translation
Transforming from image to BEV requires a mapping which
determines the image pixel correspondence to BEV polar ray.
As camera geometry dictates a 1-1 correspondence between
each vertical scanline and its associated ray, we treat the map-
ping as a set of sequence-to-sequence translations. With ref-
erence to Fig. 1b, we want to find the discretized radial depths
of elements in the vertical scan line of an image, up to r me-
tres from the camera: we have an image column SI ∈ RH ,
and we want to find its BEV ray Sϕ(BEV ) ∈ Rr, where H
is the height of the column and r represents the radial dis-
tance from the camera. We propose learning the alignment
between input scanlines and output polar rays through an at-
tention mechanism [Bahdanau et al.2015]. We employ atten-
tion in two ways: (1) inter-plane attention as shown in Fig.1b,
which initially assigns features from a scanline to a ray and
(2) polar ray self-attention that globally reasons about its po-
sitional assignments across the ray. We motivate both uses
below, starting with inter-plane attention.

Inter-plane attention: Consider a semantically segmented
image column and its corresponding polar BEV ground truth.
Here, alignment between the column and the ground truth ray
is ‘hard’, i.e. each pixel in the polar ray corresponds to a
single semantic category from the image column. Thus, the
only uncertainty that must be resolved to make this a hard-
assignment is the depth of each pixel. However, when making
this assignment, we need to assign features that aid in resolv-
ing semantics and depth. Hence, a hard assignment would be

detrimental. Instead, we want a soft-alignment, where every
pixel in the polar ray is assigned a combination of elements
in the image column, i.e. a context vector. Concretely, when
generating each radial element Sϕ(BEV )

i , we want to give it
a context ci based on a convex combination of elements in
the image column SI and the radial position ri of the element
S
ϕ(BEV )
i along the polar ray. This need for context assign-

ment motivates our use of soft-attention between the image
column and its polar ray, as illustrated in Fig. 1.

Formally, let h ∈ RH×C represent the encoded “memory”
of an image column of height H , and let y ∈ Rr×C repre-
sent a positional query which encodes relative position along
a polar ray of length r. We generate a context c based on
the input sequence h and the query y through alignment α
between elements in the input sequence and their radial posi-
tion. First, the input sequence h and positional query y are
projected by matrices WQ ∈ RC×D and WK ∈ RC×D to the
corresponding representations Q and K:

Q(yi) = yiWQ, K(hi) = hiWK . (1)

Following common terminology, we refer to Q and K as
‘queries’ and ‘keys’ respectively. After projection, an un-
normalized alignment score ei,j is produced between each
memory-query combination using the scaled-dot product
[Vaswani et al.2017]:

ei,j =
⟨Q(yi),K(hj)⟩√

D
. (2)

The energy scalars are then normalized using a softmax to
produce a probability distribution over the memory:

αi,j =
exp(ei,j)∑H
k=1 exp(ei,k)

. (3)

Finally, the context is computed as a weighted sum of K:

ci =
H∑
j=1

αi,jK(hj). (4)

Generating the context this way allows each radial slot ri
to independently gather relevant information from the image
column; and represents an initial assignment of components
from the image to their BEV locations. Such an initial assign-
ment is analogous to lifting a pixel based on its depth. How-
ever, it is lifted to a distribution of depths and thus should be
able to overcome common pitfalls of sparsity and elongated
object frustums. This means that the image-context available
to each radial slot is decoupled from its distance to the cam-
era. Finally, to generate BEV feature S

ϕ(BEV )
i at radial po-

sition ri, we globally operate on the assigned contexts for all
radial positions c = {c1, ..., cr} : S

ϕ(BEV )
i = g(c), where

g(.) is a nonlinear function reasoning across the entire polar
ray. We describe its role below.

Polar ray self-attention: The need for the non-linear func-
tion g(.) as a global operator arises out of the limitations
brought about by generating each context vector ci indepen-
dently. Given the absence of global reasoning for each con-
text ci, the spatial distribution of features across the ray is
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Figure 1: (A) Our model architecture. The Frontend extracts spatial features at multiple scales. Encoder-decoder transformers translate
spatial features from the image to BEV. An optional Dynamics Module uses past spatial BEV features to learn a spatiotemporal BEV
representation. A BEV Segmentation Network processes the BEV representation to produce multi-scale occupancy grids. (B) Our inter-
plane attention mechanism. In our attention-based model, vertical scan lines in the image are passed one by one to a transformer encoder to
create a ‘memory’ representation which is decoded into a BEV polar ray.

unlikely to be congruent with object shape, locally or glob-
ally. Therefore, we need to operate globally across the ray
to allow the assigned scanline features to reason about their
placement within the context of the entire ray, and thus aggre-
gate information in a manner that generates coherent object
shapes. Global computation across the polar ray is computed
much like soft-attention outlined in Eq. (1) - (4), except that
the self-attention is applied to the ray only. Eq. (1) is recal-
culated with a new set of weight matrices with inputs to both
equations replaced with the context vector ci.

Extension to transformers: Our inter-plane attention can
be extended to attention between the encoder-decoder of
transformers by replacing the key K(hj) in Eq. (4) with an-
other projection of the memory h, the ‘value’. Similarly,
polar-ray self-attention can be placed within a transformer-
decoder by replacing the key in Eq. (4) with a projection of
the context ci to represent the value.

3.2 Model Architecture
We build an architecture that facilitates our goal of predicting
a semantic BEV map from a monocular image around this
alignment model. As shown in Fig. 1, it contains three main
components: a standard CNN backbone which extracts spa-
tial features in the image-plane, encoder-decoder transform-
ers to translate features from the image-plane to BEV and
finally a segmentation network which decodes BEV features
into semantic maps.

2D Multi-scale feature learning in PI : Reconstructing
an image in BEV requires representations which can detect
scene elements at varying depths and scale. Like prior ob-
ject detection methods [Roddick and Cipolla2020, Saha et
al.2021], we handle this scale variance using a CNN back-
bone with a feature pyramid to produce feature maps f It,s ∈
RC×hs×ws at multiple scales u ∈ U .

1D Transformer encoders in PI : This component en-
codes long-range vertical dependencies across the input fea-
tures through self-attention, using an encoder for each scale
u of features (second left block of Fig. 1a). Each scale of
features f It,u is first reshaped into its individual columns, cre-
ating wu sequences of length hu and dimension C. The U

encoders each produce a memory hI
t,u ∈ Rwu×hu×C .

1D Transformer decoders in PBEV : This component
generates sequences of BEV features along a polar ray
through attention across the encoder memory. As shown in
Fig. 1, there is one transformer decoder for each transformer
encoder. Every encoded image column hI ∈ Rhu×C is trans-
formed to a BEV polar ray fϕ(BEV ) ∈ Rru×C , where ru is
the radial distance along the ray. The U decoders each output
wu BEV sequences of length ru along the ray, producing a
polar encoding fϕ(BEV ) ∈ Rwu×ru×C . Finally we concate-
nate along the ray to obtain a single 2D polar feature map and
convert to a rectilinear grid, to create our BEV representation
fBEV
t ∈ RC×Z×X .

Dynamics with axial attention in PBEV : This optional
component (Fig. 1a) incorporates temporal information from
past estimates to build a spatiotemporal BEV representation
of the present using axial-attention.

Segmentation in PBEV : To decode our BEV features
into semantic occupancy grids, we adopt a convolutional
encoder-decoder structure used in prior segmentation net-
works [Yu et al.2018, Saha et al.2021]. The aggregated mod-
ule structure (right block of Fig. 1a), takes BEV features
fBEV
t ∈ RC×Z×X and outputs occupancy grids mBEV

t,u ∈
Rclasses×xu×zu for scales u ∈ U .

Loss in PBEV : As the training signal provided to the pre-
dicted occupancy grids must resolve both semantic and po-
sitional uncertainties, we use the same multi-scale Dice loss
as [Saha et al.2021]. At each scale u, the mean Dice Loss
across classes K is:

Lu = 1− 1

|K|

K∑
k=1

2
∑N

i ŷki y
k
i∑N

i ŷki + yki + ϵ
, (5)

where yki is the ground truth binary variable grid cell, ŷki the
predicted sigmoid output of the network, and ϵ is a constant
used to prevent division by zero.

4 Experiments and Results
We compare our approach to current state-of-the-art ap-
proaches on the nuScenes [Caesar et al.2020], Argoverse
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Method Drivable Crossing Walkway Carpark Bus Bike Car Cons.Veh. Motorbike Trailer Truck Ped. Cone Barrier Mean

VPN [Pan et al.2020] 58.0 27.3 29.4 12.3 20.0 4.4 25.5 4.9 5.6 16.6 17.3 7.1 4.6 10.8 17.5
PON [Roddick and Cipolla2020] 60.4 28.0 31.0 18.4 20.8 9.4 24.7 12.3 7.0 16.6 16.3 8.2 5.7 8.1 19.1

STA-S [Saha et al.2021] 71.1 31.5 32.0 28.0 22.8 14.6 34.6 10.0 7.1 11.4 18.1 7.4 5.8 10.8 21.8
Our Spatial 72.6 36.3 32.4 30.5 32.5 15.1 37.4 13.8 8.1 15.5 24.5 8.7 7.4 15.1 25.0

STA-ST [Saha et al.2021] 70.7 31.1 32.4 33.5 29.2 12.1 36.0 12.1 8.0 13.6 22.8 8.6 6.9 14.2 23.7
Our Spatiotemp. 74.5 36.6 35.9 31.3 32.8 14.7 39.7 14.2 7.6 13.9 26.3 9.5 7.6 14.7 25.7

Table 1: IoU(%) on the nuScenes validation split and baseline results of [Roddick and Cipolla2020].

Image Ground truth Our spatial Our spatiotemp.PON [8]VPN [2] STA-S [10]

Figure 2: Qualitative results on the nuScenes validation set of [Roddick and Cipolla2020].

[Chang et al.2019] and Lyft [Kesten et al.2019] datasets.

Implementation: Our frontend uses a pretrained ResNet-
50 [He et al.2016] with a feature pyramid [Lin et al.2017] on
top. BEV feature maps built by the transformer decoder have
a resolution of 100×100 pixels, with each pixel representing
0.5m2 in the world. Our spatiotemporal model takes a 6Hz
sequence of 4 images, where the final frame is the time step
we make the prediction for. We train our network end-to-end
with an Adam optimizer, batch size 8 and initial learning rate
of 5e−5, which we decay by 0.99 every epoch for 40 epochs.

Results: We begin our comparison against ‘compression’
approaches [Roddick and Cipolla2020, Saha et al.2021] on
nuScenes and Argoverse using the train/val splits of [Rod-
dick and Cipolla2020]. We then compare against the ‘lift’
approach of [Philion and Fidler2020, Hu et al.2021] on
nuScenes and Lyft. In Table 1, our spatial model outper-
forms the current state-of-the-art compression approach of
STA-S [Saha et al.2021]. It is the smaller dynamic classes in
particular on which we show significant improvement. This
is supported by our qualitative results in Fig. 2. Our results on
the Argoverse dataset in Table 2 demonstrate similar patterns,
where we improve upon PON [Roddick and Cipolla2020] by
a relative 30%. In Table 3 we outperform LSS [Philion and
Fidler2020] and FIERY [Hu et al.2021] on nuScenes and Lyft
(FIERY [Hu et al.2021] uses the ‘lift’ approach of [Philion
and Fidler2020]). One of the avenues for future work is im-
proving localisation accuracy for distant objects. Finally, our
approach is easily transferrable to indoor mobile robotics ap-
plications once ground truth has been collected to train the
models.

Driv. Veh. Ped. L.Veh. Bic. Bus. Trail. Mot. Mean
PON [Roddick and Cipolla2020] 65.4 31.4 7.4 11.1 3.6 11 0.7 5.7 17.0
Ours 75.9 35.8 5.7 14.9 3.7 30.2 12.2 2.6 22.6

Table 2: IoU(%) on the Argoverse validation split of [Roddick and
Cipolla2020].

nuScenes Lyft
Driv. Car Veh. Driv. Car Veh.

(S) LSS 72.9 32.0 32.0 - 43.1 44.6
(S) FIERY - 37.7 - - - -
(S) Ours 78.9 39.9 38.9 82.0 45.9 45.4
(ST) FIERY - 39.9 -
(ST) Ours 80.5 41.3 40.2

Table 3: IoU(%) for spatial (S)/spatiotemporal (ST) methods.

5 Conclusion
We proposed a novel use of transformer networks to map
from images and video sequences to an overhead map or
bird’s-eye-view of the world. We combine our physical-
grounded and constrained formulation, with ablation studies
that make use of progress in monotonic attention to confirm
our intuitions whether context above or below a point is more
important for this form of map generation. Our novel formu-
lation obtains state-of-the-art results for instantaneous map-
ping of three well-established datasets.
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