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Abstract
Dense Retrieval (DR) has achieved state-of-the-art
first-stage ranking effectiveness. However, the ef-
ficiency of most existing DR models is limited by
the large memory cost of storing dense vectors and
the time-consuming nearest neighbor search (NNS)
in vector space. Therefore, we present RepCONC,
a novel retrieval model that learns discrete Repre-
sentations via CONstrained Clustering. RepCONC
jointly trains dual-encoders and the Product Quan-
tization (PQ) method to learn discrete document
representations and enables fast approximate NNS
with compact indexes. It models quantization as a
constrained clustering process, which requires the
document embeddings to be uniformly clustered
around the quantization centroids. We theoreti-
cally demonstrate that the uniform clustering con-
straint facilitates representation distinguishability.
Extensive experiments show that RepCONC sub-
stantially outperforms a wide range of existing re-
trieval models in terms of retrieval effectiveness,
memory efficiency, and time efficiency.

1 Introduction
Dense Retrieval (DR) has become a popular paradigm for
first-stage retrieval in ad-hoc retrieval tasks. It embeds
queries and documents in a latent vector space with dual-
encoders and uses nearest neighbor search to retrieve relevant
documents. With end-to-end supervised training, DR mod-
els have achieved state-of-the-art ranking performance and
significantly outperform BoW models [Zhan et al., 2021b;
Lin et al., 2020; Xiong et al., 2021].

Despite the success in improving ranking performance,
most existing DR models [Zhan et al., 2021b; Xiong et al.,
2021; Karpukhin et al., 2020] are inefficient in memory us-
age and retrieval speed. For memory inefficiency, the size of
∗This is an abridged version of the paper [Zhan et al., 2022] that

won the Best Paper Award at ACM WSDM 2022.
†Corresponding Author

the embedding index is usually an order of magnitude larger
than that of BoW index [Zhan et al., 2021a]. At runtime,
the vectors must be loaded to costly system memory or even
GPU memory. As for time inefficiency, many existing DR
models conduct exhaustive search, i.e., computing relevance
scores between the submitted query and all documents. As a
result, these DR models cannot use CPUs for retrieval due to
high latency and have to use much more expensive GPUs to
accelerate the search.

To tackle this problem, we present RepCONC, which
stands for learning discrete Representations via CONstrained
Clustering1. RepCONC learns discrete representations with
Product Quantization (PQ) so that the representations can
be encoded into compact indexes for efficient vector search.
RepCONC utilizes joint optimization of dual-encoders and
PQ to achieve effective ranking results. During joint opti-
mization, RepCONC models quantization as a constrained
clustering process, which involves a clustering loss and a uni-
form clustering constraint. The clustering loss is introduced
to train the discrete codes. And the uniform clustering con-
straint facilitates distinguishability of discrete representations
by requiring the vectors to be equally assigned to all quanti-
zation centroids. Besides constrained clustering, RepCONC
further employs vector-based inverted file system (IVF) [Je-
gou et al., 2010] to enable efficient non-exhaustive vector
search on either GPU or CPU.

We conduct experiments on two widely-adopted ad-hoc re-
trieval benchmarks [Bajaj et al., 2016; Craswell et al., 2020]
and compare RepCONC with a wide range of baselines. Ex-
perimental results show that: 1) RepCONC significantly out-
performs competitive vector compression baselines with dif-
ferent compression ratio settings. 2) RepCONC substantially
outperforms various retrieval baselines in terms of retrieval
effectiveness, memory efficiency, and time efficiency.

2 Constrained Clustering Model
In this section, we propose RepCONC, which stands
for learning discrete Representations via CONstrained

1Code and models are available at https://github.com/
jingtaozhan/RepCONC.
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Figure 1: Training process of RepCONC.

Clustering. We first introduce the preliminary of Production
Quantization [Jegou et al., 2010] and then elaborate on our
model.

2.1 Revisiting Product Quantization
RepCONC is based on Product Quantization (PQ) [Jegou et
al., 2010]. For vectors of dimension D, PQ defines M sets
of embeddings, each of which includes K embeddings of di-
mension D/M . They are called PQ Centroid Embeddings.
Formally, let ci,j be the jth centroid embedding from the ith
set:

ci,j ∈ R
D
M (1 ≤ i ≤M, 1 ≤ j ≤ K) (1)

Given a document embedding d ∈ RD, PQ firstly splits it
into M sub-vectors.

d = d1,d2, ...,dM (2)

Then PQ independently quantizes each sub-vector to the near-
est PQ Centroid Embedding. Formally, to quantize a sub-
vector di, PQ selects the nearest ci,ϕi(d):

ϕi(d) = argmin
j
‖ci,j − di‖2 (3)

Let ϕ(d) be the concatenation of ϕi(d):

ϕ(d) = ϕ1(d), ϕ2(d), ..., ϕi(M) ∈ {1, 2, ...,K}M (4)

where comma denotes vector concatenation. ϕ(d) is called
the Index Assignment of d. ϕ(d) can reconstruct the quan-
tized document embedding d̂ as follows:

d̂ = c1,ϕ1(d), c2,ϕ2(d), ..., cM,ϕM (d) ∈ RD (5)

PQ does not explicitly store d or d̂. It only stores the PQ
Centroid Embeddings {ci,j} and Index Assignments ϕ(d).

2.2 Clustering and Representation Learning
RepCONC views joint optimization as a simultaneous clus-
tering and representation learning problem. It utilizes both
the ranking-oriented loss [Zhan et al., 2021a] and a cluster-
ing loss. We illustrate the training workflow in Figure 1.

The ranking-oriented loss computes the ranking loss based
on the compressed document embeddings. Therefore, it bet-
ter evaluates the ranking performance with respect to the cur-
rent compression parameters. Let d+ and d− be relevant and
irrelevant documents, respectively. Ranking-oriented loss Lr

is formulated as:

Lr = − log
e〈q,d̂

+〉

e〈q,d̂+〉 +
∑

d− e〈q,d̂−〉
(6)
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Figure 2: Illustration of Constrained Clustering. Darker colors in
the heatmap indicate higher similarities (smaller distances). With
the constraint, the discrete document embeddings are more diverse.

RepCONC regards quantization as a clustering problem
and additionally introduces the MSE loss Lm:

Lm = ‖d− d̂‖2 (7)

Minimizing Lm requires the document embeddings to be
clustered around the centroid embeddings. Combining both
Lr and Lm helps the model to cluster document embeddings
based on ranking effectiveness. It is expected to produce bet-
ter clustering compared with unsupervised training. The final
loss L is a weighted sum of ranking-oriented loss Lr and the
MSE loss Lm.

L = Lr + λLm (8)

Since quantization is non-differentiable, we explicitly de-
sign the gradient back-propagation policy for document en-
coders. The gradients of uncompressed document embed-
dings are defined as follows:

∂L

∂d
:=

∂Lr

∂d̂
+ λ

∂Lm

∂d
(9)

As the equation shows, we add the gradient of quantized doc-
ument embeddings (the first term). The gradients are further
back-propagated to document encoders. Gradients of other
parameters can be derived with chain rule.

2.3 Importance of Uniform Clustering
It is non-trivial to simultaneously conduct clustering and rep-
resentation learning because the two objects are conflicting
to some extent. Although representation learning encourages
vectors to be distinguishable, clustering encourages vectors
to be identical. In the iterative training process, clustering
objective leads to unbalanced clustering distribution, which
affects the vector distinguishability and compromises rank-
ing effectiveness.

We tackle this challenge by imposing a uniform clustering
constraint. It requires the document sub-vectors to be equally
assigned to all PQ Centroid Embeddings. The learning object
along with the constraint is formally expressed as:

minL subject to ∀i, j : P (ϕi(d) = j) =
1

K
(10)

We illustrate constrained clustering in Figure 2. As the fig-
ure shows, the discrete document embeddings are selected
by minimizing the quantization error (maximizing the simi-
larity) given the uniform clustering constraint. Without the
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constraint, the discrete document embeddings become identi-
cal. Now we theoretically analyze the importance of uniform
clustering. Due to the limitation of space, we summarize the
theoretical conclusions here and refer readers to the full pa-
per [Zhan et al., 2022] for detailed derivation.
Theorem 1. Maximizing the distinguishability of vectors is
equivalent to forcing the vectors to be equally quantized to
all possible Index Assignments.

That is to say, quantizing vectors equally to all possible In-
dex Assignments helps representations to be distinguishable.
Theorem 2. Uniformly clustering sub-vectors is the essential
condition of maximum distinguishability.
Theorem 3. If sub-vectors are independent, uniformly clus-
tering sub-vectors is the sufficient condition of maximum dis-
tinguishability.

Although independence among sub-vectors may not hold
for practical dual-encoders, we believe uniformly clustering
sub-vectors is still helpful for distinguishing quantized vec-
tors.

2.4 Constrained Clustering Optimization
This section shows how to incorporate the uniform clustering
constraint to select Index Assignments during training.

We introduce a posterior distribution q(j|di), which is the
probability that the sub-vector di is quantized to the centroid
ci,j . The Index Assignment, ϕi(d), is the centroid with the
maximum probability:

ϕi(d) = argmax
j
q(j|di) (11)

For PQ that uses Eq. (3), q(j|di) can be regarded as being
computed solely based on quantization error. Here for Rep-
CONC, we compute q(j|di) by minimizing the quantization
error given the uniform clustering constraint:

∀i : min
q

∑
d∈D

K∑
j=1

q(j|di)‖ci,j − di‖2 subject to

∀j, d : q(j|di) ∈ {0, 1},
K∑
j=1

q(j|di) = 1, and
∑
d∈D

q(j|di) =
|D|
K

(12)
where D indicates the set of all documents. The first condi-
tion constrains q(j|di) to be binary, the second condition is
a natural requirement for probability, and the third condition
is exactly the uniform clustering constraint. Without the third
condition, Eq. (11) and (12) degenerate to Eq. (3), i.e., select-
ing Index Assignments with minimum quantization error.

Solving Eq. (12) is particularly difficult because it is a com-
binatorial optimization problem with the scale of millions or
even billions of documents. Therefore, we use an approxi-
mate solution by relaxing q to be continuous and focusing on
uniformly clustering a mini-batch of documents B:

∀i : min
q

∑
d∈B

K∑
j=1

q(j|di)‖ci,j − di‖2

subject to ∀d :
K∑
j=1

q(j|di) = 1 and ∀j :
∑
d∈B

q(j|di) =
|B|
K

(13)

Since ‖ci,j − di‖2 can be regarded as the cost of mapping di

to ci,j , this is an instance of the optimal transport problem and
can be solved in polynomial time by linear program. In our
implementation, we use Sinkhorn-Knopp algorithm [Cuturi,
2013] to efficiently solve Eq. (13).

2.5 Accelerating Search with IVF
Besides PQ, RepCONC employs the inverted file system
(IVF) to accelerate vector search. After quantizing document
embeddings, RepCONC uses k-means to generate n clusters.
Given a query embedding, RepCONC selects the nearest ñ
clusters and only ranks the documents in them. The docu-
ments in other clusters are ignored. In this way, RepCONC
approximately accelerates vector search by n/ñ.

3 Experimental Setup
Here we present our experimental settings.

3.1 Datasets and Metrics
We conduct experiments on two large-scale ad-hoc re-
trieval benchmarks from the TREC 2019 Deep Learning
Track [Craswell et al., 2020; Bajaj et al., 2016], passage
ranking and document ranking. Due to the limited space,
this paper only reports the performance on the passage rank-
ing task. Please refer to our full paper [Zhan et al., 2022]
for comprehensive results. The passage ranking task has a
corpus of 8.8M passages, 0.5M training queries, 7k devel-
opment queries (henceforth, MARCO Passage), and 43 test
queries (DL Passage). We report the official metrics and
R@100 based on the full-corpus retrieval results.

3.2 Baselines
We exploit two types of baselines, vector compression meth-
ods and retrieval models.

For vector compression methods, we adopt both unsuper-
vised and supervised methods. The former include PQ [Jegou
et al., 2010], ScaNN [Guo et al., 2020], ITQ+LSH [Gong et
al., 2012], OPQ [Ge et al., 2013], and OPQ+ScaNN. The lat-
ter include DPQ [Chen et al., 2020] and JPQ [Zhan et al.,
2021a].

For retrieval baselines, we utilize BoW models, dual-
encoders, and some competitive complex retrieval systems.
BoW models involve BM25 [Robertson and Walker, 1994],
DeepCT [Dai and Callan, 2019], doc2query [Nogueira et
al., 2019b], and docT5query [Nogueira et al., 2019a].
Dual-encoders include RepBERT [Zhan et al., 2020],
ANCE [Xiong et al., 2021], and ADORE [Zhan et al.,
2021b]. Complex retrieval systems are much slower than
BoW and dual-encoders. They include ColBERT [Khattab
and Zaharia, 2020], COIL [Gao et al., 2021], uniCOIL [Lin
and Ma, 2021], and DeepImpact [Mallia et al., 2021].

4 Experiments
We empirically evaluate RepCONC in this section.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6506



3

6

12

24

48

96

By
te

s P
er

 P
as

sa
ge

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
MRR@10

32

64

128

256

512

1024

Co
m

pr
es

sio
n 

Ra
tio

OPQ
ITQ+LSH
OPQ+ScaNN
JPQ
RepCONC (Ours)

Figure 3: Comparison with compression methods. Up and right is
better.
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4.1 Comparison with Compression Methods

This section compares RepCONC with vector compression
baselines to answer RQ1. Ranking performances in terms of
different compression ratios are plotted in Figure 3. The ad-
vantage of RepCONC is more significant when larger com-
pression ratios are used. For example, its MRR score is
more than twice the JPQ’s score when the compression ra-
tio is 784x. We believe this is because RepCONC is able
to generate high-quality Index Assignments specifically for
ranking effectiveness, which becomes more important when
fewer bytes are used. Instead, JPQ uses K-Means to produce
task-blind Index Assignments and compromises ranking per-
formance.

4.2 Comparison with Retrieval Models

This section compares RepCONC with various retrieval mod-
els to address RQ2. We firstly compare it with efficient first-
stage retrievers and then compare it with complex (slow) end-
to-end retrievers.

Comparison with First-Stage Retrievers
Figure 4 summarizes the effectiveness-memory tradeoff. As
the figure shows, although DR models are much more ef-
fective than BoW models, they incur severe memory ineffi-
ciency. By jointly training the dual-encoders and quantiza-
tion methods, RepCONC substantially improves memory ef-
ficiency of DR while still being very effective in ranking. It
outperforms RepBERT [Zhan et al., 2020] and ANCE [Xiong
et al., 2021] in effectiveness, and is almost as effective as
ADORE [Zhan et al., 2021b], the state-of-the-art DR model
trained by negative sampling.
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Figure 5: Comparison with complex (slow) end-to-end retrieval
models in terms of effectiveness-latency tradeoff on MS MARCO
Passage Ranking. The search is performed on CPU with one thread.
Up and right is better. QPS stands for ‘query per second’.

Comparison with Complex End-to-End Retrievers
This section compares RepCONC with some complex (slow)
end-to-end neural retrieval models. These models achieve
better ranking performance with much higher query latency
because of their complex model architecture. In consideration
of fair comparison, we add a reranking stage to RepCONC
and compare them in terms of effectiveness-latency tradeoff.
The reranking models are MonoBERT and DuoT5 models
open-sourced by the pygaggle library 2. Note, query encod-
ing and reranking are performed on GPU while the search
is performed on CPU with one thread. Ranking results are
shown in Figure 5. We can see that RepCONC-IVF+Rerank
substantially outperforms all baselines in terms of both effec-
tiveness and time efficiency.

5 Conclusions
To solve the efficiency issue existing in brute-force DR mod-
els, we present RepCONC, which learns discrete representa-
tions by modeling quantization as constrained clustering in
the joint learning process. The clustering object requires the
document embeddings to be clustered around the quantization
centroids and facilitates joint optimization of PQ parameters
and dual-encoders. We also introduce a uniform clustering
constraint to maximize the representation distinguishability.
We conduct experiments on widely-adopted ad-hoc retrieval
benchmarks. Experimental results show that RepCONC sig-
nificantly outperforms competitive quantization baselines and
substantially improves the memory efficiency and time effi-
ciency of DR.
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