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Abstract

We study a single task allocation problem where
each worker connects to some other workers to
form a network and the task requester only con-
nects to some of the workers. The goal is to design
an allocation mechanism such that each worker is
incentivized to invite her neighbours to join the al-
location, although they are competing for the task.
Moreover, the performance of each worker is un-
certain, which is modelled as the quality level of
her task execution. The literature has proposed so-
lutions to tackle the uncertainty problem by paying
them after verifying their execution. Here, we ex-
tend the problem to the network setting. We pro-
pose a new mechanism that guarantees that inviting
more workers and reporting/performing according
to her true ability is a dominant strategy for each
worker. We believe that the new solution can be
widely applied in the digital economy powered by
social connections such as crowdsourcing.

1 Introduction
Task allocation is an important part of real-world applications
such as crowdsourcing [Wu et al., 2017; Goel et al., 2014]
and market supply [Dash et al., 2007]. A common goal of
task allocation is to find suitable workers to achieve a good
performance at a low cost. Previous studies have made great
progress in finding the best allocations under cases with a
fixed number of workers. For example, the task requester
seeks suitable workers in third-party platforms (e.g., Ama-
zon Mechanical Turk) or holds a contest with attractive re-
wards [Chawla et al., 2019]. Yet, such cases are less scalable
due to the relatively fixed number of participants. Generally,
we hope to involve more workers so that the task requester
is capable of finding more suitable workers. Also, nowadays,
people are connected with others via social networks. There-
fore, a straightforward approach is to make full use of their
connections such that we can involve more workers. The
challenge remains such as workers are competitors for the
task and they are unwilling to provide their connections.

∗The full version is initially published at PRIMA 2022.

More precisely, we consider a single-task allocation prob-
lem where the task is allocated to a single agent and the task
performance of an agent is measured by the finished quality.
Each agent has a cost to perform the task. Before conducting
the tasks, agents are uncertain about their actual performance
and only know their probability distributions over the quality
levels, which is known as the execution uncertainty. There-
fore, the requester also needs to take the execution uncertainty
into accounts to allocate the task.

We propose the PEV-based Diffusion Mechanism to han-
dle the above challenges one by one. Firstly, to solve the
issue of agents unwilling to invite others, the proposed mech-
anism rewards them such that each agent will maximize her
utility by inviting others. Then, the task requester is able to
reach as many agents as possible. Secondly, to handle the ex-
ecution uncertainty, the mechanism gives agents payoffs af-
ter they finished the task, which guarantees that agents will
not misreport their abilities because their performance is ver-
ified. More importantly, previous studies focused on the un-
certainty to finish a task but not they quality, introducing the
probability of success (PoS) to describe the probability of an
agent successfully completing the task [Porter et al., 2008;
Ramchurn et al., 2009], e.g., 70% to fail and 30% to finish
the task. In our setting, we define the probability of quality
(PoQ), which represents the probability distribution on com-
pletion qualities, e.g., 30% to finish with a good quality, 20%
to finish with a low quality, and 50% to totally fail.

1.1 Related Work
The social network is an effective medium to get access
to more potential agents. Mechanism design in social net-
works has been widely utilized in auctions [Li et al., 2020;
Li et al., 2022], answer querying [Tang et al., 2011], so-
cial advertising [Li and Shiu, 2012] and influence maximiza-
tion [Shi et al., 2020]. An overview and prospect of all these
topics on social networks is given by Zhao [2021; 2022].
In this paper, we are inspired by the idea of the Informa-
tion Diffusion Mechanism [Li et al., 2020; Li et al., 2017;
Li et al., 2022], which is proposed to increase the seller’
revenue in auctions via social networks. We show that the
mechanism can be applied for the case where each agent
can perform the task in the same quality with a probabil-
ity of one. However, when the task requester is sensitive to
agents’ completion qualities and is uncertain about agents’
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performance, the Information Diffusion Mechanism cannot
incentivize agents to invite each other. Though there has also
been work studying task allocation problems on social net-
works [Jiang et al., 2012; de Weerdt et al., 2012], the network
is known in advance.

In traditional task allocation problems, the performance
and cost of each agent are private information. To incentivize
each agent to report her type truthfully, the task schedul-
ing mechanisms with verification were first proposed to take
both agents’ declarations and their actual performance into
consideration [Nisan and Ronen, 2001; Conitzer and Vidali,
2014]. Later, to describe the execution uncertainty in more
general settings, probability of success (PoS) is introduced
to describe the probability of an agent successfully complet-
ing the tasks [Porter et al., 2008; Ramchurn et al., 2009;
Zhao et al., 2016].

2 The Model
Consider a social network represented by a graph G =
(V,E), where V = {s} ∪ N is the node set and E is the
edge set. The task requester s has a single task to be per-
formed and N = {1, 2, · · · , n} is the set of all other agents
in the network. Each edge {i, j} ∈ E indicates that agent
i can directly communicate with agent j. For i ∈ V , let
ri = {j ∈ V | {i, j} ∈ E} be the neighbour set of i.
Given the task to be performed, let Q ⊂ R+ ∪ {0} be the set
of all possible completion qualities. Let the discrete random
variable Qi be the completion quality of agent i and qi ∈ Q
denote a realization of Qi. Let fi be the probability density
function of Qi, i.e., P (Qi = qi) = fi(qi), which is called
agent i’s probability of quality (PoQ). There is also a fixed
cost ci ≥ 0 for i to perform the task. Define θi = (fi, ci, ri)
as agent i’s private type. Let Θi be the type space of agent i
and θ = (θ1, · · · , θn) be the type profile of all agents.

Initially, only the task requester’s neighbours rs know the
task. Hence, the task requester needs a mechanism to attract
more participants, which is done by incentivizing agents to
diffuse the task information to all their neighbours. Thus,
each agent’s action consists of reporting her PoQ, her cost to
perform the task and inviting her neighbours, i.e., reporting
her type. For agent i ∈ N , let θ′i = (f ′

i , c
′
i, r

′
i) be her report,

where f ′
i is a probability distribution over Q, r′i ⊆ ri and c′i ≥

0. Let θ′ = (θ′1, · · · , θ′n) be a report profile of all agents in N .
Denote the graph constructed from θ′ by G(θ′) = (V,E(θ′)),
where E(θ′) = {{i, j} | i ∈ V, j ∈ r′i}. Let I(θ′) be the set
of all participants under θ′, and i ∈ I(θ′) holds if and only if
there exists a path from s to i in the graph G(θ′). Let Θ be
the space of all possible type profiles.

Generally speaking, the mechanism consists of two steps.
The task requester first announces a contract including a task
allocation policy and a payoff policy and then assigns the task
to an agent according to their declarations. After the task
requester verifies the completion quality, she will give payoffs
to agents according to the announced contract. We call such
a mechanism the verified contract mechanism.

Definition 1 (Verified Contract Mechanism). A verified con-
tract mechanism is defined by M = (π, p), where π : Θ →
{0, 1}N and p : Θ ×Q → RN are the allocation and payoff

policies respectively. Given agents N and their report profile
θ′ ∈ Θ, set πi(θ

′) = 0 and pi(θ
′, ·) = 0 for all i /∈ I(θ′).

Given a verified contract mechanism and a report profile
θ′, πi(θ

′) = 1 means that the task is allocated to agent i,
otherwise she will not perform the task. The actual com-
pletion quality under the allocation π is drawn from the true
PoQ of the selected agent, denoted by qπ . Then pi(θ

′, qπ)
is the payoff given to agent i. We assume that the utili-
ties of the task requester and the agents are quasi-linear, i.e.,
us(θ

′, qπ) = qπ−
∑

i∈N pi(θ
′, qπ) and ui(π(θ

′), p(θ′, qπ)) =
pi(θ

′, qπ)−πi(θ
′)ci for all i ∈ N . In the following, we define

several properties concerned. The first one is the efficiency of
the mechanism in terms of the expected social welfare.
Definition 2 (Efficiency). A verified contract mechanism is
efficient if for all θ′ ∈ Θ,

π(θ′) ∈ argmaxπ′∈Π Ef ′
π′

[
qπ′ −

∑
i∈N

π′
ic

′
i

]
where Π is the space of all feasible allocations, f ′

π′ is the PoQ
reported by the agent j such that π′

j = 1.

Another property is called incentive compatibility, which
requires that for each agent i, reporting her type θi truthfully
is a dominant strategy.
Definition 3 (Incentive Compatibility). A verified contract
mechanism is incentive compatible (IC) if for all i ∈ N and
θi ∈ Θi, for all θ′−i ∈ Θ−i,

θi ∈ arg max
θ′i∈Θi

Efi

[
ui(π((θ

′
i, θ

′
−i)), p((θ

′
i, θ

′
−i), qπ((θ′i,θ

′
−i))

))
]
,

where θ′−i is the report profile of all agents without i, Θ−i is
the space of all possible θ′−i.

The next property ensures that the expected utility of an
agent is non-negative when she truthfully reports.
Definition 4 (Individual Rationality). A verified contract
mechanism is individually rational (IR) if for all i ∈ N and
θi ∈ Θi, for all θ′−i ∈ Θ−i,

Efi

[
ui(π((θi, θ

′
−i)), p((θi, θ

′
−i), qπ((θi,θ′

−i))
))
]
≥ 0.

The last desirable property is that the task requester should
not suffer a deficit in expectation.
Definition 5 (Weakly Budget Balance). A verified contract
mechanism is weakly budget balanced (WBB) if for all θ′ ∈
Θ,

Efπ(θ′)

[
us(θ

′, qπ(θ′))
]
≥ 0,

where fπ(θ′) is the true PoQ of the selected agent under θ′.

3 The Mechanism
3.1 Without Execution Uncertainty
We first consider the setting where the task performance does
not require special skills. The task requester gets the same
quality no matter which agent the task is assigned to, i.e.,
Q = {q} and fi(q) = 1 for all i ∈ N . However, agents
may need different costs to perform the given task (e.g., time).
Thus, to maximize both the task requester’s utility and the
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social welfare, a mechanism should allocate the task to an
agent who can perform the task with the least cost.

We apply the VCG mechanism, the task requester selects
the agent who performs with the least cost among her neigh-
bours, and the agent’s payoff equals the decrease in others’
utilities due to her participation. However, the VCG mecha-
nism will cause deficits for the task requester1.

To tackle the deficit issue in this setting, we can apply the
Information Diffusion Mechanism (IDM) [Li et al., 2017].
The IDM is proposed to incentivize information diffusion to
sell a single item in a social network. We just need to change
the goal to select the agent with the least cost. The mechanism
relies on the concept of critical agents.

Definition 6. Given a report profile θ′, for agent i, j ∈ I(θ′),
j is one of i’s critical agent if j exists in all simple paths from
the task requester s to agent i in the graph G(θ′). The set of
i’s all critical agents is denoted by cti(θ

′) and the sequence
order of agents in cti(θ

′) is denoted by (s, j1, · · · , jm), where
jm = i and k < k′ if and only if jk ∈ ctjk′ .

Information Diffusion Mechanism (IDM)

INPUT: a report profile θ′.

1. Choose j ∈ argmaxi∈I(θ′){q − c′i} with random tie
breaking.
2. Set πi = 0, pi = 0 for all i /∈ I(θ′) and all i /∈ ctj(θ

′).
3. Compute wi =

∑
k ̸=i π

′
k(q− c′k) for each i ∈ ctj(θ

′),

where π′ =

{
π′
i(θ̂) = I

(
i ∈ arg max

k∈I(θ̂)
q − c′k

)}
i∈N

and θ̂ =
(
nil, θ′−i

)
.

4. Let the sequence order of agents in ctj(θ
′) be

(s, i1, · · · , im), where im = j. For k = 1 : m− 1,

πik =

{
1 if q − c′ik = wik+1

and
∑k−1

l=1 πil = 0

0 otherwise

and πj = 1 if
∑m−1

k=1 πik = 0.
5. Suppose it be the chosen agent, i.e., πit = 1, 1 ≤ t ≤
m. Then, the payoff of each agent ik ∈ ctj(θ

′) will be

pik =


wik+1

− wik k < t

q − wit k = t

0 k > t.

OUTPUT: the allocation π and the payoff p.

Intuitively, the IDM allocates the task to the first critical
agent with the least cost when the next agent in the sequence
did not participate. The payoff of the chosen agent equals
the least cost reported by other agents without her partici-
pation. The payoff of each critical agent before the chosen
agent is determined by the difference between the maximum

1An example is illustrated in the full version of this paper in the
proceeding of PRIMA 2022.

social welfare without next critical agent’s participation and
that without her participation. The properties of IDM will
stay the same.
Theorem 1 ( [Li et al., 2017]). The IDM is IR, IC and WBB.
Failure in the Quality-Aware Setting. Consider another
setting without execution uncertainty, where the task needs
special skills to be performed, and then agents may perform
the task with different qualities, i.e., fi(qi) = 1 for some
qi ∈ Q and i ∈ N . In this case, the application of IDM is
not IC anymore. The failure lies in no guarantee for incentive
compatibility since the payoff to the selected agent is always
related to her reported ability.

3.2 With Execution Uncertainty
Look back to our general model. To mitigate IDM’a fail-
ure, we propose the Post Execution Verification-based Dif-
fusion Mechanism (PEV-based Diffusion Mechanism). The
PEV-based Diffusion Mechanism chooses the agent to per-
form the task based on agents’ reports, but pays her Given a
report profile θ′ ∈ Θ, define an allocation that maximizes the
expected social welfare as

π∗(θ′) =

{
π∗
i (θ

′) = I
(
i ∈ arg max

k∈I(θ′)
{Ef ′

k
[Qk]− c′k}

)}
i∈N

.

PEV-based Diffusion Mechanism (PDM)

INPUT: a report profile θ′.

1. Choose j ∈ argmaxi∈N{Ef ′
i
[Qi]− c′i} with random

tie breaking. Set πi = 0, pi = 0 for all i /∈ ctj(θ
′).

2. For each agent i ∈ ctj(θ
′), compute wi =∑

k ̸=i π
′
k

(
Ef ′

k
[Qk]− c′k

)
where π′ = π∗((nil, θ′−i)).

3. Let the sequence order of agents in ctj(θ
′) be (s, i1,

i2, . . . , im), where im = j. For k = 1 : m− 1,

πik =


1 if Ef ′

ik
[Qik ]− c′ik = wik+1

and
∑k−1

l=1 πil = 0

0 otherwise

and πj = 1 if
∑m−1

k=1 πik = 0.
4. Suppose πit = 1 and it performs the quality qπ .
5. The payoff of each agent ik ∈ ctj(θ

′) is defined as

pik =


wik+1

− wik k < t

qπ − wit k = t

0 k > t

OUTPUT: the allocation π and the payoff p.

Intuitively, the PDM allocates the task to the agent with the
highest expected welfare when the next critical agent in the
sequence did not participate. The payoff of the chosen agent
is determined by her actual execution quality. Each critical
agent before the chosen agent gets a payoff based on the in-
crease of the expected social welfare due to her participation
when the next one did not participate.
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Figure 1: An example for the PEV-based Diffusion Mechanism

1 f1(2) = .5, f1(3) = .5 c1 = 0.5

2 f2(1) = 1 c2 = 0.2

3 f3(5) = 1 c3 = 1

4 f4(3) = 1 c4 = 1

5 f5(4) = .4, f5(6) = .6 c5 = 1.6

6 f6(3) = .3, f6(4) = .6, f6(7) = .1 c6 = 0.9

7 f7(6) = .5, f7(8) = .5 c7 = 4.2

8 f8(1) = .2, f8(3) = .8 c8 = 0

9 f9(8) = .8, f9(10) = .2 c9 = 1

10 f10(4) = .5, f10(5) = .3, f10(6) = .2 c10 = 0.2

Table 1: Types of the agents in Figure 1.

Example 1. Consider the network in Figure 1, and all
agents’ types are listed in the Table 1. Thus, PDM chooses
agent 9 to perform the task. Suppose that the actual execu-
tion quality of agent 9 is qπ = 8. Then, the payoffs given to
agents 2, 6 and 9 are p2 = w6−w2 = 0, p6 = w9−w6 = 0.5
and p9 = qπ − w9 = 3.5. Finally, the utility of s is us = 4.

Theorem 2. The PDM is IR, IC, and WBB2.

3.3 A General Class
Li et al. [2022] gave a methodology to extend IDM to a gen-
eralized class of diffusion auction called Critical Diffusion
Mechanisms (CDM). The key idea is choosing a different set
of competitors when allocating the item. By doing this, it
may give more chances to win to critical agents, and may
also improve the utility of the seller.

Inspired by their idea, we can also extend PDM generally.
For the allocation policy of PDM, agents who are critical par-
ents of the best worker have priorities of winning the task.
Particularly, an agent wins the task if she is the first agent
among these parents whose has the best performance (i.e.,
the expected quality minus the cost) when her critical chil-
dren are not considered. The key idea here is that a set of
competitors are removed from the network when determining

2A complete proof can be found in the full version of this paper
in the proceeding of PRIMA 2022.

whether an agent can perform the task. Intuitively, the way
of removing agents can be various as long as it will not affect
incentive compatibility. Also, the allocation efficiency and
the payoffs to the critical agents of the selected agent may
vary with the removing methods. Therefore, we can have the
following class of mechanisms called PEV-based Critical Dif-
fusion Mechanism (PCDM), which is parameterized by a set
selection function αi for all i ∈ ctj(θ

′), where j is the best
worker under θ′.

PEV-based Critical Diffusion Mechanism (PCDM)

INPUT: a report profile θ′.

1. Choose j ∈ argmaxi∈N{Ef ′
i
[Qi]− c′i} with random

tie breaking. Set πi = 0, pi = 0 for all i /∈ ctj(θ
′).

2. For each agent i ∈ ctj(θ
′), compute

(1) wi =
∑

k ̸=i π
′
k

(
Ef ′

k
[Qk]− c′k

)
, where π′ =

π∗((nil, θ′−i));

(2) w̃i =
∑

k/∈αi
π′′
k

(
Ef ′

k
[Qk]− c′k

)
, where π′′ =

π∗((nil, θ′−αi
)).

3. Let the sequence order of agents in ctj(θ
′) be (s, i1,

i2, . . . , im), where im = j. For k = 1 : m− 1,

πik =


1 if Ef ′

ik
[Qik ]− c′ik = w̃ik

and
∑k−1

l=1 πil = 0

0 otherwise

and πj = 1 if
∑m−1

k=1 πik = 0.
4. Suppose πit = 1 and it performs the quality qπ .
5. The payoff of each agent ik ∈ ctj(θ

′) is defined as

pik =


w̃ik − wik k < t

qπ − wit k = t

0 k > t

OUTPUT: the allocation π and the payoff p.

Theorem 3. The PCDM is IR, IC and WBB if for all i ∈
ctj(θ

′), it is satisfied that αi

• contains the next agent in ctj(θ
′) after i;

• is independent from the reports of i’s critical children;

• and is monotonically increasing with r′i.

Notice that PCDMs cannot always guarantee efficiency
since the task may not be allocated to the best worker. Ac-
tually, no mechanism simultaneously satisfies IR, IC, WBB
and efficiency.

Proposition 1. There is no verified contract mechanism sat-
isfying IR, IC, WBB and efficiency in the social networks.
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