
Unsupervised Deep Subgraph Anomaly Detection (Extended Abstract)∗

Zheng Zhang , Liang Zhao
Emory University

{zheng.zhang, liang.zhao}@emory.edu

Abstract
Effectively mining anomalous subgraphs in net-
works is crucial for various applications, includ-
ing disease outbreak detection, financial fraud de-
tection, and activity monitoring in social net-
works. However, identifying anomalous subgraphs
poses significant challenges due to their complex
topological structures, high-dimensional attributes,
multiple notions of anomalies, and the vast sub-
graph space within a given graph. Classical shal-
low models rely on handcrafted anomaly mea-
sure functions, limiting their applicability when
prior knowledge is unavailable. Deep learning-
based methods have shown promise in detect-
ing node-level, edge-level, and graph-level anoma-
lies, but subgraph-level anomaly detection remains
under-explored due to difficulties in subgraph rep-
resentation learning, supervision, and end-to-end
anomaly quantification. To address these chal-
lenges, this paper introduces a novel deep frame-
work named Anomalous Subgraph Autoencoder
(AS-GAE). AS-GAE leverages an unsupervised
and weakly supervised approach to extract anoma-
lous subgraphs. It incorporates a location-aware
graph autoencoder to uncover anomalous areas
based on reconstruction mismatches and intro-
duces a supermodular graph scoring function mod-
ule to assign meaningful anomaly scores to sub-
graphs within the identified anomalous areas. Ex-
tensive experiments on synthetic and real-world
datasets demonstrate the effectiveness of our pro-
posed method.

1 Introduction
Network data is a popular type of data that describes the
properties of discrete objects and their pairwise relationship.
Given a network, one of the major tasks in the field of net-
work data mining is the detection of anomalous subgraphs. A
subgraph can be defined as an anomaly when its connectiv-
ity structure or attributive properties can be described as an

∗Full version of this paper was originally published at the 2022
IEEE International Conference on Data Mining (ICDM) and re-
ceived the Best Paper Award.

outlier in the graph. For example, the significant difference
in subgraph topological structure is one type of anomaly sub-
graph. As shown in Figure 1(a), in a regular lattice material
network, one might expect the inserted impurity as an outlier
because the topological structure is different from other areas
in the graph. Similarly, infectious disease researchers may
have an interest in discovering a new unknown infectious dis-
ease at the early stage of a disease outbreak (e.g. COVID-19)
from the health surveillance network. In normal cases, the
count of cases for different disease symptoms should follow
a statistical distribution such as the Poisson distribution. As
shown in Figure 1(b), a group of connected nodes with sig-
nificant abnormal symptom attributes may indicate a potential
disease outbreak is taking place.

Existing graph anomaly detection algorithms [Akoglu et
al., 2015] can be categorized into traditional shallow meth-
ods [Gupta et al., 2014; Chen et al., 2017; Miller et al.,
2010; Sharpnack et al., 2013] and deep learning-based
method [Ruff et al., 2018; Zhou and Paffenroth, 2017;
Peng et al., 2018; Zhang and Zhao, 2021; Wang et al., 2022;
Dou et al., 2020; Wang et al., 2021]. Previous shallow ap-
proaches to detecting anomaly subgraphs have mainly fo-
cused on manually defining anomaly quantification metrics
for subgraphs and developing methods to extract anomalous
patterns based on the designed measures. Although the ideas
behind these shallow methods are simple and intuitive, the
shallow mechanisms are suffered from the limited capabil-
ity of capturing non-linear properties to discriminate complex
anomalies from graphs with high-dimensional features and ir-
regular topological structures. More importantly, these meth-
ods require prior knowledge to determine the measurement
function for detecting anomalies, which are usually unavail-
able due to the unknown nature of anomaly subgraph pat-
terns in many practical applications [Chandola et al., 2009;
Ahmed et al., 2016]. On the other hand, deep learning-based
methods, which have received growing attention in recent
years [Ma et al., 2021], can extract expressive representa-
tions of objects, such as nodes or graphs, to effectively dis-
tinguish abnormal and normal objects. Previous works have
shown impressive progress in many graph anomaly detection
tasks [Ma et al., 2021].

Despite the success in generalizing deep learning tech-
niques to graph anomaly detection problems, most previous
works only focus on detecting node- or edge-level anoma-
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Figure 1: (a) An example of a structural anomaly subgraph in a regular lattice material. The potentially anomalous subgraph in red has
a significantly different topology from other regions in the given network, which may be skeptical of a potential imperfection area. (b)
An example of an attributive anomaly subgraph in a simulated disease outbreak network with three attributes of disease symptoms (fever,
cough and broken bones). The potentially anomalous subgraph in the red dashed circle has an anomalous subset of attributes (cough and
fever). The count number of these two attributes within the anomaly subgraph area are significantly higher than other nodes.

lies. The task of anomaly subgraph mining has been largely
underexplored and has just started to attract attention. How-
ever, there is no trivial way to simply apply these methods to
accomplish the task of detecting anomalous subgraphs due
to several unique challenges: (1) Difficulty in obtaining
sufficient training labels in an end-to-end manner with-
out intensive supervision. Deep learning approaches heav-
ily rely on the training objectives to optimize model param-
eters. For anomalous subgraph detection, this necessitates
sufficient training labels and appropriate loss function such
that models can effectively discriminate the anomalous pat-
terns. Unfortunately, the training labels are hard to suffi-
ciently obtain due to the exponential possible subgraphs in
a given graph, and designing proper objectives for detecting
anomalous subgraphs is challenging because there is usually
no prior knowledge about the anomalies. (2) Difficulty in
preserving both geodesic distance and topological simi-
larity among nodes for representing subgraph anomaly.
Existing end-to-end works that consider node- or edge-level
cannot be directly used for subgraph-level anomaly detection.
For example, within the scope of a given anomaly subgraph,
individual nodes or edges might be normal. It only turns out
to be anomalous when considered as a group compared to
other areas. Merely aggregating node- or edge-level anomaly
scores can not reflect the subgraph abnormality. But how to
jointly consider intra-subgraph structure and the subgraph’s
position to the whole graph, is indispensable yet very chal-
lenging. (3) Difficulty in quantifying the degree of being
abnormal under arbitrary and unknown anomaly types.
It is extremely hard to quantify the degree of abnormality for
arbitrary patterns of attribute and topological structure of sub-
graph when a ground truth anomaly type is unknown. Previ-
ous shallow methods typically utilize a handcrafted measure
function, which is limited by its low expressive power and
generalizability to unseen anomalies. Also, existing methods
learn the scoring function from scratch, which is usually sub-
ject to the exponentially growing search space and can easily
lead to overfitting issues.

2 Problem Formulation
We consider an attributed network as G = (V, E), where
V = {v1, v2, . . . , vN} is a set of nodes that N = |V| de-
notes the number of nodes in the graph and E ⊆ V × V is
the set of edges. We also let X ∈ RN×p denotes the node at-
tribute matrix and A ∈ RN×N represents the adjacency ma-
trix. Specifically, the attribute of node vi can be expressed as
a p dimensional vector xi ∈ Rp. Aij = 1 denotes there is an
edge connecting nodes vi and vj ∈ G, otherwise Aij = 0. A
subgraph h of the given G is represented as H = (VH , EH)
where VH ⊆ V is a subset of nodes and EH is the corre-
sponding set of edges. XH ,AH are the corresponding node
attribute and adjacency matrices. With the preliminary no-
tion of the attributed network, we formalize the anomalous
subgraph detection problem as follows:
Problem 1. Anomalous subgraph detection. Given a graph
G, the task of anomalous subgraph detection is to search for
a subgraph H ⊆ G that is most different from the majority of
graph, where the degree of being abnormal is quantified by a
score function f .

3 Methodology
3.1 Candidate Anomaly Subgraphs Extraction by

Location-Aware Graph Autoencoder
In order to correctly reveal the potential contextual anomaly
areas, we design a location-aware graph autoencoder to in-
corporate the locational information of nodes in the net-
work when performing message aggregation. To be spe-
cific, we first sample a set of C random anchor nodes VC =
{v1, v2, . . . , vC} in the given graph G. Then the shortest
distance from each node to anchors, which is denoted as
S ∈ RN×C , is calculated and treated as additional node
labels. Thus the global location of each node can be in-
ferred from the shortest distances to all anchor nodes (rela-
beled nodes attributes). The modified location-aware graph-
autoencoder can capture the dependence properties among
nodes when they are located in a close area of the graph.
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Figure 2: Example of plain graph autoencoders failing to detect po-
tential anomalous subgraphs. Since the global positions of nodes
in the learned latent representation are lost, nodes can not be aware
of which node is directly connected to them. Although (v1, v2) is
different in G1 and G2, the learned representations will be identi-
cal. Therefore, (v1, v2) in G1 and G2 will be encoded into the same
embedding, resulting in a large reconstruction error and causing the
model to tend to treat normal subgraphs as abnormal.

This module plays a critical role in correctly reconstructing
the normal areas and uncovering anomalous areas.

Mathematically, given the input graph G, our proposed
location-aware autoencoder first maps the adjacency matrix
A, node attributes matrix X, and distances to anchors matrix
S into the latent representation vectors z ∈ RN×D through
location-aware encoder ϕ, where D is the dimension of latent
representation and zi ∈ RD is the corresponding latent vec-
tor for the node vi. Formally, one convolutional operation of
a location-aware encoder can be represented as:

X(ℓ+1) = g(ℓ)
(
X(ℓ),S,A|W(ℓ)

)
, (1)

where g(ℓ), X(ℓ) and W (ℓ) is the graph convolution func-
tion, the latent embeddings of nodes, and a trainable weight
matrix at layer ℓ, respectively. We take the attribute matrix X
as the input of the first layer. Then, we reconstruct both node
attributes matrix X′ and adjacency matrix A′ from extracted
latent embeddings z by decoder φ.

The residual graph R can then be built upon the mismatch
between the original graph G and the reconstructed graph
φ(ϕ(G)). We first define the reconstruction error ri of one
node vi as:

ri = λ ∥xi − x′
i∥+ (1− λ)

∑
j

∥∥Aij −A′
ij

∥∥ , (2)

then the residual graph R is constructed as:

R = (VR, ER) ,VR = {vi|vi ∈ V & ri < τ}, (3)

where ER is the corresponding set of edges to the set of nodes
VR and τ is a threshold to filter out the nodes.

3.2 Quantifying Anomalous Scores of Subgraphs
by Graph Supermodular Function

Given the extracted residual graph R from the original graph
G by the reconstruction results of the location-aware graph
autoencoder, the nodes VR in the residual graph can exhibit as

Figure 3: An example of the synergy of anomalies in a social net-
work. Here users A, B, and C are potential fraudulent users, which
are equally abnormal in their individual behavior as users D, E, and
F, respectively. But it is natural to consider users A, B, and C are
more anomalous because of their connections to potentially fraud-
ulent users, which reinforce their anomalous implies.

a set of connected components {g|g ⊆ R} where each com-
ponent g is an induced subgraph of the original graph G. Here
a key question is how to evaluate the degree of abnormality
of each extracted component in the residual graph. For ex-
ample in Figure 3, in an online social network, it is more
desirable to treat a subgraph of three connected potentially
fraudulent users as more anomalous rather than three separate
isolated users because they have abnormal neighbors. There-
fore, when quantifying the anomaly of a given subgraph, its
value needs to be no less than the sum of the anomalies of
all its individual partitions. This indicates that the anomaly
quantization function should be supermodular.

Given a graph G with a collection of N labeled nodes V =
{v1, . . . , vN}, the set of all subgraphs can be represented as
H = {H|H ⊆ G}. A graph scoring function f : H → R
assigns a real value to any graph H ∈ H. Here suppose H is
the subgraph that is induced by set of nodes VH . We also use
H+{u} to denote the subgraph which is induced by the set of
nodes VH ∪{u} when {u} /∈ VH . We give the definition of a
graph supermodular function as following:
Definition 1. For all Q,H ∈ H that VQ ⊆ VH ⊆ V\{u}, a
graph function f(·) is said to be supermodular if and only if

f(Q+{u})− f(Q) ≤ f(H+{u})− f(H). (4)

A simplest example of supermodular function on graph can
be given as f(G) = |V|+ |E|, where |E| denotes the number
of edges in graph G.

We then propose a novel deep graph supermodular neural
network by extending the previous submodular deep learn-
ing model [Dolhansky and Bilmes, 2016]. Specifically, given
an input graph G, one updating function of node vi by deep
graph supermodular neural network at layer ℓ can be ex-
pressed as:

x
(ℓ+1)
i = σ(ℓ)(w

(ℓ)
1

⊺
x
(ℓ)
i +

∑
j∈N (i)

w
(ℓ)
2

⊺
x
(ℓ)
j ), (5)

where σ(ℓ) is a non-negative non-decreasing convex function
and w(ℓ) is a non-negative weight matrix. The whole deep
graph supermodular neural network can be achieved by stack-
ing L layers of updating operation in Equation 5 and a sum-
mation operation over all nodes.
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Background graph Complete ER random WS small-world BA scale-free
Anomaly type Dense Chain Dense Chain Dense Chain Dense Chain
L1SUB 0.557 0.533 0.861 0.511 0.521 0.486 0.963 0.503
AMEN 0.554 0.976 0.601 0.632 0.654 0.522 0.711 0.501
DEEPFD 0.505 0.495 0.974 0.947 0.497 0.488 0.973 0.947
DOMINANT 0.409 0.486 0.598 0.611 0.589 0.701 0.598 0.456
DEEPSVDD 0.953 1.000 0.489 1.000 1.000 1.000 0.475 0.981
AS-GAE 0.976 1.000 0.984 1.000 1.000 1.000 1.000 1.000

Table 1: AUC scores of the structure anomaly synthetic datasets.
The best performance on each dataset is in bold.

3.3 Unsupervised and Weakly Supervised
Learning Objectives of AS-GAE

To optimize the parameters involved in the previously men-
tioned components location-aware graph autoencoder and
supermodular graph scoring function without intense super-
vision, we first present the objective function of the proposed
framework under an unsupervised learning manner. After the
training process, the anomalous scores can be given by the
function f(g), ∀g ⊆ R. Subgraphs with higher anomaly
scores are considered to have a higher probability of being
anomalies. The loss function of AS-GAE under an unsuper-
vised setting can be described as

min
ϕ,φ,r

L (G,ϕ(φ(G))) + βF (R),

s.t.F (R) =
∑
g⊆R

max{0, r − f(g)} − γ ∥r∥ ,

where R is the residual graph and f(·) is the supermodular
scoring function. β and γ are two hyperparameters, and ∥·∥
is commonly chosen to be the ℓ2-norm.

4 Experimental Results
Structural Anomaly Synthetic Datasets. We first apply sev-
eral existing commonly used graph generator models to gen-
erate the background graph. In this paper, we investigate four
classic graph generators as background graph: (1) Erdös-
Rényi (ER); (2) Watts-Strogatz (WS); (3) Barabási-Albert
(BA); and (4) complete graphs. Then a small subgraph with
a different structural property is inserted into the background
graph as the ground truth anomaly subgraph. We extend pre-
vious works [Gupta et al., 2014; Chen et al., 2017] to insert
two types of anomaly subgraphs: chain and dense graphs.
Real-World Datasets. To further evaluate the performance
of our proposed method and comparison methods in real-
world scenarios, nine public real-world attributed network
datasets, including four citation network datasets, three so-
cial network datasets, one communication dataset, and one
materials dataset, are utilized as benchmark datasets in our
experiments. We provide a brief description of these real-
world datasets as follows:
Effectiveness Results. We compare our proposed method
AS-GAE with benchmark methods on both synthetic datasets
and real-world datasets in an unsupervised learning manner.
The comparison of AUC scores for the structural anomaly
synthetic dataset is provided in Table 1, by combinations
of different background graphs and inserted anomalous sub-
graphs.

Dataset Email Cora Citeseer Pubmed OMDB Blog Flickr ACM Wiki
Nodes 1,005 2,708 3,327 19,717 1,124 5,196 7,575 16,484 8,227
Edges 25,571 5,429 4,732 44,338 17,522 171,743 239,738 71,980 744,652
Features 42 1,433 3,703 500 4 8,189 12,047 8,337 0
Anomalies 57 106 197 340 84 300 450 600 217
L1SUB 0.523 0.486 0.563 0.575 0.591 0.485 0.502 0.530 0.463
AMEN 0.603 0.626 0.645 0.773 0.768 0.534 0.605 0.621 0.442
DEEPFD 0.572 0.658 0.704 0.776 0.846 0.497 0.500 0.501 0.499
DOMINANT 0.674 0.752 0.832 0.840 0.618 0.781 0.749 0.748 0.487
DEEPSVDD 0.730 0.703 0.693 0.622 0.938 0.635 0.642 0.734 0.453
AS-GAE 0.753 0.829 0.795 0.925 0.980 0.784 0.764 0.751 0.561

Table 2: AUC scores on nine real-world datasets. The best perfor-
mance on each dataset is in bold.

(1) The results demonstrate the strength of our proposed
method by consistently achieving the best results in all eight
structure anomaly synthetic tasks, and eight out of nine real-
world datasets. Specifically, our results outperformed the
benchmark models by over 31.7% for structure anomaly syn-
thetic datasets, and 16.1% for real-world datasets.
(2) Our proposed method shows a stronger detection perfor-
mance compared to other deep learning methods. A possible
reason is that our method takes advantage of the dependence
relationships information within the context of the graph to
acquire a more competitive performance.
(3) As shown in Table 1, in the structure anomaly syn-
thetic datasets experiments, our proposed method consis-
tently achieves superior anomaly detection performance with
respect to different combinations of background graphs and
anomaly subgraphs, which proves the robustness of our
proposed method. In comparison, the DEEPFD method
and DEEPSVDD method have significantly different perfor-
mances on different background graphs. For example, the
DEEPFD method shows strong detection performance when
having a random graph or scale-free graph as a background
graph, while the DEEPSVDD method has competitive per-
formance when the background graph is a complete graph or
small-world graph.
(4) It is also worth noting that the deep learning-based bench-
mark methods (DEEPFD, DOMINANT, DEEPSVDD, and
AS-GAE) show a more competitive performance than the
non-deep learning-based benchmark methods (L1SUB and
AMEN), by over 15.6% on average for structure anomaly
synthetic datasets, and 12.9% on average for real-world
datasets, which arguably indicates that non-deep learning
methods have limited capability to effectively discriminate
anomalies from graphs with complex structures.

5 Conclusion
This paper focuses on the crucial problem of detecting
anomalous subgraphs from a given network under unsu-
pervised learning settings. The proposed framework deep
Anomalous Subgraph Autoencoder (AS-GAE) effectively
addresses the unique challenges in anomaly subgraph detec-
tion by utilizing a location-aware graph autoencoder module
to uncover the relative anomalous areas, and then a super-
modular graph anomalies quantification module is applied to
assign a reasonable anomaly score for the subgraphs in the
built residual graph according to the reconstruction results
of the autoencoder. Extensive experimental results on both
synthetic and real-world datasets demonstrate the outstand-
ing detection power of our framework.
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