
 

 

Abstract 
Insights from cognitive science about how people 
understand explanations can be instructive for the 
development of robust, user-centred explanations in 
eXplainable Artificial Intelligence (XAI).  I survey 
key tendencies that people exhibit when they con-
struct explanations and make inferences from them, 
of relevance to the provision of automated explana-
tions for decisions by AI systems. I first review ex-
perimental discoveries of some tendencies people 
exhibit when they construct explanations, including 
evidence on the illusion of explanatory depth, intui-
tive versus reflective explanations, and explanatory 
stances. I then consider discoveries of how people 
reason about causal explanations, including evi-
dence on inference suppression, causal discounting, 
and explanation simplicity. I argue that central to the 
XAI endeavor is the requirement that automated ex-
planations provided by an AI system should make 
sense to human users. 

1 Introduction   
Artificial Intelligence decision support systems are widely 
available in many diverse areas, in the public and private sec-
tors, ranging from financial decisions to health care choices, 
employment recruitment to policing and criminal justice. 
However, human users may not believe AI decisions are fair 
or trustworthy, since the reasons for the decisions of AI sys-
tems trained on vast arrays of data are usually not transparent 
[Adadi and Berrada, 2018; Keane et al., 2021]. The develop-
ment of automated explanations in XAI aims to increase hu-
man users’ understanding of an AI system, and to explain its 
decisions, to address issues of interpretability and recourse 
[Karimi et al., 2020; Kenny et al., 2021]. Some XAI strate-
gies aim to provide a global explanation of the AI system, 
e.g., by simplifying or mapping it using, say, decision trees; 
other XAI strategies aim to provide a local explanation, e.g., 
by justifying the AI system’s decision [Guidotti et al., 2018].  
      Counterfactual explanations have been examined exten-
sively in XAI, that is, explanations that indicate how the AI 
system’s decision would have been different, if some 

alternative input conditions had occurred. There are over 125 
distinct counterfactual explanation algorithms available [for 
a review, see Keane et al., 2021].  Yet insights from cognitive 
science about how people understand counterfactuals have 
called into question some aspects of their use in XAI [Byrne, 
2019; see also Miller, 2019]. For example, psychological ev-
idence shows that people tend to make different inferences 
from causal and counterfactual explanations [Byrne, 2005; 
Mandel and Lehman, 1996; Orenes et al., 2022]. So too, 
causal and counterfactual explanations have different effects 
on users’ objective understanding of an AI system’s deci-
sions, and their subjective satisfaction with such explanations 
[Celar and Byrne, 2023; Warren et al., 2023].  
     In this survey I consider how insights from cognitive sci-
ence about how people construct explanations and make in-
ferences from them can help the provision of psychologically 
robust explanations in XAI that are genuinely user-centred. 
Successful explanations should facilitate understanding and 
knowledge change in the user [Keil, 2006].  I first review 
evidence on several key tendencies that people display when 
they construct explanations, of relevance to automated expla-
nations of decisions by AI systems; I then consider evidence 
on several tendencies that people exhibit when they reason 
about causal explanations.  

2 Explanation Construction 
People show a great variety of preferences and tendencies 
when they construct explanations [Keil, 2006; Lombrozo, 
2016]. In this section, I illustrate some of this variety by fo-
cusing on three tendencies, including the illusion of explana-
tory depth, intuitive versus reflective explanations, and ex-
planatory stances, and I sketch the potential implications of 
each one for XAI. 

2.1 The Illusion of Explanatory Depth   
People often believe that they understand how something 
works when in fact they have little understanding of it.  They 
make an unrealistic judgement that they understand a system 
very well, but when they must explain how the system works, 
they become aware of deficiencies in their knowledge, and 
subsequently judge their understanding more accurately 
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[Keil, 2006]. For example, experimental participants were 
asked to think about how various devices work, such as how 
a helicopter works, or how a cylindrical lock works, or how 
a zipper works [Rozenblit and Keil, 2002]. They initially 
tended to judge that their understanding of how such devices 
worked was very good, and they rated their understanding on 
a 1-7 scale towards the higher end of the scale, indicating they 
believed they had a deep understanding or at least a partial 
understanding of each device. But after they tried to provide 
a detailed step-by-step explanation of how the device works, 
they subsequently judged their understanding of it as much 
lower, and their ratings tended to indicate they had a shal-
lower understanding of it. Moreover, after they tried to an-
swer a diagnostic question about each device, for example, 
how a helicopter moves from hovering to forward flight, or 
how to pick a cylindrical lock, their ratings of their under-
standing dropped even more towards the shallow end of the 
scale. When participants then received a detailed explanation 
provided by an expert of how each device works, they judged 
their initial understanding to have been shallow, and their 
now-informed understanding to be much deeper [Rozenblit 
and Keil, 2002]. This illusion of explanatory understanding 
demonstrates that the very effort of attempting to explain 
something, to oneself or to someone else, can reveal to a per-
son that they do not understand how something works as well 
as they had previously thought [Keil, 2006].  
    The illusion of explanatory depth has been observed for 
understanding of mechanical devices, such as how a zipper 
works, or a pen, or a crossbow, and also for natural processes, 
such as earthquakes, rainbows, or tides. It tends not to be ob-
served for knowledge of facts, procedures, or narratives, alt-
hough it occurs for social judgments, such as knowledge of 
political policies [Alter et al., 2010; Fernbach et al., 2013]. It 
may arise because of cognitive deficits in the encoding or re-
trieval of relevant information, or from lack of practice in 
constructing explanations of complex mechanisms, or from 
an overly simplified model [Alter et al., 2010; Fernbach et 
al., 2013].  It seems to reflect a tendency to construct mental 
simulations of mechanical devices that are general and ab-
stract, and focus on their function, rather than mental simula-
tions that are specific and concrete, and focus on their mech-
anisms [Alter et al., 2010; Rozenblit and Keil, 2002].  An il-
lusion of explanatory depth has been demonstrated when us-
ers attempt to understand AI systems, such as a decision sup-
port system that provides predictions of the likelihood that a 
borrower defaults on a loan [Chromik et al., 2021], or predic-
tions about a person’s blood alcohol content and whether they 
are over the legal limit to drive [Warren et al., 2023].  

An important implication for XAI is that the illusion of ex-
planatory depth undermines the current reliance in many user 
studies on the meta-cognitive judgments of users, including 
scales to measure their introspections about how helpful an 
explanation is [e.g., Hoffman et al., 2018]. The self-report 
judgments of users about how satisfying an explanation is, or 
how much it enables them to trust a system, is an unreliable 
guide about whether it improves their understanding.  Alt-
hough users may indicate that they understand an AI system’s 

decision after they have been provided with an explanation, 
their judgment may be an instance of the illusion.  

When users are required to carry out a key diagnostic task,  
such as predicting the AI system’s decision, it not only pro-
vides an objective measure of their understanding of the sys-
tem, it may also enable them to appreciate that they do not 
understand the AI’s decision as well as they thought, espe-
cially when they are given feedback about the accuracy of 
their responses [Chromik et al., 2021; Warren et al., 2023]. 
Accordingly, a diagnostic task may enable users to calibrate 
their understanding, as can a task requiring them to construct 
an explanation [Chromik et al., 2021; Hoffman et al., 2018]. 
People may be better able to assess their understanding when 
they are encouraged to focus on how the parts of a device 
enable it to work rather than how or why it works overall [Al-
ter et al., 2010], just as when they are required to provide an 
explanation for how a policy works rather than provide rea-
sons why they support it [Fernbach et al., 2013]. The illusion 
of explanatory depth can be dispelled when people construct 
an explanation of the decision-making process by a human 
(e.g., how a doctor detects whether a skin blemish is poten-
tially cancerous) and they come to appreciate that they do not 
understand the process as well as they thought they did. How-
ever, when they construct an explanation of the decision-
making process of an AI system (e.g., how an AI system de-
tects whether a skin blemish is potentially cancerous), it is 
less effective at dispelling the illusion [Cadario et al., 2021]. 

Explanations of an AI system may even potentially mis-
lead users to be overconfident of their understanding [Col-
laris et al., 2018]. User studies need to be carefully crafted to 
avoid the illusion of explanatory depth [Sokol and Flach, 
2020]. For example, participants who gained experience with 
an AI decision support system that predicts whether a per-
son’s blood alcohol level makes them over the limit to drive, 
self-reported greater satisfaction and trust in the AI system 
when they received counterfactual explanations, such as, 
“John would have been under the limit if he had drunk fewer 
units” compared to those who received matched causal ex-
planations, such as, “John was over the limit because he 
drank many units” [Celar and Byrne, 2023; Warren et al., 
2023]. And the explanations did indeed improve their under-
standing of the AI’s decisions, as indicated by their improved 
accuracy in predicting them. Yet causal explanations were 
just as effective as counterfactual ones in improving their pre-
diction accuracy. In other words, a dissociation occurred be-
tween the subjective self-report measures of the effects of ex-
planations on satisfaction and trust, which indicated users be-
lieved counterfactual explanations were better than causal 
ones, and the objective prediction accuracy measures of the 
effects of explanations on understanding, which indicated no 
difference between counterfactual and causal explanations 
[Warren et al., 2023]. In some situations, counterfactual ex-
planations are objectively better than causal ones, for exam-
ple, they ensure users’ own decisions (to drive or not drive) 
are aligned with the AI system’s recommendations [Celar and 
Byrne, 2023]. Nonetheless, the dissociation may reflect an il-
lusion of explanatory depth, in that users appear to believe 
they understand the system given counterfactual 
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explanations, more than users given causal explanations, yet 
their actual understanding of the system is affected similarly 
by either sort of explanation.   

Dissociations between subjective and objective measures 
are of consequence for ethics and fairness in AI as an expla-
nation that makes a user feel they understand a system, yet 
does not change their understanding, could be misleading 
[Warren et al., 2023; see also Buçinca et al., 2020].  A key 
implication for XAI studies of the efficacy of explanations is 
that rigorous experimental methods using objective measures 
such as accuracy of prediction are required to test users’ un-
derstanding of an AI system’s decisions and explanations, ra-
ther than a reliance on meta-cognitive, self-report measures 
of explanation satisfaction and trust. Aids to enable users to 
calibrate their awareness of their own understanding of an AI 
system may be required, such as ensuring users’ attempt to 
explain an AI system’s decision to themselves or others, or 
that they are required to answer diagnostic questions about 
the AI system’s domain or decisions.  

2.2 Intuitive and Reflective Explanations   
People generally manage to get by with incomplete and par-
tial explanations [Keil, 2006]. They appear to construct initial 
explanations based on fast and immediate intuitive thinking, 
which are then subsequently revised after slower and deliber-
ative reflective thinking [Thorstad and Wolff, 2016; see also 
Kahneman, 2011]. People may construct explanations, for 
example, of how a person’s salary amount contributed to an 
AI system’s recommendation of refusal of their loan applica-
tion, by relying on different sorts of empirical information, 
such as covariation of an input feature with an output deci-
sion, and factors such as the temporal order of events, their 
contiguity, or similarity [Einhorn and Hogart, 1986]. But they 
also seem to rely on conceptual beliefs about how an input 
can cause or produce the outcome. People appear to have be-
liefs about various sorts of causal dependencies, processes, or 
capacities, for example, they may have beliefs about power 
that explain, say, how electricity causes an engine to turn, or 
beliefs about force that explain, say, how the wind causes a 
tree to fall down, or beliefs about mechanisms that explain, 
say, how converting electromagnetic waves in radio causes 
sounds [for a review, see Johnson-Laird and Khemlani, 
2017]. Their knowledge of causal relations cannot be cap-
tured simply by causal structures and strengths characterised 
as probabilistic dependencies [e.g., Pearl 2009], since such 
dependencies cannot account for the inferences people make 
[Sloman and Lagnado, 2015; Stephan et al., 2023].  Their ex-
planations reflect not only the current available data, but also 
their beliefs, activated automatically as heuristics to guide or 
even constrain their analytic evaluation of causal information 
[Fugelsang and Thompson, 2003; Verschueren et al., 2005].  

The initial reliance on intuitive explanatory beliefs can 
give rise to remarkable illusions. For example, participants 
were brought by elevator to a laboratory to take part in an 
experiment [Thorstad and Wolff, 2016]. When they were in 
the elevator, as the doors closed, a man standing at the back 
moved his hands apart, and the elevator doors opened. The 
man was far from the doors and made no physical contact 

with them.  As the elevator doors started to close a second 
time, the man moved his hands again and the doors opened 
again; and as the doors began to close a third time, the man 
moved his hands again, and the doors opened again. The man 
was of course a confederate of the experiment, and a second 
confederate, unseen outside the elevator, pressed the button 
to open the doors each time they began to close. When par-
ticipants arrived in the laboratory they were asked whether 
anything had occurred in the elevator,  and most of their ex-
planations tended to indicate that the man caused the doors to 
open, e.g.,  “A man was controlling the doors of the elevator 
with his hand”, and “The man in the elevator kept causing 
the door to stay open on the wrong floor, like magic” [Thor-
stad and Wolff, 2016, p. 920]. If the participants had been in 
the elevator without the man and the doors had repeatedly 
opened, perhaps they would have looked out to see whether 
somebody was pressing the elevator call button, or maybe 
they might have inferred that there was an electrical fault with 
the doors.  But when another person in the elevator moved 
their arms apart and the doors opened, they did not seem to 
think about these other possibilities.  Nonetheless, their sub-
sequent analytic evaluation of their empirical experience led 
some of them to revise their explanations.  Participants were 
asked to what extent they felt “for a moment” that the man 
caused the elevator doors to open, and their immediate hunch 
tended to be, “somewhat” to “very much so”.  They were also 
asked to what extent they “ultimately concluded” the man 
caused the elevator doors to open, and their further reflection 
tended to be only “somewhat” [Thorstad and Wolff, 2016].  
     Hence, when people construct a causal explanation, they 
seem to rely on two very different sorts of cognitive pro-
cesses. They engage processes that are fast, intuitive, and au-
tomatic, perhaps based on heuristics to identify possible 
causes using simple cues, such as covariation, temporal con-
tiguity, and so on. But they can also engage cognitive pro-
cesses that are slower, deliberative, and controlled, perhaps 
based on examining underlying features, such as mecha-
nisms. Such dual processes of fast and slow thinking underlie 
many sorts of decisions and inferences [Kahneman, 2011]. 
For example, people can very rapidly, within a time limit of 
just seconds, construct intuitive counterfactual explanations 
to try to justify a decision they otherwise consider unjustified 
[Tepe and Byrne, 2021]. Their subsequent more reflective 
counterfactual explanations tend to expand on these initial 
thoughts rather than develop alternative explanations.  

An implication for XAI is that explanations provided by 
AI systems may match or mismatch users’ immediate intui-
tions, or their more deliberative reflections, and hence be 
more or less successful as a result. For example, interpreta-
bility tools designed to assist data scientists to understand ma-
chine learning models can inadvertently encourage reliance 
on intuitive explanations [Kaur et al., 2020]. Data scientists 
were asked to consider a machine learning adult income da-
taset, based on input features such as age, education, marital 
status, and so on, and output information about whether each 
person made a salary above a certain amount. They were pro-
vided with different sorts of interpretatbility tools which 
helped them visualize global and local explanations.  But the 
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tools appeared to lead them to make quick decisions about the 
adequacy of the model based on superficial narrative evalua-
tions, rather than reflective decisions based on critical evalu-
ation [Kaur et al., 2020]. Even more so for non-expert users, 
a user-centred XAI system may need to rule out intuitive ex-
planations that are inaccurate, perhaps through interactive 
and iterative engagement between the user and the AI system. 
An important goal should be to ensure users are receptive to 
engaging in considered reasoning about the system, encour-
aged to generate potential counterexamples to putative con-
clusions, so they critically assess decisions and explanations.  

2.3 Explanatory Stances   
People expand their knowledge in real time when they under-
stand an explanation [Keil, 2006]. They tend to adopt a vari-
ety of “explanatory stances” when they attempt to understand 
something, such as a mechanical stance, a design stance, or 
an intentional stance [Dennett, 1987; 1988]. Each of these 
stances provides a very different sort of explanation.  
      For example, from a physical or mechanical stance, a per-
son may explain, say, how a bird flies, by describing the phys-
ical constitution of the system, that is, the mechanics of fly-
ing, considering thrust, propulsion, and so on. Mechanistic 
explanations can be of different sorts, including constitutive, 
that is, how a process works or what it is made up of, say, the 
role of the lightness of a bird’s bones in flight; or etiological, 
that is, how something came to be or developed, say, the evo-
lutionary developments of flight [Joo et al., 2021]. Constitu-
tive mechanisms explain the causal process of interacting 
parts, e.g., how a clock ticks; etiological mechanisms explain 
the chain of events that caused the outcome, e.g., how a tree 
grew its leaves [Joo et al., 2021].   

Alternatively, from a design stance, a person may explain 
how a bird flies by describing its elements and their functions, 
and assuming it will behave as it is designed to behave, for 
example, that a bird flies because wings are made for flying. 
Such design explanations, also known as teleological expla-
nations, emerge early in children, and even adults can prefer 
them to at least some non-teleological, mechanistic ones [Joo 
et al., 2021]. Scientifically questionable teleological explana-
tions can be considered an “explanatory vice” [Lombrozo, 
2016] and may contribute to intelligent design explanations 
that an agent made an item to work as it does [Keil, 2006].  

From an intentional stance instead, a person may explain 
how a bird flies by describing the beliefs and desires a bird 
has about what it needs to do to be able to execute a move 
such as lift. Intentional stance explanations refer to mental 
states that have consequences for behavior [Dennett, 1987]. 
It is an explanation strategy that attributes beliefs and desires 
to systems, and predicts their behaviour based on what a sys-
tem with those beliefs and desires would reasonably do. Peo-
ple often adopt an intentional stance to make sense of behav-
iour, not only of other people but also of other animals and 
artifacts such as computer programs [Dennett, 1988]. 

Notably, each explanatory stance can be applied to explain 
the same device or action, but they have different conse-
quences for understanding it. Each stance can lead to differ-
ent kinds of insights, and to different kinds of erroneous 

inferences. The atypical application of a particular stance, 
say, a mechanical stance to explain an action more typically 
understood from an intentional stance, such as explaining 
travelers in a crowded airport as like pinballs careening 
around a pinball machine, may be interpreted analogically to 
yield new inferences [Keil, 2006].  

People may tend to adopt multiple stances in their pre-
ferred explanations of an AI decision support system and its 
decisions, not unlike their tendencies in interacting with so-
cial robots [Clark and Fischer, 2023]. People are aware that a 
social robot is a machine, but interpret it as a depiction of a 
character, not unlike a ventriloquist dummy, and engage with 
it in pretense of interacting with the depicted character [Clark 
and Fischer, 2023].  Similarly, they may be aware that an AI 
decision support system is an algorithm but they may inter-
pret its decisions as a depiction of those provided by a human, 
e.g., a bank loan assessor, or the organization the human rep-
resents, a bank. Hence, an intentional stance and a design 
stance may both be useful in different contexts for explaining 
how automated agents behave [Veit and Browning, 2023].  

A potential implication for XAI is the necessity to consider 
when a particular stance is appropriate for explaining an AI 
system’s decision. A question posed by a user as to why an 
AI system refused their loan may be a request for causal in-
formation of a mechanistic sort about how the AI system 
came to make that decision. Hence, it may require an expla-
nation based on information about how the user’s input fea-
tures relate to a training data set, e.g., that loans have been 
refused for applicants of similar salary level, occupational 
status, credit history, as the user. Alternatively, it may be a 
request for functional information of a teleological sort about 
the purpose of the AI’s decision. Accordingly, it may require 
instead information about the goal and consequences of the 
output, e.g., that decisions of this sort mitigate the risk of ap-
plicants defaulting from repayment. Each sort of explanation 
will lead users to develop a different understanding of aspects 
of an AI system, and impact their learning, satisfaction, and 
trust in it. 

3 Causal Explanations 
Causal explanations are central in the psychology of explana-
tion [Einhorn and Hogart, 1986; Keil, 2006]. Causality is a 
complex and nuanced concept [Johnson-Laird and Khemlani, 
2017]. I illustrate some of the rich discoveries of how people 
reason about causal explanations by considering each of the 
following tendencies in turn: enabling causes and inference 
suppression, causal discounting, and explanatory simplicity. 
I outline the potential implications of each one for XAI. 

3.1 Enabling Causes and Inference Suppression   
People distinguish between different sorts of causes. A strong 
cause refers to a one-to-one mapping between a single cause, 
say, a lightning storm, and a single effect, say, a forest fire. A 
strong cause is enough to bring about the outcome, and it is 
necessary in that the outcome will only occur when the cause 
occurs. Of course, in daily life, there are many causal rela-
tionships other than a one-to-one mapping between a single 
cause and a single outcome. An enabling cause, say, dry 
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leaves on the forest floor, is an additional background condi-
tion that must be met for the outcome to occur, the forest fire. 
An enabling condition is not enough by itself to bring about 
the outcome, but it is necessary. 

The distinction between different causes is important be-
cause people make very different inferences from strong 
causes compared to enabling causes. They resist even the 
most obvious causal inferences when they know about back-
ground enabling conditions that also need to be met [Byrne, 
1989]. For example, when participants are given a condi-
tional about a strong cause, such as, “if there was a lightning 
storm there was a forest fire” and they are told “there was a 
lightning storm”, most of them make the simple modus po-
nens inference, “there was a forest fire”. But when they are 
also told about an enabling condition, “if there was a light-
ning storm there was a forest fire, if there were dry leaves on 
the forest floor there was a forest fire”, the inference, from 
“there was a lightning storm” to “there was a forest fire” is 
suppressed, that is, participants make far fewer of such infer-
ences. They understand that there would also have to be dry 
leaves on the forest floor. Likewise, the modus tollens infer-
ence, from “there was no forest fire” to “there was no light-
ning storm” is also suppressed [Byrne, 1989].  

The suppression of inferences when people think about 
enabling conditions is widespread in causal thinking. The 
presence of background enabling conditions affects how peo-
ple make choices in various situations, ranging from which 
items to buy, to their legal decisions [Chandon and Jan-
iszewski, 2008; De Neys et al., 2003; Gazzo Castañeda and 
Knauff, 2016]. Inference suppression occurs even when par-
ticipants are not explicitly told about enablers, but are 
prompted to retrieve them instead [Cummins et al., 1991].  

Inference suppression, that is, the decreased frequency of 
inferences, arises because people envisage different possibil-
ities for the different sorts of causes [Byrne et al., 1999; 
Goldvarg and Johnson-Laird, 2001]. For a strong cause, they 
envisage the cause and effect, a lightning storm and a forest 
fire, and they also envisage the absence of the cause and ab-
sence of the effect, no lightning storm and no forest fire. In 
contrast for an enabling cause, they envisage these two pos-
sibilities, but they also simulate a third one, the cause and the 
absence of the effect, a lightning storm and no forest fire. The 
simple inference is suppressed because people construct a 
mental model that makes explicit a counterexample, a light-
ning storm, but no dry leaves, and no forest fire. Notwith-
standing the importance of mechanism and related factors, 
the fundamental meaning of causality may depend on the 
mental simulation of such different possibilities [Johnson-
Laird and Khemlani, 2017].   

People often tend to focus on a strong cause in their com-
munications with others because they believe that others will 
assume the presence of the relevant background enabling 
conditions [Hilton, 1996]. The difference between causes and 
enablers may be that causes are inconstant whereas enablers 
are constant; or causes violate the usual normal situation 
whereas enablers do not; or causes are abnormal whereas en-
ablers are normal; or causes are conversationally relevant 

whereas enablers are not [Cheng and Novick, 1991; Einhorn 
and Hogarth, 1986; Hart and Honoré, 1985; Hilton, 1996]. In 
any case, people can readily distinguish causes and enablers 
[Frosch and Byrne, 2012; Goldvarg and Johnson-Laird, 
2001]. They also can infer the normality of a cause, and in 
situations in which both a normal and abnormal cause lead to 
an outcome, they prefer an explanation based on the abnor-
mal cause, at least when both causes are necessary [Kirfel et 
al., 2022]. The difference between causes and enablers can-
not be captured readily by probabilities since the conditional 
probabilities of an outcome given the cause or enabler can be 
high for either [cf. Oaksford and Chater, 2017; see Johnson-
Laird and Khemlani, 2017].  

An important implication for XAI is that when users are 
provided with a causal explanation for an AI system’s deci-
sion, they may spontaneously notice or retrieve additional 
background enabling conditions. Such retrieved enablers may 
suppress inferences that users would otherwise be expected 
to make, that is, they will make fewer such inferences or even 
refrain from making them at all. If they retrieve even a single 
counterexample, it can suppress an inference, even though it 
could be an exception.  For example, an AI system’s decision, 
such as a prediction that a person is over the legal limit to 
drive, may result from a set of input features, some of which 
are strong causes of the output (e.g., number of units of alco-
hol drunk), and some of which are enabling conditions (e.g., 
an empty stomach) [Celar and Byrne, 2023; Warren,  et al., 
2023]. Explanations for the AI decision that focus on a strong 
cause, “if the person drank 6 units, they were over the legal 
limit to drive” may not be as helpful to users as they may 
seem. Although the explanation invites the simple inference 
from “the person drank 6 units” to “they were over the legal 
limit to drive”, the inference may be suppressed if users no-
tice or retrieve enabling conditions that allow them to con-
struct a counterexample, the person drank 6 units, but they 
had a full stomach, and they were not over the legal limit to 
drive. They may consider the explanation provided by the AI 
system to be misleading or incorrect since it did not 
acknowledge the enabling conditions. Inference suppression 
also occurs for counterfactuals, e.g., “if the person had drunk 
6 units, they would have been over the legal limit to drive” 
[Espino and Byrne, 2020].  Explanations for AI decisions 
may need to consider the enabling conditions of which users 
are aware, and make clear in explanations whether the ena-
bling conditions have been met. Automated explanations 
need to be not only machine robust [Ferrario and Loi, 2022; 
Virgolin and Fracaros, 2023], but also psychologically ro-
bust, interpreted by users in the way that they are intended.  

3.2 Causal Discounting   
When people know about several alternative causes for an ef-
fect, they tend to discount some of them. For example, a per-
son may infer that a wet lawn in the morning results from the 
proper working of their new overnight lawn sprinkler; but if 
they subsequently hear reports that it rained during the night, 
they may conclude instead that the wet lawn is a result of the 
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rain. The two causes are not mutually exclusive, it can rain 
while the sprinkler is working, but the presence of an alterna-
tive cause can lead people to resist inferring that the original 
cause led to the outcome. Many psychological experiments 
demonstrate that people tend to engage in such discounting, 
and a related “explaining away” of the likelihood of causes 
[see Khemlani and Oppenheimer, 2011, for a review]. Partic-
ipants devalue one of the causes perhaps because the other 
“raises the bar” for decisions about its contribution [Laux et 
al., 2010; see also Sloman and Lagnado, 2015].  

People discount a cause based not only on the extent to 
which it covaries with the effect but also based on views 
about whether it is a believable cause [Fugelsang and Thomp-
son, 2001]. When presented with multiple-cause scenarios, 
they appear to form theories of how the causes interact, in-
hibiting or enabling each other [Fugelsang and Thompson, 
2001]. When a normal and abnormal cause lead to an out-
come, they prefer an explanation based on the normal cause, 
when either cause is sufficient to bring about the outcome, 
unlike when both causes are necessary [Kirfel et al., 2022]. 

Causal discounting is closely related to a second sort of 
suppression of inferences, this time from weak causes rather 
than enabling conditions. People make different inferences 
from a many-to-one weak causal relationship of several alter-
native causes leading to a single effect, compared to a one-to-
one strong causal relationship of a single cause leading to a 
single effect. The strong causal relationship between a single 
cause, it rained, and a single effect, the lawn is wet, is con-
trasted in this case with a weak causal relationship, between 
several alternative causes, it rained, the sprinkler was on, and 
the effect, the lawn was wet.  Each of the causes is sufficient 
to bring about the effect but neither one is necessary.  

Participants make very different inferences from strong 
causes and weak causes [Rumain et al., 1983].  When they 
are given a conditional about a strong cause, such as, “if it 
rained the lawn was wet” and they are told “the lawn was 
wet” many of them make the affirmation of the consequent 
inference, “it rained”. But when they are instead told about 
alternative causes, such as, “if it rained the lawn was wet, if 
the sprinkler was on, the lawn was wet”, the inference from 
“the lawn was wet” to “it rained” is suppressed, that is, peo-
ple make far fewer of these inferences. Likewise, the denial 
of the antecedent inference from “it did not rain” to “the 
lawn was not wet” is also suppressed [Rumain et al., 1983].  

Causal discounting may arise because people envisage dif-
ferent possibilities for the strong one-to-one cause and effect 
relation, compared to the weak many-to-one alternative 
causes. For a strong cause, they envisage the cause and the 
effect, rain and a wet lawn, and the absence of the cause and 
absence of the effect, no rain and no wet lawn; but for a weak 
cause, they simulate these two possibilities and a third one, 
the absence of the cause but the presence of the effect, no rain 
but a wet lawn. The inferences are suppressed because people 
construct a mental model that makes explicit a counterexam-
ple, no rain, but the sprinkler on, and a wet lawn [Byrne, 
1989]. Causal discounting is thus readily predicted based on 

the mental models of possibilities that people envisage [cf. 
Hall et al., 2016].  

An implication for XAI is that when human users are given 
an explanation for an AI system’s decision that depends on a 
many-to-one mapping of several alternative causes for a 
single effect, they may be susceptible to such discounting 
effects. They may disregard the proposed causal explanation 
if they know of other alternative causes. Consider an AI 
decision support system that predicts that grass growth on a 
farm will be poor in the month ahead [Dai et al., 2022]. The 
set of input features includes several alternative causes of 
poor grass growth, e.g., competition from weeds, poor soil. 
Explanations for the AI decision that focus on a single cause, 
“if there had been less competition from weeds, grass growth 
would have been good” may not be as helpful to users as they 
may at first seem. Although the explanation invites an 
inference from “grass growth was poor”, to “there was too 
much competition from weeds”, the inference may be 
suppressed if users notice or retrieve alternative causes that 
allow them to construct a counterexample, grass growth was 
poor, but there was no competition from weeds, there was 
poor soil. Once again, they may consider the explanation 
provided by the AI system to be misleading or incorrect since 
it did not acknowledge alternative causes. User-centred 
explanations for AI decisions may need to consider 
alternative causes of which users are aware, and make clear 
in explanations whether the alternative causes have been 
ruled out. Even though AI systems may appear to exhibit 
robustness and fidelity in the explanations provided to users, 
people may over-ride these explanations based on their own 
interpretations of the relevant causal relations.  

3.3 Simplicity of Explanations 
People prefer simpler explanations, at least in terms of the 
number of causes for effects [Lombrozo, 2007]. They tend to 
judge themselves satisfied by explanations based on simple 
causal relationships over more complex ones, in that they pre-
fer a common cause explanation in which one cause results in 
several effects, rather than an explanation in which multiple 
independent causes result in the different effects [Lombrozo, 
2007]. For example, participants were told about three puta-
tive causes for two effects. The first was a common cause re-
lation, of one cause leading to two effects, e.g., “disease A 
causes symptom 1 and symptom 2”. The second was a single-
effect cause that referred to a cause and one of the effects, and 
also ruled out any relation between the cause and the second 
effect, e.g., “disease B causes symptom 1 and it does not 
cause symptom 2”. The third was the opposite, “disease C 
causes symptom 2 and it does not cause symptom 1”. When 
participants were told of an instance in which the two effects 
were present, “Treda has symptom 1 and symptom 2”, they 
tended to judge as the most satisfying explanation the simple 
common-cause explanation, “she has disease A”, rather than 
the multiple single-effect cause explanation, “she has disease 
B and disease C” [Lombrozo, 2007]. 

People prefer such simple explanations to more complex 
ones, not only in deterministic situations where the cause 
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always leads to the effect, but even (albeit to a weaker extent) 
in stochastic situations where the cause sometimes leads to 
the effect [Johnson et al., 2019]. Their preference for simple 
explanations varies for different domains, such as physics, bi-
ology, artifacts, and social domains, for example, it is strong 
for physical systems but not so for social causal systems 
[Johnson et al., 2019]. Their preference for a simpler expla-
nation as offered by a common cause persists until consider-
able evidence is amassed that the more complex explanation 
has greater probability [Lombrozo, 2007].  

People also tend to spontaneously generate cognitively 
simpler explanations rather than more complex ones that re-
quire multiple possibilities to be simulated. For example, 
when participants wrote a diary entry to reflect on a fictional 
series of events, they spontaneously created twice as many 
causal explanations that focused on the facts, e.g., “I haven’t 
made any friends yet in this new town because I didn’t go to 
my neighbor’s party”, compared to counterfactual explana-
tions, e.g., “I would have made friends by now in this new 
town if I had gone to my neighbor’s party”. The counterfac-
tual requires the simulation of multiple possibilities including 
the imagined conjecture, and the facts [McEleney and Byrne, 
2006; see also Dixon and Byrne, 2011].  

Of course, the simplicity of an explanation depends not 
only on the simplicity of the relation between a cause and an 
effect, but also on the conceptual simplicity of the cause and 
the effect themselves. Although simplicity can be viewed as 
an “explanatory virtue” and a useful heuristic, it may have its 
limits in circumstances in which a simple explanation does 
not fit the data as well as a complex one [Johnson et al., 2019; 
see also Lombrozo, 2016]. In some situations, people appear 
to prefer instead a complex explanation. For example, when 
asked to consider someone with disease A, and someone with 
disease B and disease C, and judge who is more likely to have 
symptom 1 and symptom 2, they favor the more complex ex-
planation rather than the simpler common cause one [Johnson 
et al., 2019]. Moreover, when they know only that symptom 
1 occurred and not whether symptom 2 occurred, they prefer 
the narrow scope explanation, “disease B causes symptom 
1”, rather than the simpler common cause one [Khemlani et 
al., 2011]. In some situations, people also appear to consider 
that the strength of a cause with multiple effects is diluted 
compared to a cause with a single effect [Stephan et al., 
2023]. Relatedly, for everyday explanations such as why 
China’s population is rising despite their one-child policy, 
people prefer explanations that contain more causes, e.g., be-
cause ethnic minorities and rural communities are exempt, 
Chinese people are living longer and wealthy people can pay 
fines for violating the policy, rather than simpler explanations 
that refer to just one cause [Zemla et al., 2017]. For such top-
ics they seem to want it to be fully accounted for; they also 
seem to assume the causes provided are true even when they 
are not, e.g., Chinese people are not living longer [Zemla et 
al., 2017].  

An implication for XAI is that in at least some situations, 
users may prefer simple explanations for an AI system’s de-
cision, such as a common cause explanation of a single cause 
that has several different effects, rather than a more complex 

explanation of multiple different causes for different effects. 
Many automated explanations in XAI offer an explanation 
based on a change to a single input, e.g., “if you had earned 
$10,000 more, your loan application would have been ap-
proved”. In some situations, users may benefit from explana-
tions that elaborate instead on a common cause that has sev-
eral effects; in other situations, they may benefit from expla-
nations that provide enough information to appear to fully ac-
count for an outcome. Such explanations may be more effec-
tive in improving satisfaction and trust, even if they impose 
additional constraints on the provision of automated explana-
tions in XAI.   

4 Conclusions 
Given the widespread use of AI decision support systems, 
there is a recognised need for the development of automated 
explanations of their decisions to ensure fairness and trans-
parency. I suggest that central to that endeavour is the re-
quirement that the automated explanations provided by an AI 
system must make sense to human users. Knowledge of key 
discoveries in cognitive science about human explanatory in-
ference is crucial for XAI to ensure that explanations gener-
ated by AI systems can interface directly with tendencies peo-
ple exhibit in explanation construction and causal reasoning. 

A limitation of a survey of this nature is that it can high-
light only a limited number of psychological phenomena, 
from among the rich and diverse research on human explan-
atory reasoning. For example, the choice to focus on causal 
explanations reflects the vast research on them, but neces-
sarily leads to omission of other sorts of explanations such as 
graphical ones. Similarly, a focus on individual cognitive 
tendencies omits consideration of the impact of social and 
cultural factors. It is also vital to acknowledge the real con-
cern that AI systems themselves may introduce biases into 
decisions and explanations, and current explanation strategies 
in XAI may not fully address them. Although factors such as 
algorithmic tractability, computational accessibility, context 
of use, and so on, place core demands on the development of 
explanations for AI decisions, it is crucial to recognise that 
XAI automated explanations can only be robust and effective 
if human users understand them appropriately.     
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