
Survey on Online Streaming Continual Learning

Nuwan Gunasekara1 , Bernhard Pfahringer1 , Heitor Murilo Gomes2 and Albert Bifet1,3
1AI Institute, University of Waikato
2Victoria University of Wellington
3LTCI, Télécom Paris, IP Paris

ng98@students.waikato.ac.nz, {abifet,bernhard}@waikato.ac.nz, heitor.gomes@vuw.ac.nz

Abstract
Stream Learning (SL) attempts to learn from a data
stream efficiently. A data stream learning algorithm
should adapt to input data distribution shifts with-
out sacrificing accuracy. These distribution shifts
are known as ”concept drifts” in the literature. SL
provides many supervised, semi-supervised, and
unsupervised methods for detecting and adjust-
ing to concept drift. On the other hand, Contin-
ual Learning (CL) attempts to preserve previous
knowledge while performing well on the current
concept when confronted with concept drift. In
Online Continual Learning (OCL), this learning
happens online. This survey explores the intersec-
tion of those two online learning paradigms to find
synergies. We identify this intersection as Online
Streaming Continual Learning (OSCL). The study
starts with a gentle introduction to SL and then ex-
plores CL. Next, it explores OSCL from SL and
OCL perspectives to point out new research trends
and give directions for future research.

1 Introduction
Stream Learning (SL) focuses on efficiently learning from
streaming data by learning from one instance at a time. The
requirements for Stream Learning are: to predict at any
given moment, dynamically adapt to underlying data distri-
bution changes (concept drifts), and be computationally effi-
cient when learning and predicting [Bifet et al., 2018]. Data
streams are often assumed to be IID, but in most cases, data
streams are often non-IID as the data distribution changes
over time.

Continual Learning (CL), attempts to learn from a non-IID
data stream to preserve and extend already accrued knowl-
edge [Mai et al., 2022]. The learning algorithm is expected to
strike a balance between stability and plasticity as the stream
undergoes distribution shifts. Furthermore, in Online Contin-
ual Learning (OCL) this learning happens online; thus, the
learning algorithm is only allowed a single pass over the data
[Mai et al., 2022].

We identify Online Streaming Continual Learning (OSCL)
as the intersection between Stream Learning and Online Con-
tinual Learning. OSCL allows well-researched SL fields

DD

D1| |D2| |D3| … |Di| … |DT

Te
st

Drift detector (DD) attempts to detect the end of the
distribution.

SL

Model

D1| |D1..D2| |D1..D3| … |D1.. Di| ... |Dn1..DT

D1| |D2| |D3| … |Di| … |DT

End of the distribution signals provided to the model
only at task-incremental testing.

Except for task-incremental, the end of the distribution
signal is optional at training on other settings. Model
may be unaware of this signal. Some methods and rely
on this signal.

OCL

Tr
ai

n
Te

st
Model

Tr
ai

n

D1| |D2| |D3| … |Di| … |DT

Figure 1: Comparison between SL and OCL settings.
SL: uses drift detectors discussed in section 2.1 to detect distribution
shifts, and evaluation is discussed in section 2.3. OCL: uses evalua-
tion metrics (equations 1, 2, 3, and 4) discussed in section 2.3. The
models in this setting do not detect distribution shifts. OSCL pro-
poses some of the techniques used in SL to be used in OCL.

such as efficient stream learners, concept drift detection, and
adaptation to enhance or develop OCL methods. This survey
attempts to understand the intersection of those two closely
related fields, considering the underlying setting, evaluation
methods, and applications. It also suggests future directions

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6628

Figure 2: Evolution of different drift types under the ”Evolution
of relationship between features and the target and the speed of
change” category: abrupt, gradual, and incremental. Source: [Souza
et al., 2020].

for OSCL taking into account recent advances in SL.
The rest of the paper is organized as follows. Section one

explains Stream Learning considering the setting, drift adap-
tation, methods, evaluation, and applications. The next sec-
tion explores Continual Learning considering the same cri-
teria except for drift adaptation. Figure 1 compares Stream
Learning and Online Continual Learning. Section 4 ex-
plains some of the intersection points between these two
fields. These intersection points lay the ground for OSCL
setting. This is further explained in this section considering
new trends and future directions. Finally, we provide our con-
clusions in the last section.

2 Stream Learning
In Stream Learning, a model learns from an evolving data
stream (non-IID data), processing one instance at a time. The
learner must predict at any given moment using limited pro-
cessing and memory [Bifet et al., 2018; Gomes et al., 2017b].
Also, it should adjust to distribution changes in the underly-
ing input distribution [Bifet et al., 2018; Bifet and Gavalda,
2007]. A shift in the data distribution is identified as a con-
cept drift in literature.

2.1 Concept Drift
Concept drifts can be categorized according to their impact
on the decision boundary, the evolution of the relationship
between features and the target, speed of change, reach, and
recurrence [Suárez-Cetrulo et al., 2023].

• Effect on the decision boundary (impact): the literature
describes real and virtual concept drifts. The former ef-
fects the the decision boundary of the model. This af-
fects the model. The latter does not affect the decision
boundary. Hence the model is unaffected [Ramı́rez-
Gallego et al., 2017].

• Evolution of the relationship between features and the
target and the speed of change: in the literature, drifts

are categorized into sudden (abrupt), gradual, and in-
cremental drifts, considering the evolution of the rela-
tionship between features and the target and the speed
of change. With sudden or abrupt drifts, the current
data distribution changes to a new one within a short
period [Ramı́rez-Gallego et al., 2017]. In the case of
gradual drifts, this transition happens gradually [Suárez-
Cetrulo et al., 2023]. Here for a certain period, one could
observe instances from both distributions. The transi-
tion time is very long with incremental drifts, and there
may not be a statistical difference between adjacent in-
stances [Ramı́rez-Gallego et al., 2017]. Figure 2 shows
how the drift types mentioned above evolve.

• Reach of change: drifts that affect all of the features are
considered global drifts [Suárez-Cetrulo et al., 2023],
and drifts that affect some of the features are called local
drifts [Khamassi et al., 2015].

• Recurrent concept drifts: if a particular data distribu-
tion reoccurs in the stream after a given period, it is con-
sidered a recurrent concept drift [Suárez-Cetrulo et al.,
2023].

• Random blips/outliers/noise: are situations where, for a
very short period of time, few instances which do not
belong to the current distribution popup in the stream
[Suárez-Cetrulo et al., 2023].

Drift Detectors
Many types of drift detectors are explained in the literature.
[Souza et al., 2020] explain three types of drift detectors for
Stream Learning.

• Methods based on differences between two distributions:
These methods compare the difference between two data
windows. A reference window with old data and a detec-
tion window with recent data are compared using a sta-
tistical test to discard the null hypothesis that both data
belong to the same distribution. Drift detectors based
on fixed-size windows usually suffer from a delay in de-
tection [Souza et al., 2020]. Works such as ADaptive
sliding WINdow (ADWIN) [Bifet and Gavalda, 2007]
use dynamic windows.

• Methods based on sequential analysis: These are meth-
ods founded on the Sequential Probability Ratio Test
(SPRT)[Wald, 1947]. CUSUM and Page–Hinkley
[Page, 1954] are good examples of drift detectors of this
type.

• Methods based on statistical process control: These
methods consider the classification problem a statisti-
cal process and monitor the evolution of some perfor-
mance indicators like error rate to apply heuristics to find
change points. For example, DDM [Gama et al., 2004]
has three different states for the classification error evo-
lution: in-control when the error is in the control level,
out-of-control when the error is increasing significantly
compared to the recent past, and warning, when the er-
ror is increasing but has not reached the out-of-control
level. Where DDM only looks at the magnitude of the
errors, EDDM [Baena-Garcıa et al., 2006] also consid-
ers the distance in time between consecutive errors.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6629

We would like to direct the reader to work by [Khamassi
et al., 2018] and [Gama et al., 2014] for a thorough review of
drift detectors for Stream Learning.

2.2 Methods
Similar to batch learning, Stream Learning methods can be
categorized into supervised, semi-supervised, and clustering.
In supervised SL, it is assumed that target values are avail-
able for each instance. In semi-supervised Stream Learning,
this assumption is relaxed for some instances. Target values
may only become available at a later time or not be available
at all. Clustering assumes the unavailability of target vari-
ables. Akin to batch learning, supervised SL has two main
categories: classification and regression. There are quite a
few popular classification methods proposed in SL. Starting
with simple but effective learners like Naive Bayes (NB) and
Hoeffding Tree (HT) to ensemble learners like Adaptive Ran-
dom Forest (ARF), Streaming Random Patches (SRP), and
Continuously Adaptive Neural Networks for Data Streams
(CAND)[Gunasekara et al., 2022c]. HT [Hulten et al., 2001]
builds a tree using the Hoeffding bound to control its split
decisions with a given confidence. Later an adaptive ver-
sion of it was introduced to replace the branches when the
data stream is evolving [Bifet and Gavalda, 2009]. Ensem-
ble methods have shown great success in Stream Learning
[Gomes et al., 2017b]. They allow the use of efficient SL base
learners like HT in a bagging or random forest setting with
efficient drift detectors like ADWIN [Gomes et al., 2019].
ARF is an online random forest implementation for Stream
Learning which uses effective re-sampling methods and drift
adaptation mechanisms to cope with different types of con-
cept drifts [Gomes et al., 2017a]. SRP trains base models on
random subsets of features and instances identified as patches
[Gomes et al., 2019]. It uses the same drift adaptation strat-
egy as in ARF but produces better results than ARF. CAND
trains a pool of simple NNs and uses the one with the smallest
estimated loss for prediction. It employs ADWIN, an estima-
tor to estimate each NN’s loss. As CAND uses NNs as it base
learners, it works well on high-dimensional data. We would
like to direct the reader to [Gomes et al., 2017b], which con-
tains an extensive taxonomy of data stream ensemble classi-
fiers.

Many data stream regression methods are explained in the
literature [Choudhary et al., 2021]. Hoeffding Tree Regres-
sor (HTR) is an adaptation of the incremental tree algorithm
HT for regression. Like HT, HTR uses the Hoeffding bound
to control its split decisions. HTR relies on calculating the
reduction of variance in the target space to find a split can-
didate. Fast Incremental Model Trees with Drift Detection
(FIMT-DD) learn model trees from an evolving data stream
with drift detection [Ikonomovska et al., 2011]. It uses the
variance reduction split criterion for splitting and the Page-
Hinckley test for drift detection. More recent ensemble meth-
ods for streaming regression include Adaptive Random For-
est Regressor (ARF-REG) [Gomes et al., 2018], and Self-
Optimising K-Nearest Leaves (SOKNL) [Sun et al., 2022].
SOKNL claim to have superior accuracy compared to ARF-
REG.

Label availability in a streaming setting can be catego-

rized into four groups: (i) Immediate and fully labelled,
(ii) Delayed and fully labelled, (iii) Immediate and par-
tially labelled, (iv) Delayed and partially labelled [Gomes
et al., 2022]. The majority of data stream Semi-Supervised
Learning (SSL) is devoted to understanding (iii). However,
[Gomes et al., 2022] highlights the importance of understand-
ing the delayed and partially labelled (iv) setting. Further-
more, the authors categorize streaming SSL methods into:
(i) intrinsically SSL, (ii) self-training, and (iii) learning by
disagreement. Intrinsically SSL methods exploit the unla-
belled instances directly as part of their objective function or
optimization procedure [Gomes et al., 2022]. Self-training
methods are based on the idea that a classifier learns from
its previous mistakes and then reinforces itself [Gomes et al.,
2022]. It can act as a wrapper algorithm that uses any ar-
bitrary classifier. Learning by disagreement works by learn-
ers teaching other learners. Models are trained with multiple
viewpoints of the same data1, which results in disagreeing
models. The key idea behind learning by disagreement is to
generate multiple learners and let them collaborate to exploit
the unlabelled data [Gomes et al., 2022].

Data stream clustering can be categorized into: parti-
tion clustering, micro-cluster-based clustering, density-based
clustering, and hierarchical clustering [Bahri et al., 2021]. In-
stances from a stream are divided into segments without a
class label. The objective of this type of SL is to discover
patterns in the stream in an online fashion with a minimum
amount of resources. Also, algorithms deployed in this set-
ting should be able to cope with the evolving nature of the
stream. The survey by [Zubaroğlu and Atalay, 2021] contains
a recent and extensive study on this field.

2.3 Evaluation
Several methods are explained in the SL literature for eval-
uating a model. The most popular one is the test-then-train
approach [Bifet et al., 2018; Gama et al., 2013]. As the name
suggests, the evaluation uses the incoming instance to test
the model first and later train the model. Here the current
predictive evaluation is affected by the previous evaluations.
This may be desirable when one is interested in the model’s
overall performance. Test-then-train is also known as pre-
quential evaluation in the literature. The prequential evalua-
tion may not be reliable in conveying the current predictive
performance of the model. Therefore prequential evaluation
can be equipped with a sliding window, or a fading factor, to
gracefully forget the performance on instances from the dis-
tant past [Bifet et al., 2018; Gama et al., 2013]. For partly
labelled data, prequential evaluation is still applicable as the
loss can be calculated on just the labelled subset of instances
[Gomes et al., 2022]. Data stream cross-validation was in-
troduced by [Bifet et al., 2015] where models are trained and
tested in parallel on different folds of the data. Continuous re-
evaluation considers the verification latency in the streaming
setting with partially delayed labels [Grzenda et al., 2020a;
Grzenda et al., 2020b]. This evaluation attempts to evaluate
how fast a model can transform from an initial possibly incor-

1This could be achieved through techniques such as bootstrap-
ping aggregation.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6630

rect prediction to a correct prediction prior to the availability
of the true label.

There are several metrics explained in the literature to mea-
sure the performance of an SL classification algorithm. The
most popular one is accuracy. If the data stream is imbal-
anced, accuracy can be misleading; sensitivity and specificity
are better measurement alternatives [Bahri et al., 2021]. The
kappa statistic compares the model’s prequential accuracy
against the chance classifier (one that randomly assigns to
each class the same number of instances as the model un-
der consideration) [Bifet et al., 2018]. On the other hand, the
kappa M compares the current model’s performance against
the majority class classifier [Bifet et al., 2018]. Kappa tem-
poral attempts to capture the temporal dependencies in a data
stream by comparing the model performance against a ”no-
change” model, which predicts the next instance using the
current instance’s label [Bifet et al., 2018]2. For delayed la-
bel situations, when multiple predictions are made for a sin-
gle instance, accuracy and kappa values can be aggregated
to produce immediate measures until the true label is avail-
able [Grzenda et al., 2020b; Gomes et al., 2022].

Regression SL uses two main evaluation metrics: (i) Root
mean squared error (RMSE) and (ii) Mean absolute error
(MAE) [Bahri et al., 2021]. We direct the reader to [Bifet et
al., 2018; Bahri et al., 2021] for thorough reviews of regres-
sion evaluation methods and [Kremer et al., 2011] for clus-
tering evaluation methods. Furthermore, data stream evalu-
ation also considers computing and memory usage [Bifet et
al., 2018].

2.4 Application
SL has been used in many situations where learning happens
from an evolving data stream. [Souza et al., 2020] used SL on
data generated by optical sensors, which measure the flying
behavior of insects to identify disease vector insects. Also
[Gao and Lei, 2017] used SL methods for online crude oil
price prediction. SL was used to predict power production
considering environmental conditions by [Lobo et al., 2020].
The study by [Žliobaitė et al., 2016] contains some interesting
applications of SL for monitoring and control problems. It in-
cludes application tasks such as traffic management, activity
recognition, communication monitoring, controlling robots,
intelligent appliances, intrusion detection, fraud detection,
and insider trading. The study also contains some interesting
areas where SL could provide solutions. We like to direct the
reader to [Žliobaitė et al., 2016] for a broader understanding
of SL applications.

3 Continual Learning
The literature has thoroughly documented that an NN receiv-
ing non-IID data forgets past knowledge when confronted
with a concept shift [Kirkpatrick et al., 2017; Mai et al.,
2022]. CL attempts to learn with minimal forgetting of past
concepts [Kirkpatrick et al., 2017; Mai et al., 2022]. In OCL,

2These measurements are thoroughly explained in [Bifet et al.,
2018]

this learning happens online. Three main continual learn-
ing settings are described in the literature: task-incremental,
class-incremental, and domain-incremental.

• Task-incremental: In this setting, output distributions are
demarked by external task ids, available for training and
testing. In this setting, the model can use the external
task-id signal at test time [Mai et al., 2022].

• Class-incremental: Each distribution consists of classes
that are unavailable in other distributions (tasks). This
setting adapts a single-head NN configuration. Here,
output distributions differ from task to task [Mai et al.,
2022].

• Domain-incremental, on the other hand, assumes output
distribution from one task to the other to be the same
while having different input distributions [Mai et al.,
2022].

In both class-incremental and domain-incremental settings,
an external task-id that separates one task from another is as-
sumed to be unavailable at test time. The availability of this
signal at training is optional. However, some CL methods
rely on this signal during training. Online Class Incremental
Continual Learning (OCICL) and Online Domain Incremen-
tal Continual Learning (ODICL) assume class-incremental
and domain-incremental OCL settings, respectively.

3.1 Methods
CL algorithms use three popular approaches to avoid catas-
trophic forgetting in NNs: regularization, replay, and param-
eter isolation.

• Regularization methods: algorithms like Elastic Weight
Consolidation (EWC) [Kirkpatrick et al., 2017] and
Learning without Forgetting (LWF) [Li and Hoiem,
2017] adjust the weights of the network in such a way
that it minimizes the overwriting of the weights for the
old concept. EWC uses a quadratic penalty to regularize
updating the network parameters related to the past con-
cept. It uses the Fisher Information Matrix’s diagonal
to approximate the importance of the parameters [Kirk-
patrick et al., 2017]. EWC has some shortcomings: 1)
the Fisher Information Matrix needs to be stored for each
task, 2) it requires an extra pass over each task’s data at
the end of the training [Mai et al., 2022]. Though dif-
ferent versions of EWC address these concerns [Mai et
al., 2022], [Chaudhry et al., 2018] seems suitable for on-
line CL by keeping a single Fisher Information Matrix
calculated by a moving average. LWF uses knowledge
distillation to preserve knowledge from past tasks. Here,
the model related to the old task is kept separate, and
a separate model is trained on the current task. When
the LWF receives data for a new task (Xnew, Ynew), it
computes the output (Yold) from the old model for the
new data Xnew. During training, assuming that ˆYold

and ˆYnew are predicted values for Xnew from the old
model and new model, LWF attempts to minimize the
loss: αLKD(Yold, ˆYold) + LCE(Ynew, ˆYnew) + R [Mai
et al., 2022]. Here LKD is the distillation loss for the
old model, and α is the hyper-parameter controlling the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6631

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

Task Incremental

Class Incremental

Domain Incremental

Task

Task

Task

i-1

i

Unknown

Unknown

Unknown

Unknown

task-ID (test)

task-ID (test)

task-ID (test)

task-ID (test)

task-ID (test)

task-ID (test)

Bird Dog

Bird Dog

Bird Dog

Bird Dog

Ship Guitar

Ship Guitar

D i - 1

D i - 1

D i - 1

D i

D i

D i

Figure 3: Three main CL settings discussed by [Mai et al.,
2022].Task-incremental: tasks are demarked by task id. Task id is
available at the test time. Class-incremental: different classes are
present at each task. Task id is not available at the test time. Domain-
incremental: each task contains the same set of classes, but the input
distribution changes from one task to another, e.g., blur vs. noise.
Task id is not available at test time. Source: [Mai et al., 2022].

strength of the old model against the new one. LCE is
the cross-entropy loss for the new task. R is the general
regularization term. Due to this strong relation between
old and new tasks, it may perform poorly in situations
where there is a huge difference between old and new
task distributions [Mai et al., 2022].

• Replay methods present a mix of old and current con-
cept’s instances to the NN based on a given policy while
training. This reduces forgetting as the training instances
from the old concepts avoid complete overwriting of
past concept’s weights. GDUMB [Prabhu et al., 2020],
Experience Replay (ER) [Chaudhry et al., 2019], and
Maximally Interfered Retrieval (MIR) [Aljundi et al.,
2019] are some of the most popular CL replay methods.
GDUMB attempts to maintain a class-balanced mem-
ory buffer using instances from the stream. At the end
of the task, it trains the model using the buffered in-
stances. ER uses reservoir sampling to sample instances
from the stream to fill the buffer. Reservoir sampling
ensures that every instance in the stream has the same
probability of being selected to fill the buffer. ER uses
random sampling to retrieve instances from the mem-
ory buffer. Despite its simplicity, ER has shown com-
petitive performance in ODICL[Mai et al., 2022]. Five
(three buffer and two non-buffer) tricks have been pro-
posed by [Buzzega et al., 2021] to improve the accu-
racy of ER in the OCICL setting. The buffer tricks
are independent buffer augmentation, balanced reservoir
sampling, and loss-aware reservoir sampling. The two
non-buffer tricks are bias control and exponential learn-
ing rate decay. Except for bias control which controls
the bias of newly learned classes, these tricks can be
used in ODICL to improve the performance of a re-
play method. MIR uses the same reservoir sampling as
ER to fill the memory buffer. However, when retriev-
ing instances from the buffer, it first does a virtual pa-
rameter update using the incoming mini-batch. Then it
selects the top k randomly sampled instances with the
most significant loss increases by the virtual parameter
update for training. In the online implementation in [Mai
et al., 2022], this virtual update is done on a copy of
the NN. Replay Using Memory Indexing (REMIND)
[Hayes et al., 2020] takes this approach to another level
by storing the internal representations of the instances
by the initial frozen part of the network and using a ran-
domly selected set of these internal representations to
train the last unfrozen layers of the network. REMIND
can store more instance’s representations using internal
low-dimensional features. In general, these replay ap-
proaches are motivated by how the hippocampus in the
brain stores and replays high-level representations of the
memories to the neocortex to learn from them [Hayes et
al., 2020]. The empirical survey by [Mai et al., 2022]
suggests that ER and MIR perform better on OCICL
and ODICL than other OCL methods. More recently
[Zhang et al., 2022] has proposed repeated augmented
rehearsal to improve replay methods. The method uti-
lize data argumentation for replayed instances to avoid

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6632

over-fitting on replay buffer data3. The approach seems
to improve all replay methods in general.

• Parameter-isolation: The intuition behind parameter-
isolation methods is to avoid interference by allocating
separate parameters for each task [Mai et al., 2022].
There are two types of parameter-isolation-based meth-
ods: fixed architecture and dynamic architecture. Fixed
architecture only activates the relevant part of the net-
work without changing the NN architecture [Mai et al.,
2022]. Dynamic architecture, on the other hand, adds
new parameters for the new task while keeping the old
parameters [Yoon et al., 2017; Mai et al., 2022]. Contin-
ual Neural Dirichlet Process Mixture (CN-DPM) [Lin,
2013] trains a new model for each new task and leaves
the existing models untouched so that at a later point,
it can retain the knowledge of the past tasks. It com-
poses of a group of experts where each expert contains a
discriminative model and a generative model. Each ex-
pert is responsible for a subset of the data. The group
is expanded based on the Dirichlet Process Mixture us-
ing Sequential Variational Approximation [Mai et al.,
2022].

We would like to direct the reader to a survey by [Mai et
al., 2022] for in-depth detail about those methods.

3.2 Evaluation
There are many evaluation metrics defined in the CL litera-
ture. On a stream with T tasks, after training the NN from
tasks 1 to i, let ai,j be the accuracy on the held-out test set for
task j. Average accuracy (Ai) at task i is defined as:

Ai =
1

i

i∑
j=1

ai,j (1)

[Chaudhry et al., 2018]. Average forgetting (Fi) at task i is
defined as:

Fi =
1

i− 1

i−1∑
j=1

fi,j (2)

, where

fk,j = max
l∈{ 1,...,k−1}

(al,j)− ak,j∀j < k

Here fk,j is the best test accuracy the model has ever achieved
on task j prior to learning task k. ak,j is the test accuracy on
task j after learning task k [Chaudhry et al., 2018]. The pos-
itive influence of learning a new task on previous tasks’ per-
formance is measured by Positive Backward Transfer (BWT):

BWT = max

(∑T
i=2

∑i−1
j=1 ai,j − aj,j
T (T−1)

2

, 0

)
(3)

[Mai et al., 2022]. The positive influence of learning a
given task on future tasks’ performance is defined as Forward

3A well-documented issue in replay methods [Zhang et al.,
2022].

Transfer (FWT):

FWT =

∑T−1
i=1

∑T
j=2 ai,j

T (T−1)
2

∀i < j (4)

[Mai et al., 2022]. Further to the above metrics, run-time
and memory usage are also considered when evaluating OCL
methods [Mai et al., 2022].

3.3 Applications
Recent research has focused on using ODICL methods to
avoid costly retraining in practical situations where the model
is confronted with a concept shift. ODICL has been used in
X-ray image classification to avoid retraining on distribution
shifts due to unforeseen shifts in hardware’s physical prop-
erties [Srivastava et al., 2021]. Also, it has been used to
mitigate bias in facial expression and action unit recognition
across different demographic groups [Kara et al., 2021]. Fur-
thermore, ODICL was used to counter retraining on concept
shifts for multi-variate sequential data of critical care patient
recordings [Armstrong and Clifton, 2021]. The authors high-
light some replay method’s infeasibility due to strong privacy
requirements in clinical settings. This concern is further high-
lighted in the empirical study by [Mai et al., 2022]. Practical
implementations such as [Kara et al., 2021] and [Armstrong
and Clifton, 2021] use the end of the task signal to employ
OCL methods such as EWC and LWF. However, on the other
hand, practical implementation in [Srivastava et al., 2021] as-
sumes a gradual distribution shift in the input data distribution
where instances from both the new and old tasks could appear
in the stream for a certain period.

4 Online Streaming Continual Learning
In Stream Learning, the objective is to adjust to the current
concept in the stream efficiently. On the other hand, OCL
has dual learning objectives: adjust to the current concept
while preserving knowledge about previous concepts. Both
settings assume data is non-IID. In Stream Learning, it is
assumed that model should detect distribution changes and
adapt accordingly. However, in OCL, the end of the con-
cept signal is provided at training time, even though some re-
play methods may not use it. This end-of-the-concept signal
is only provided for task-incremental CL at test time. Fig-
ure 1 also shows the differences between these two settings.
Contrary to the differences, these two fields have many inter-
section points. We identify these intersection points as On-
line Streaming Continual Learning (OSCL). In OSCL, we
mainly identify how well-researched Stream Learning tech-
niques and methods could be used to enhance OCL.

SL on recurrent concept drifts attempts to adjust to an
evolving data stream where some concepts could reemerge
at a later stage of the stream [Suárez-Cetrulo et al., 2023].
The setting is similar to OCL but without the additional
learning objective of preserving old knowledge explicitly.
Hence evaluation in this setting does not consider how to
measure forgetting of past knowledge. Most of the meth-
ods explored in this setting keep a fixed-size pool of clas-
sifiers [Suárez-Cetrulo et al., 2023]. Various mechanisms

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6633

are explored in the literature on how to maintain this pool
[Suárez-Cetrulo et al., 2023; Anderson et al., 2019] and
how to use it for prediction [Suárez-Cetrulo et al., 2023;
Almeida et al., 2018]. This ”pool of classifiers” is also known
as ”concept history”, ”concept list”, and ”concept repository”
in the literature [Suárez-Cetrulo et al., 2023]. Measures like
concept equivalence and concept similarity were introduced
to identify the current concept in the data stream from the
concept pool.

• Conceptual equivalence assumes that when two classi-
fiers behave similarly on a given time window, both de-
scribe the same concept [Yang et al., 2006].

• Concept similarity: recognizes similar concepts using
Euclidean distances between concept clusters [Li et al.,
2012]. Thus it can detect recurring drifts in unlabelled
data.

Measures such as concept equivalence and concept sim-
ilarity could be used for model selection and data retrieval
from the replay buffer in OCL. When handling recurrent
concepts, predicting the following concept is helpful so the
learner can adjust to the incoming concept ahead of time.
[Chen et al., 2016] proposed a method that used a probabilis-
tic network to predict future changes. [Maslov et al., 2016]
proposed a method to use patterns acquired during previous
drifts to predict the time of the next drift. The method as-
sumed a Gaussian distribution for the duration of the con-
cepts. A recent survey by [Suárez-Cetrulo et al., 2023] dis-
cusses the above and many more exciting topics on SL for
recurrent concept drifts.

Most of the OCL methods rely on externally provided end-
of-concept signals (task ids) at training4. It is critical for an
autonomous learning agent to detect these concept shifts and
adjust accordingly. While OCL research has explored dif-
ferent methods to preserve old knowledge when adjusting to
new concepts, SL has done an excellent job of understand-
ing how to detect distribution shifts, especially through dif-
ferent drift detection methods on streams with different drift
types (abrupt, gradual, incremental, and recurrent) and dif-
ferent label conditions (available for all instances/ delayed
label/ no label). OCL could utilize well-researched drift
detectors to detect the end-of-concept signal. Recent re-
search in that direction includes Online Domain Incremental
Pool (ODIP) [Gunasekara et al., 2022b] and Online Domain
Incremental Networks (ODIN) [Gunasekara et al., 2022a],
which use ADWIN as an end-of-task signal generator in an
ODICL setting. These methods use this internal signal to ad-
just to newly perceived concepts automatically. Recent work
by [Davalas et al., 2022] has explored the use of drift detec-
tors to identify when to use the data from the instance buffer
and how to use it in an OCL setting. Having well-researched
SL knowledge on different distribution shifts and different
drift detectors would allow OCL algorithms to be more effec-
tive in practical OCL scenarios, like the gradual distribution
shifts in x-ray images [Srivastava et al., 2021].

4Due to internal instance buffers, some OCL models may not
need task ids at train time. The performance of these models is heav-
ily dependent upon the size of this instance buffer [Mai et al., 2022]

Topic SL OCL

Setting Single learning objective: Dual learning objective:
adjust to current concept adjust to current concept
efficiently. and preserve old knowledge.

Drift Thoroughly studied Can be used for
detection task detection

Some recent OCL work:
[Gunasekara et al., 2022a],
[Gunasekara et al., 2022b].

Drift Used when dealing with Can be used for task
prediction. recurrent concept drifts. prediction. Some SL work:

[Chen et al., 2016],
[Suárez-Cetrulo et al., 2023]

Missing Some methods have been Yet to be fully explored.
labels proposed to tackle this Can employ some of the SL

[Gomes et al., 2022]. approaches discussed in
[Gomes et al., 2022].

Recurrent Similar to OCL, without SL concept pool
concept explicit learning objective maintenance techniques
drifts to preserve old knowledge. [Suárez-Cetrulo et al., 2023]

For latest research can be useful in maintaining
refer to references to different
[Suárez-Cetrulo et al., 2023]. NN structures in OCL

parameter-isolation methods.
Concept equivalence and
concept similarity can be
used to retrieve relevant
instances or NN structures.
Many more techniques are
discussed in
[Suárez-Cetrulo et al., 2023].

Evaluation Frameworks can employ Employs dual learning
OCL dual learning objective.
objective and metrics
discussed in section 3.2.
So SL methods and
techniques can be evaluated
under OCL setting.

Application Suitable for applications Suitable for applications
which needs to adjust to the which needs to adapt to
current concept very quickly. current concept very

quickly while preserving
old knowledge.

Table 1: Synergies and differences between SL and OCL.

Furthermore, semi-supervised SL could enhance OCL to
be more practical in situations where label data is not al-
ways immediately available. Works like ORDisCo [Wang et
al., 2021] and CURL [Rao et al., 2019] have already started
exploring this research area. Semi-supervised SL methods
under Self-training and learning by disagreement categories
[Gomes et al., 2022] could easily be deployed on real world
OCL settings where labels are not always present. However,
many opportunities exist considering the breadth of semi-
supervised SL methods discussed by [Gomes et al., 2022].

Streaming clustering is another exciting area that could be
explored in future OCL work. Here, well-established stream-
ing clustering algorithms [Zubaroğlu and Atalay, 2021] could
solve interesting OCL problems as streaming clustering algo-
rithms extract patterns from evolving data. One could use a
streaming clustering algorithm to extract tasks from an un-
supervised OCL setting. The extracted information, such as
task information, could be used for model selection and data
retrieval from the replay buffer. The most exciting aspect of
the streaming clustering algorithms for OCL is that they are
well-studied for evolving data streams.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6634

On the other hand, SL could adapt the dual learning objec-
tive in OCL (adjust to the current concept while preserving
knowledge about previous concepts). This would allow one
to evaluate the breadth of well-studied SL methods for OCL.
There is some emerging work in this area where catastrophic
forgetting is explored in HTs [Korycki and Krawczyk, 2021].
Implementing the OCL evaluation discussed in [Mai et al.,
2022] on popular SL platforms such as MOA [Bifet et al.,
2010] and river [Montiel et al., 2021] would speed up this
area of research.

Table 1 summarizes the above-discussed synergies and dif-
ferences between Stream Learning and OCL. It points out the
differences in the settings and lists some future research di-
rections in Online Streaming Continual Learning.

5 Conclusion
SL attempts to adjust to an evolving data stream with multi-
ple concepts efficiently. The primary learning objective of the
model is to perform well on the current concept. For the same
setting, OCL, on the other hand, attempts to do well on the
current concept while preserving the knowledge of past con-
cepts. Drift detection techniques could be used to detect new
concepts in OCL. So that OCL models could be trained with-
out an external end-of-concept signal (task id). Also, mecha-
nisms explored in SL for recurrent concept drifts could give
new insights into predicting future drifts real world in OCL
settings. Some of the techniques and methods explored in
semi-supervised SL could allow OCL to be applicable in sit-
uations where labels are not always available. Furthermore,
popular SL frameworks can employ the dual learning objec-
tive discussed in OCL. This would allow the OCL commu-
nity to evaluate numerous SL methods and techniques for
OCL.

References
[Aljundi et al., 2019] Rahaf Aljundi, Lucas Caccia, Eugene

Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin,
and Tinne Tuytelaars. Online continual learning with max-
imally interfered retrieval. NeurIPS, 2019.

[Almeida et al., 2018] Paulo RL Almeida, Luiz S Oliveira,
Alceu S Britto Jr, and Robert Sabourin. Adapting dynamic
classifier selection for concept drift. Expert Systems with
Applications, 104:67–85, 2018.

[Anderson et al., 2019] Robert Anderson, Yun Sing Koh,
Gillian Dobbie, and Albert Bifet. Recurring concept meta-
learning for evolving data streams. Expert Systems with
Applications, 138:112832, 2019.

[Armstrong and Clifton, 2021] Jacob Armstrong and
D Clifton. Continual learning of longitudinal health
records. IEEE EMBS (ITAB), 2021.

[Baena-Garcıa et al., 2006] Manuel Baena-Garcıa, José del
Campo-Ávila, Raul Fidalgo, Albert Bifet, Ricard Gavalda,
and Rafael Morales-Bueno. Early drift detection method.
In Fourth international workshop on knowledge discovery
from data streams, volume 6, pages 77–86. Citeseer, 2006.

[Bahri et al., 2021] Maroua Bahri, Albert Bifet, João Gama,
Heitor Murilo Gomes, and Silviu Maniu. Data stream
analysis: Foundations, major tasks and tools. WIRE: Data
Min. Knowl. Discov., 11(3):e1405, 2021.

[Bifet and Gavalda, 2007] Albert Bifet and Ricard Gavalda.
Learning from time-changing data with adaptive window-
ing. In SIAM (SDM), pages 443–448. SIAM, 2007.

[Bifet and Gavalda, 2009] Albert Bifet and Ricard Gavalda.
Adaptive learning from evolving data streams. In IDA,
pages 249–260. Springer, 2009.

[Bifet et al., 2010] Albert Bifet, Geoff Holmes, Richard
Kirkby, and Bernhard Pfahringer. MOA: massive online
analysis. J. Mach. Learn. Res., 11:1601–1604, 2010.

[Bifet et al., 2015] Albert Bifet, Gianmarco de Fran-
cisci Morales, Jesse Read, Geoff Holmes, and Bernhard
Pfahringer. Efficient online evaluation of big data stream
classifiers. In 21th ACM SIGKDD, pages 59–68, 2015.

[Bifet et al., 2018] Albert Bifet, Ricard Gavaldà, Geoff
Holmes, and Bernhard Pfahringer. Machine learning for
data streams: with practical examples in MOA. MIT Press,
2018.

[Buzzega et al., 2021] Pietro Buzzega, Matteo Boschini, An-
gelo Porrello, and Simone Calderara. Rethinking experi-
ence replay: a bag of tricks for continual learning. In 2020
25th(ICPR), pages 2180–2187. IEEE, 2021.

[Chaudhry et al., 2018] Arslan Chaudhry, Puneet K Doka-
nia, Thalaiyasingam Ajanthan, and Philip HS Torr. Rie-
mannian walk for incremental learning: Understanding
forgetting and intransigence. In ECCV, pages 532–547,
2018.

[Chaudhry et al., 2019] Arslan Chaudhry, Marcus Rohrbach,
Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On
tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019.

[Chen et al., 2016] Kylie Chen, Yun Sing Koh, and Patri-
cia Riddle. Proactive drift detection: Predicting concept
drifts in data streams using probabilistic networks. In 2016
IJCNN, pages 780–787. IEEE, 2016.

[Choudhary et al., 2021] Ajay Choudhary, Preeti Jha, Aruna
Tiwari, and Neha Bharill. A brief survey on concept
drifted data stream regression. SocProS, pages 733–744,
2021.

[Davalas et al., 2022] Charalampos Davalas, Dimitrios
Michail, Christos Diou, Iraklis Varlamis, and Kon-
stantinos Tserpes. Computationally efficient rehearsal
for online continual learning. In ICIAP, pages 39–49.
Springer, 2022.

[Gama et al., 2004] Joao Gama, Pedro Medas, Gladys
Castillo, and Pedro Rodrigues. Learning with drift detec-
tion. In SBIA, pages 286–295. Springer, 2004.

[Gama et al., 2013] Joao Gama, Raquel Sebastiao, and Pe-
dro Pereira Rodrigues. On evaluating stream learning al-
gorithms. Machine learning, 90(3):317–346, 2013.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6635

[Gama et al., 2014] João Gama, Indrė Žliobaitė, Albert
Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.
A survey on concept drift adaptation. ACM (CSUR),
46(4):1–37, 2014.

[Gao and Lei, 2017] Shuang Gao and Yalin Lei. A new ap-
proach for crude oil price prediction based on stream learn-
ing. Geoscience Frontiers, 8(1):183–187, 2017.

[Gomes et al., 2017a] Heitor M Gomes, Albert Bifet, Jesse
Read, Jean Paul Barddal, Fabrı́cio Enembreck, Bernhard
Pfahringer, Geoff Holmes, and Talel Abdessalem. Adap-
tive random forests for evolving data stream classification.
Machine Learning, 106(9):1469–1495, 2017.

[Gomes et al., 2017b] Heitor Murilo Gomes, Jean Paul
Barddal, Fabrı́cio Enembreck, and Albert Bifet. A survey
on ensemble learning for data stream classification. ACM
(CSUR), 50(2):1–36, 2017.

[Gomes et al., 2018] Heitor Murilo Gomes, Jean Paul Bard-
dal, Luis Eduardo Boiko Ferreira, and Albert Bifet. Adap-
tive random forests for data stream regression. In ESANN,
2018.

[Gomes et al., 2019] Heitor Murilo Gomes, Jesse Read, and
Albert Bifet. Streaming random patches for evolving data
stream classification. In IEEE (ICDM), pages 240–249.
IEEE, 2019.

[Gomes et al., 2022] Heitor Murilo Gomes, Maciej Grzenda,
Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and
Albert Bifet. A survey on semi-supervised learning for
delayed partially labelled data streams. ACM Computing
Surveys, 55(4):1–42, 2022.

[Grzenda et al., 2020a] Maciej Grzenda, Heitor Murilo
Gomes, and Albert Bifet. Delayed labelling evalu-
ation for data streams. Data Min. Knowl. Discov.,
34(5):1237–1266, 2020.

[Grzenda et al., 2020b] Maciej Grzenda, Heitor Murilo
Gomes, and Albert Bifet. Performance measures for evolv-
ing predictions under delayed labelling classification. In
IJCNN, pages 1–8. IEEE, 2020.

[Gunasekara et al., 2022a] Nuwan Gunasekara, Heitor
Gomes, Albert Bifet, and Bernhard Pfahringer. Adaptive
neural networks for online domain incremental continual
learning. In DS 2022, pages 89–103. Springer, 2022.

[Gunasekara et al., 2022b] Nuwan Gunasekara, Heitor
Gomes, Albert Bifet, and Bernhard Pfahringer. Adaptive
online domain incremental continual learning. In ICANN
2022, pages 491–502. Springer, 2022.

[Gunasekara et al., 2022c] Nuwan Gunasekara,
Heitor Murilo Gomes, Bernhard Pfahringer, and Al-
bert Bifet. Online hyperparameter optimization for
streaming neural networks. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 1–9.
IEEE, 2022.

[Hayes et al., 2020] Tyler L Hayes, Kushal Kafle, Robik
Shrestha, Manoj Acharya, and Christopher Kanan. Re-
mind your neural network to prevent catastrophic forget-
ting. In ECCV, pages 466–483. Springer, 2020.

[Hulten et al., 2001] Geoff Hulten, Laurie Spencer, and Pe-
dro Domingos. Mining time-changing data streams. In
ACM SIGKDD, pages 97–106, 2001.

[Ikonomovska et al., 2011] Elena Ikonomovska, Joao Gama,
and Sašo Džeroski. Learning model trees from evolving
data streams. Data Min. Knowl. Discov., 23(1):128–168,
2011.

[Kara et al., 2021] Ozgur Kara, Nikhil Churamani, and Hat-
ice Gunes. Towards fair affective robotics: Continual
learning for mitigating bias in facial expression and action
unit recognition. arXiv preprint arXiv:2103.09233, 2021.

[Khamassi et al., 2015] Imen Khamassi, Moamar Sayed-
Mouchaweh, Moez Hammami, and Khaled Ghédira. Self-
adaptive windowing approach for handling complex con-
cept drift. Cognitive Computation, 7(6):772–790, 2015.

[Khamassi et al., 2018] Imen Khamassi, Moamar Sayed-
Mouchaweh, Moez Hammami, and Khaled Ghédira. Dis-
cussion and review on evolving data streams and concept
drift adapting. Evolving systems, 9:1–23, 2018.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Over-
coming catastrophic forgetting in neural networks. PNAS,
114(13):3521–3526, 2017.

[Korycki and Krawczyk, 2021] Łukasz Korycki and Bartosz
Krawczyk. Streaming decision trees for lifelong learning.
In ECML PKDD, pages 502–518. Springer, 2021.

[Kremer et al., 2011] Hardy Kremer, Philipp Kranen, Timm
Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, and
Bernhard Pfahringer. An effective evaluation measure
for clustering on evolving data streams. In 17th ACM
SIGKDD, pages 868–876, 2011.

[Li and Hoiem, 2017] Zhizhong Li and Derek Hoiem.
Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947,
2017.

[Li et al., 2012] Peipei Li, Xindong Wu, and Xuegang Hu.
Mining recurring concept drifts with limited labeled
streaming data. ACM (TIST), 3(2):1–32, 2012.

[Lin, 2013] Dahua Lin. Online learning of nonparametric
mixture models via sequential variational approximation.
NeurIPS, 26, 2013.

[Lobo et al., 2020] Jesus L Lobo, Igor Ballesteros, Izaskun
Oregi, Javier Del Ser, and Sancho Salcedo-Sanz. Stream
learning in energy iot systems: a case study in combined
cycle power plants. Energies, 13(3):740, 2020.

[Mai et al., 2022] Zheda Mai, Ruiwen Li, Jihwan Jeong,
David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical
survey. Neurocomputing, 469:28–51, 2022.

[Maslov et al., 2016] Alexandr Maslov, Mykola Pech-
enizkiy, Indreė Žliobaitė, and Tommi Kärkkäinen.
Modelling recurrent events for improving online change
detection. In SIAM (SDM), pages 549–557. SIAM, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6636

[Montiel et al., 2021] Jacob Montiel, Max Halford,
Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael
Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo
Gomes, Jesse Read, Talel Abdessalem, et al. River: ma-
chine learning for streaming data in python. The Journal
of Machine Learning Research, 22(1):4945–4952, 2021.

[Page, 1954] Ewan S Page. Continuous inspection schemes.
Biometrika, 41(1/2):100–115, 1954.

[Prabhu et al., 2020] Ameya Prabhu, Philip HS Torr, and
Puneet K Dokania. Gdumb: A simple approach that ques-
tions our progress in continual learning. In ECCV, pages
524–540. Springer, 2020.

[Ramı́rez-Gallego et al., 2017] Sergio Ramı́rez-Gallego,
Bartosz Krawczyk, Salvador Garcı́a, Michał Woźniak,
and Francisco Herrera. A survey on data preprocessing for
data stream mining: Current status and future directions.
Neurocomputing, 239:39–57, 2017.

[Rao et al., 2019] Dushyant Rao, Francesco Visin, Andrei
Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. NeurIPS,
32, 2019.

[Souza et al., 2020] Vinicius MA Souza, Denis M dos Reis,
Andre G Maletzke, and Gustavo EAPA Batista. Chal-
lenges in benchmarking stream learning algorithms with
real-world data. Data Min. Knowl. Discov., 34:1805–1858,
2020.

[Srivastava et al., 2021] Shikhar Srivastava, Moham-
mad Yaqub, Karthik Nandakumar, Zongyuan Ge, and
Dwarikanath Mahapatra. Continual domain incremental
learning for chest x-ray classification in low-resource
clinical settings. In DART 2021, FAIR 2021, pages
226–238. Springer, 2021.

[Sun et al., 2022] Yibin Sun, Bernhard Pfahringer,
Heitor Murilo Gomes, and Albert Bifet. Soknl: A
novel way of integrating k-nearest neighbours with
adaptive random forest regression for data streams. Data
Min. Knowl. Discov., 36(5):2006–2032, 2022.

[Suárez-Cetrulo et al., 2023] Andrés L. Suárez-Cetrulo,
David Quintana, and Alejandro Cervantes. A survey
on machine learning for recurring concept drifting data
streams. Expert Systems with Applications, 213:118934,
2023.

[Wald, 1947] Abraham Wald. Sequential analysis. John Wi-
ley, Oxford, England, 1947.

[Wang et al., 2021] Liyuan Wang, Kuo Yang, Chongxuan Li,
Lanqing Hong, Zhenguo Li, and Jun Zhu. Ordisco: Ef-
fective and efficient usage of incremental unlabeled data
for semi-supervised continual learning. In IEEE/CVF
(CVPR), pages 5383–5392, 2021.

[Yang et al., 2006] Ying Yang, Xindong Wu, and Xingquan
Zhu. Mining in anticipation for concept change: Proactive-
reactive prediction in data streams. DM and KD,
13(3):261–289, 2006.

[Yoon et al., 2017] Jaehong Yoon, Eunho Yang, Jeong-
tae Lee, and Sung Ju Hwang. Lifelong learning

with dynamically expandable networks. arXiv preprint
arXiv:1708.01547, 2017.

[Zhang et al., 2022] Yaqian Zhang, Bernhard Pfahringer,
Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Yun-
zhe Jia. A simple but strong baseline for online continual
learning: Repeated augmented rehearsal. NeurIPS, 2022.

[Žliobaitė et al., 2016] Indrė Žliobaitė, Mykola Pechenizkiy,
and Joao Gama. An overview of concept drift applications.
Big data analysis: new algorithms for a new society, pages
91–114, 2016.

[Zubaroğlu and Atalay, 2021] Alaettin Zubaroğlu and
Volkan Atalay. Data stream clustering: a review. AI
Review, 54(2):1201–1236, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6637

	Introduction
	Stream Learning
	Concept Drift
	Drift Detectors

	Methods
	Evaluation
	Application

	Continual Learning
	Methods
	Evaluation
	Applications

	Online Streaming Continual Learning
	Conclusion

