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Abstract
Molecular representation learning (MRL) is a key
step to build the connection between machine
learning and chemical science. In particular, it
encodes molecules as numerical vectors preserv-
ing the molecular structures and features, on top
of which the downstream tasks (e.g., property pre-
diction) can be performed. Recently, MRL has
achieved considerable progress, especially in meth-
ods based on deep molecular graph learning. In
this survey, we systematically review these graph-
based molecular representation techniques, espe-
cially the methods incorporating chemical domain
knowledge. Specifically, we first introduce the
features of 2D and 3D molecular graphs. Then
we summarize and categorize MRL methods into
three groups based on their input. Furthermore,
we discuss some typical chemical applications sup-
ported by MRL. To facilitate studies in this fast-
developing area, we also list the benchmarks and
commonly used datasets in the paper. Finally, we
share our thoughts on future research directions.

1 Introduction
The interaction between machine learning and chemical sci-
ence has received great attention from researchers in both
areas. Remarkable progress has been made by applying
machine learning in various chemical applications including
molecular property prediction [Guo et al., 2020; Sun et al.,
2021; Yang et al., 2021b; Liu et al., 2022c], reaction pre-
diction [Jin et al., 2017; Do et al., 2019], molecular graph
generation [Jin et al., 2018a; Jin et al., 2020b] and drug-
drug interaction prediction [Lin et al., 2020]. Molecular rep-
resentation learning (MRL) is an important step in bridg-
ing the gap between these two fields. MRL aims to utilize
deep learning models to encode the input molecules as nu-
merical vectors, which preserve relevant information about
the molecules and serve as feature vectors for downstream
chemical applications. While general representation learning
models were earlier adapted to represent molecules, MRL al-
gorithms have been recently designed to better incorporate
chemical domain knowledge. However, it is non-trivial to
have a seamless integration of domain knowledge into rep-

resentation learning models. Given the tremendous effort in
this rapidly-developing area, we are motivated to provide a
systematic review of recent MRL methods, which are based
on graph deep learning methods and integrate various types
of chemical domain knowledge.

We focus on graph-based MRL for two reasons. First,
molecules naturally lead themselves to graph representa-
tions, as they are essentially atoms and bonds interconnect-
ing atoms. Compared with SMILES, a line-based repre-
sentation (i.e., string) of molecules, molecular graphs pro-
vide richer information for MRL models to learn from. Ac-
cordingly, graph-based MRL models evolve much faster than
sequence-based MRL models. Second, graph neural net-
works (GNN) have shown exceptional capacity and promis-
ing performance in handling graph structural data [Kipf and
Welling, 2017; Hamilton et al., 2017; Zhang et al., 2019;
Guo et al., 2023], certainly including those applied on molec-
ular graphs [Gilmer et al., 2017; Hu et al., 2020; You et al.,
2020]. It is thus urgent to summarize the effort of leveraging
GNN on molecular graphs with domain knowledge and open
this topic with more discussion.

This survey paper will be a contribution to both fields
of machine learning and chemistry. A variety of molecule-
centered problems can be formulated as predictive or genera-
tive tasks, e.g., molecule property prediction, reaction predic-
tion, and molecule generation. The machine learning-enabled
solutions for these problems have a common ground in learn-
ing high-quality representations for molecules. However, re-
searchers in chemistry are overwhelmed by the big group of
MRL models to choose from, not to mention that new mod-
els are rapidly presented. This survey provides an up-to-
date overview of MRL models regarding the input graph to
the models and the feasible downstream applications. Re-
searchers in chemistry can easily find out the MRL models
that match their application needs. For researchers in ma-
chine learning, a lack of understanding of the chemical do-
main knowledge is the barrier to addressing the representation
learning for molecules. Treating molecular graphs as regu-
lar attributed graphs would overlook the special substructure
patterns of molecules, such as motifs and functional groups.
This survey summarizes the existing strategies for introduc-
ing chemistry-related domain knowledge into representation
learning and will inspire researchers in machine learning to
design more effective MRL models.
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Figure 1: Overview of graph-based MRL.

We organize the review in the following structure. We
first introduce the input expression of molecules by 2D and
3D graphs. Following these categories of input, we sum-
marize representative MRL algorithms regarding the usage
of domain knowledge, the learning strategies, the application
tasks, and code links if available. We then look into each ap-
plication task and introduce in detail the usable MRL models
and benchmark datasets. In the end, we open the discussion
for future research directions and conclude.

2 Expression of Molecules

When machine learning was first introduced for molecular
analysis, hand-crafted features based on predetermined fin-
gerprint extraction rules were used to identify and repre-
sent significant information about molecules [Ahneman et
al., 2018]. However, this feature engineering process can be
time-consuming, expert-dependent, and may not always pro-
vide the best results. To address these challenges, deep learn-
ing models, known for representation learning, have been de-
veloped to learn important molecular features automatically.
Molecule input to deep learning models can be presented in
two kinds of expressions: molecular sequences and graphs.
The expression of molecular sequence, such as simplified
molecular-input line-entry system (SMILES) [Weininger et
al., 1989] and SELF-referencing Embedded Strings (SELF-
IES) [Krenn et al., 2020], may separate two connected atoms
at two distant positions and lead to inferior representation. In
contrast, the expression by graph naturally incorporates addi-
tional information in nodes (atoms) and edges (bonds), which
can be easily leveraged by the rich suite of graph-based mod-
els (e.g., graph neural networks). Therefore, MLR on molec-
ular graphs is becoming commonly used and will be the focus
of this survey.

In this section, we provide clarification on the distinction
between 2D molecular graphs and 3D molecular graph repre-
sentations, as shown in Figure 1. We analyze the characteris-
tics of each representation and explore their applications and
limitations when used in deep learning models.

Attribute Details
Node
Atom type 118
Chirality tag unspecified, tetrahedral cw, tetrahedral ccw, other
Hybridization sp, sp2, sp3, sp3d, or sp3d2
Atomaticity 0 or 1 (aromatic atom or not)

Edge
Bond type single, double, triple, aromatic
Ring 0 or 1 (bond is in a ring or not)
Bond direction -, endupright, enddownright
Stereochemistry -, any, Z, E, cis, trans, @

Table 1: Details of node and edge features in molecular graphs.

2.1 2D Molecular Graphs
A graph is typically composed of nodes connected by edges.
Similarly, in a molecule, atoms can be seen as nodes and
bonds as edges interconnecting them. Thus, each molecule
has a natural graph structure. This renders molecular graphs
to be the most feasible input for deep learning models and
leads to their extensive use. The most common form of
molecular graphs is described by three matrices: the node
feature matrix, edge feature matrix, and adjacency matrix.
Molecules are usually stored as SMILES for convenience and
then converted to molecular graphs for computation using
specific tools, such as RDKit [Landrum, 2020]. The com-
monly used features of nodes and edges are listed in Table 1,
including mandatory features such as atom and bond types,
and other optional features can be added as in need of differ-
ent tasks [Tang et al., 2020; Saebi et al., 2023]. Among these
features, the atom’s chirality tag cannot be learned from the
common 2D molecular graph representation without 3D geo-
metric information, while all other features are learnable from
both 2D and 3D structures. Each bond is considered as a bidi-
rectional edge, i.e., a bond between atoms A and B is given as
two edges in the adjacency list: one from A to B, and the other
from B to A. With the description matrices, 2D molecular
graphs can be treated as homogeneous [Gilmer et al., 2017;
Guo et al., 2021; Coley et al., 2019] or heterogeneous net-
works [Shui and Karypis, 2020] for learning molecular rep-
resentations via leveraging graph neural networks (GNN).

Despite that GNN can be conveniently used on 2D molec-
ular graphs, the learned representation neglects the spatial
direction and torsion between atoms in molecules. This is
mainly due to the limitation of 2D graph structure, which
only presents the type of bond connecting two atoms, and has
no information like torsion angle, bond length, and stereoiso-
merism. The missing information is important to catch the
subtle difference that may cause a significant discrepancy in
chemical problems. For instance, reactants with the same 2D
graph structures can have different products, because the re-
actants may differ on torsion angle and bond length, which
are not reflected in their 2D graphs.

2.2 3D Molecular Graphs
The 3D molecular graphs provide the missing geometric
information by explicitly encoding the spatial structure of
molecules. The 3D graphs present the atomic structure as
a set of atoms along with their 3D coordinates, which in-
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cludes more spatial information about atoms. As a result,
this representation format has received increasing attention
in MRL [Liu et al., 2022c]. The key difference between 2D
and 3D molecular graphs lies in the determination of edges
between atoms. In 2D molecular graphs, edges (bonds) are
pre-determined, indicating the existence of a connection or
not. The soft edges of atomic interactions in 3D graphs
can be determined by the distance and also the angle be-
tween two atoms using their coordinates. To incorporate more
complicated spatial relationships, spherical graph neural net-
work [Liu et al., 2022c] is designed to learn molecule struc-
ture from 3D graphs.

3 Methodologies of MRL
In this section, we summarize MRL methods into three cate-
gories based on the types of input molecules: 2D-based, 3D-
based, and knowledge graph-based MRL methods. We in-
troduce the encoding method for each category and point out
recent representative methodologies (summarized in Table 2).

3.1 2D-based MRL Methods
2D molecular graphs are the most widely used inputs for
graph-based MRL. Here, we introduce the general graph
neural networks to learn molecular representations with 2D
graphs. Then, following several chemical substructure defi-
nition clarifications, we will chart the path from the general
representation learning methods to the representative meth-
ods incorporating molecular structures and chemistry-related
domain knowledge.

Encoding methods. Formally, each molecule generally is
considered as an undirected graph G = (V, E , X) with node
features xv ∈ X for v ∈ V and edge features euv ∈ E for
(u, v) ∈ E [Brockschmidt, 2020]. Here, nodes represent
atoms and edges represent bonds. Generally, graph-based
learning methods can fit into Message Passing Neural Net-
works (MPNN) [Gilmer et al., 2017] scheme. Therefore, we
take MPNN as an example to illustrate the learning process.
The forward pass consists of three operations: message pass-
ing, node update, and readout. During the message passing
phase, node features are updated iteratively according to their
neighbors in the graph for T times. By initializing the em-
bedding of node v as h0

v = xv , node hidden states ht+1
v

at step t + 1 are obtained based on messages mt+1
v , which

are represented as: mt+1
v =

∑
u∈N (v) Mt(h

t
v, h

t
u, euv) and

ht+1
v = Ut(h

t
v, m

t+1
v ), where Mt denotes the message func-

tion, Ut is the node update function, and N (v) is the set of
node v’s neighbors in the graph. After updating the node fea-
tures T times, the readout function R computes the whole
graph embedding vector by ŷ = R(hT

v | v ∈ V). Note that R
is invariant to the order of nodes so that the framework can
be invariant to graph isomorphism. ŷ is the representation
for the molecule and can be passed to downstream tasks. All
functions Mt, Ut, and R are neural networks with learnable
weights to update during the training process.

Besides MPNN, different variants of graph neural net-
works like GCN [Kipf and Welling, 2017], GIN [Xu et al.,
2019], GAT [Veličković et al., 2018], GGNN [Li et al.,
2016], GraphSage [Hamilton et al., 2017], HetGNN [Zhang
et al., 2019] and feature-wise GNN-Film [Brockschmidt,

2020] can also be used directly to learn molecular representa-
tions. These methods are widely utilized as the base encoder
for molecular representation learning in various downstream
tasks, such as reaction prediction [Coley et al., 2019], prop-
erty prediction [Brockschmidt, 2020] and drug discovery [Jin
et al., 2020c]. Hu et al. [Hu et al., 2020] conduct a com-
parative study on GNNs in property prediction and find that
GIN usually achieves the best results. While these models
are powerful in learning graph structures, chemical traits, and
other chemical domain knowledge are largely neglected.

Chemical Substructures. Molecular graphs have sub-
structures that are relevant to certain molecular properties
or represent molecular generation constraints. These sub-
structures are not just subgraphs, and convey special domain
knowledge. They are clarified and distinguished next. Chem-
ical substructures [Jin et al., 2018a] could be clusters of
atoms, e.g., rings. Motifs [Rong et al., 2020; Sun et al., 2021]
are recurrent sub-graphs among the input graphs. The func-
tional group is an important component of motifs and encodes
rich domain knowledge of molecules. This type of motif can
be detected by RDKit [Landrum, 2020]. A Rationale [Jin et
al., 2020c; Liu et al., 2022a] is a sub-graph that has a partic-
ular molecular property. Scaffolds [Maziarz et al., 2022] are
predefined chemical sub-graphs. Structures sharing the same
scaffold can always be considered to be generated following
the same synthetic pathway.

Learning Strategies. The weights in MRL encoder can
be trained in an end-to-end fashion by attaching the encoder
with a downstream task, e.g., the representation after encod-
ing is sent to make property prediction by a fully connected
layer. The training thus takes a supervised manner. To en-
hance the training process, molecular substructure-related or
chemical domain knowledge can be utilized. JT-VAE [Jin et
al., 2018a], RationaleRL [Jin et al., 2020c], and HierVAE [Jin
et al., 2020b] take advantages of chemical substructures, ra-
tionales, and motifs respectively for the molecular genera-
tion. Yang et. al [Yang et al., 2021b] proposed PhysChem.
This method is composed of a physicist network to learn the
molecular conformation and a chemist network to learn the
molecular properties. It shows good performance on property
prediction benchmarks by fusing both chemical and physics
information. Wang et. al [Wang et al., 2021] involved task in-
formation and proposed a property-aware embedding method
for molecular property prediction.

Although the learned representation may perform well for
the specific downstream task, it is not generally usable for
other tasks. In addition, supervised training requires a suffi-
cient set of annotated training samples, which are often diffi-
cult to acquire. Recent research has seen a foray into self-
supervised learning strategies [Jin et al., 2020a] that pro-
pose reconstruction tasks for pre-training. PreGNN [Hu et
al., 2020] uses two self-supervised strategies (context pre-
diction and node/edge attribute masking) to pre-train GNN.
GROVER [Rong et al., 2020] involves molecular-specific
self-supervised methods: contextual property prediction and
graph-level motif prediction. Zhang et. al [Zhang et al., 2021]
also designed a motif-based graph self-supervised strategy,
which predicted the motif’s topology and label during the mo-
tif tree generation process.
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Input Algorithm Encoder Pretrain Domain Knowledge Tasks Venue Code Link

2D

MPNN[1] MPNN / / PP ICML’17 /
Pre-GNN[2] GIN RT / PP ICLR’20 https://github.com/snap-stanford/pretrain-gnns/

InfoGraph[3] GNN CL / PP ICLR’20 https://github.com/fanyun-sun/InfoGraph

GNN-FiLM[4] MPNN / / PP ICML’20 https://github.com/microsoft/tf-gnn-samples

GROVER[5] GAT RT Motif PP NeurIPS’20 https://github.com/tencent-ailab/grover

GraphCL[6] GNN CL / PP NeurIPS’20 https://github.com/Shen-Lab/GraphCL

MoCL[7] GIN CL Motif&General carbon PP KDD’21 https://github.com/illidanlab/MoCL-DK

MGSSL[8] GIN RT Motif PP NeurIPS’21 https://github.com/zaixizhang/MGSSL

PhysChem[9] MPNN / PhyNet and ChemNet PP NeurIPS’21 /
GERA[10] GNN / Rationale PP KDD’22 https://github.com/liugangcode/GREA

MoleOOD[11] SAGE / Scaffold PP NeurIPS’22 https://github.com/yangnianzu0515/MoleOOD

JT-VAE[12] MPNN / Chemical substructure MG ICLR’18 https://github.com/wengong-jin/icml18-jtnn

VJTNN[13] MPNN / Chemical substructure MG ICLR’18 https://github.com/wengong-jin/iclr19-graph2graph

GraphAF[14] R-GCN / Valency constraint MG ICLR’20 https://github.com/DeepGraphLearning/GraphAF

RationaleRL[15] MPNN / Rationale MG ICML’20 https://github.com/wengong-jin/multiobj-rationale

HierVAE[16] MPN / Motif MG ICML’20 https://github.com/wengong-jin/hgraph2graph

MoLeR[17] GNN / Motif MG ICLR’22 /
WLDN[18] WLN / / RP NeurIPS’17 https://github.com/wengong-jin/nips17-rexgen

MolR[19] GNN CL Reaction equivalence RP ICLR’22 https://github.com/hwwang55/MolR

3D

DimeNet[20] MPNN / Spatial PP ICLR’19 https://github.com/klicperajo/dimenet

SphereNet[21] MPN / Spatial PP ICLR’22 https://github.com/divelab/DIG

ConfVAE[22] GNN / Spatial MG ICML’21 https://github.com/MinkaiXu/ConfVAE-ICML21

GRAPHMVP[23] GNN CL Spatial PP ICLR’22 https://github.com/chao1224/GraphMVP

3D-Informax[24] MPNN CL Spatial PP ICML’22 https://github.com/HannesStark/3DInfomax

UnifiedPML[25] GN Blocks RT Spatial PP KDD’22 https://github.com/teslacool/UnifiedMolPretrain

GeomGCL[26] MPNN CL Spatial PP AAAI’22 /

KG KGNN[27] GNN / Drug-drug interaction DDI IJCAI’20 https://github.com/xzenglab/KGNN

KCL[28] MPNN CL Chemical element DDI AAAI’22 https://github.com/ZJU-Fangyin/KCL

[1][Gilmer et al., 2017]; [2][Hu et al., 2020];[3][Sun et al., 2020];[4] [Brockschmidt, 2020]; [5][Rong et al., 2020];[6][You et al., 2020];[7][Sun et al., 2021];
[8][Zhang et al., 2021];[9][Yang et al., 2021b];[10][Liu et al., 2022a]; [11][Yang et al., 2022];[12][Jin et al., 2018a];[13][Jin et al., 2018b];[14][Shi et al., 2020];
[15][Jin et al., 2020c];[16][Jin et al., 2020b];[17][Maziarz et al., 2022];;[18][Jin et al., 2017];[19][Wang et al., 2022a];[20][Klicpera et al., 2019];[21][Liu et al., 2022c];
[22][Xu et al., 2021];[23][Liu et al., 2022b];[24][Stärk et al., 2022];[25][Zhu et al., 2022];[26][Li et al., 2022];[27][Lin et al., 2020];[28][Fang et al., 2022];

Table 2: Representative graph-based MRL algorithms with open-source code. CL and RT stand for pre-training by two self-supervised
learning methods, contrastive learning and reconstruction tasks respectively. PP, MG, RP and DDI stand for property prediction, molecule
generation, reaction prediction and drug-drug interaction respectively. “/” indicates not applicable.

Contrastive learning is another common self-supervised
learning technique, where augmented graphs are biased to
keep close to the anchor graph (positive pair) and away from
other graphs (negative pairs). It can help graph encoder mod-
els to produce graph representations with better generaliz-
ability, transferability, and robustness. The general graph
augmentation methods (node dropping, edge perturbation,
attribute masking and subgraph) were proposed by You et
al. [You et al., 2020], which could be applied to molecular
datasets as well. InfoGraph [Sun et al., 2020] trains the model
by maximizing the mutual information between the represen-
tations of the entire graph and substructures of different gran-
ularity. Unlike general contrastive learning strategies, the
following models incorporate chemical domain knowledge.
MoCL [Sun et al., 2021] has two proposed molecular graph
augmentation methods: one is replacing a valid substructure
with a similar physical or a chemical property-related sub-
structure. The other one is changing a few general carbon
atoms. Wang et. al [Wang et al., 2022a] were inspired by
the relation of equivalence between reactants and products in
a chemical reaction. They proposed MolR to preserve the
equivalence relation in the embedding space. It forces the
sum of reactant embeddings and the sum of product embed-
dings to be equal. The reactant and the product from different

reactions could be a negative pair for this contrastive learning.

3.2 3D-based MRL Methods
Molecular spatial information, especially geometric informa-
tion, attracts wide attention and has been increasingly in-
volved in the MRL in recent years, especially when the
model needs to learn the physical and chemical properties of
molecules associated with the 3D positions of atoms.

Encoding methods. 3D molecule is a dynamic structure
since atoms are in continual motion in 3D space. The local
minima on the potential energy surface are called conformer,
or conformation. In nature, a molecule contains multiple low-
energy conformers exhibiting different chemical properties.
Therefore, the 3D molecular graph implicitly encodes spatial
positions of atoms to learn better representation. In general,
the 3D conformer of a molecule can be denoted as G3D =
(V, C) where V is the node set, and C is the 3D-coordinate
matrix. Various encoding methods are explored to enhance
GNNs with a proper 3D-coordinate matrix. GeomCL [Li et
al., 2022] and GRAPHMVP [Liu et al., 2022b] utilize con-
formers generated from RDkit through the stochastic opti-
mization algorithm using the Merck Molecular Force Field
(MMFF) to encode spatial information such as angles, inter-
atomic distances, torsion, etc. SphereNet [Liu et al., 2022c]
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employs sphere coordinates and designs a spherical message
passing as a powerful scheme for 3D molecular learning. Fol-
low this work, ComENet [Wang et al., 2022b] is a message-
passing paradigm on 3D molecular graphs with better com-
pleteness (bijectivity) by leveraging rotation angles. To cir-
cumvent the challenge that true 3D coordinates of molecules
are difficult to calculate and sometimes non-deterministic,
DimeNet [Klicpera et al., 2019], GemNet [Klicpera et al.,
2021a] and Directional MPNN [Klicpera et al., 2021b] gen-
erate synthetic coordinates in molecules through computing
molecular distance bound and corresponding angles between
atom pairs, where directional message passing networks are
applied to learn the enhanced representation.

Learning Strategies. In addition to supervised learning,
recent MRL studies propose self-supervised learning tech-
niques by using both 2D and 3D molecular graphs. Uni-
fiedPML [Zhu et al., 2022] uses three pre-training reconstruc-
tion tasks: reconstruction of masked atom and coordinates,
3D conformation generation based on 2D graph, and 2D
graph generation based on 3D conformation. For contrastive
learning, molecular 2D and 3D graph representations are nat-
urally two augmented views of molecules. Using this charac-
teristic, GeomGCL [Li et al., 2022], GraphMVP [Liu et al.,
2022b], and 3D-Informax [Stärk et al., 2022] were proposed
to train the molecular representations by keeping the consis-
tency between 2D and 3D graph information. GeomGCL uti-
lizes 2D geometric information, while GraphMVP and 3D-
Informax use 2D topological information. Different from the
other two methods, 3D-Informax utilizes multiple 3D con-
formers instead of one.

3.3 Knowledge Graph-based MRL Methods
The knowledge graph-based methods are proposed to involve
molecular-structure-invariant but rich external knowledge in
the model. KCL [Fang et al., 2022] is a molecular aug-
mentation method for contrastive learning with an external
knowledge graph, which is formed by triples in the form of
(chemical element, relation, attribute), such as (Gas, isSta-
teOf, Cl). Then a new node “Gas” connecting with “Cl” atom
will be generated to the original 2D molecular graph. Af-
ter the augmentation, the model will be trained by maximiz-
ing the agreement between two views of molecular graphs
with a contrastive loss function. In contrast to KCL and
the above MRL methods, which take atoms as nodes and
bonds as edges forming a graph, KGNN [Lin et al., 2020]
and MDNN [Lyu et al., 2021] explore the knowledge graph
consisting of molecules as nodes and connection relationship
between molecules as edges. In this case, molecular repre-
sentations are learned from the knowledge graph structures
instead of molecular structures.

4 Application Tasks of MRL
In this section, we discuss four real applications of MRL, and
present the details of representative work in Table 3.

4.1 Property Prediction
Molecular property prediction plays a fundamental role in
drug discovery to identify potential drug candidates with tar-
get properties. Generally, this task consists of two phases: a

Methods Reference Evaluation Metrics

Property Prediction MAE RMSE AUC ACC

MPNN [Gilmer et al., 2017] ✓
DimeNet [Klicpera et al., 2019] ✓
Pre-GNN [Hu et al., 2020] ✓
InfoGraph [Sun et al., 2020] ✓ ✓
GNN-FiLM [Brockschmidt, 2020] ✓
GROVER [Rong et al., 2020] ✓ ✓ ✓
GraphCL [You et al., 2020] ✓
MoCL [Sun et al., 2021] ✓
MGSSL [Zhang et al., 2021] ✓
PhysChem [Yang et al., 2021b] ✓ ✓
KCL [Fang et al., 2022] ✓ ✓
GeomGCL [Li et al., 2022] ✓ ✓
GRAPHMVP [Liu et al., 2022b] ✓
3D-Informax [Stärk et al., 2022] ✓
UnifiedPML* [Zhu et al., 2022] ✓ ✓ ✓
GREA [Liu et al., 2022a] ✓ ✓
MoleOOD [Yang et al., 2022] ✓

Molecular Generation Validity Diversity Others

JT-VAE [Jin et al., 2018a] ✓ Reconstruction
GraphAF [Shi et al., 2020] ✓ ✓ Reconstruction
RationaleRL [Jin et al., 2020c] ✓ Success
HierVAE [Jin et al., 2020b] ✓ ✓ Reconstruction
MoLeR* [Maziarz et al., 2022] ✓ ✓ FCD
ConfVAE [Xu et al., 2021] COV&MAT
UnifiedPML* [Zhu et al., 2022] COV&MAT

Reaction Prediction
WLDN++* [Coley et al., 2019] Coverage & Accuracy
MolR* [Wang et al., 2022a] MRR & Hits

Drug-drug Interactions AUC P-AUC ACC F1

AttSemiGAE [Ma et al., 2018] ✓ ✓
KGNN [Lin et al., 2020] ✓ ✓ ✓ ✓
MDNN* [Lyu et al., 2021] ✓ ✓ ✓ ✓

Table 3: Applications for MRL with representative methods and
evaluation metrics for each method. The methods marked with “*”
denote SOTA for each application. AUC indicates ROC-AUC.

molecular encoder to generate a fixed-length molecular rep-
resentation and a predictor. A predictor is utilized to pre-
dict whether the molecule has the target property or pre-
dict the reaction of molecules to the target property based
on learned molecular representation. Property prediction re-
sults can reflect the quality of learned molecular representa-
tion directly. General graph learning papers [Hu et al., 2020;
Gilmer et al., 2017; Brockschmidt, 2020; You et al., 2020]
thus take property prediction tasks to evaluate the perfor-
mance of their algorithms. Compared with these general
methods, the pre-training methods (e.g., GROVER, MoCL,
and MGSSL) involving molecular substructure-related de-
signs are more appropriate and can mostly achieve better
prediction performance. Some recent work proposes super-
vised learning models specifically for property prediction.
GREA [Liu et al., 2022a] defines the complementary sub-
graph of rationale in each molecular graph as an environmen-
tal subgraph of that molecule, which has no relationship with
the target property. Yang et al. [Yang et al., 2022] proposed
MoleOOD to guide the encoder to focus on the environment-
invariant substructures to improve its generalization ability.
Among the above methods, UnifiedPML [Zhu et al., 2022]
achieves SOTA performance by leveraging the unified view
of both 2D and 3D molecular graphs. Besides, the insuffi-
cient available molecular dataset is a common problem ex-
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Dataset Category #Train #Dev #Test Reference Data Link
ZINC15 Structure Pretraining / / / [Sterling and Irwin, 2015] https://zinc15.docking.org

PubChem Structure Pretraining / / / [Kim et al., 2019] https://pubchem.ncbi.nlm.nih.gov

ChEMBL Structure Pretraining / / / [Gaulton et al., 2017] https://www.ebi.ac.uk/chembl/

QM9 Property prediction 107,108 13,388 13,388 [Wu et al., 2018] https://moleculenet.org/datasets-1

ESOL Property prediction 902 112 112 [Wu et al., 2018] https://moleculenet.org/datasets-1

FreeSolv Property prediction 513 64 64 [Wu et al., 2018] https://moleculenet.org/datasets-1

Lipophilicity Property prediction 3,360 420 420 [Wu et al., 2018] https://moleculenet.org/datasets-1

MUV Property prediction 74,470 9,308 9,308 [Wu et al., 2018] https://moleculenet.org/datasets-1

HIV Property prediction 32,901 4,112 4,112 [Wu et al., 2018] https://moleculenet.org/datasets-1

PDBbind Property prediction 9,526 1,190 1,190 [Wu et al., 2018] https://moleculenet.org/datasets-1

BACE Property prediction 1,210 151 151 [Wu et al., 2018] https://moleculenet.org/datasets-1

BBBP Property prediction 1,631 203 203 [Wu et al., 2018] https://moleculenet.org/datasets-1

Tox21 Property prediction 6,264 783 783 [Wu et al., 2018] https://moleculenet.org/datasets-1

ToxCast Property prediction 6,860 857 857 [Wu et al., 2018] https://moleculenet.org/datasets-1

SIDER Property prediction 1,141 142 142 [Wu et al., 2018] https://moleculenet.org/datasets-1

ClinTox Property prediction 1,182 147 147 [Wu et al., 2018] https://moleculenet.org/datasets-1

USPTO MIT Reaction Prediction 400,000 40,000 40,000 [Jin et al., 2017] https://github.com/wengong-jin/nips17-rexgen

USPTO-15K Reaction Prediction 10500 1500 3000 [Coley et al., 2017] https://github.com/connorcoley/ochem_predict_nn

USPTO-full Reaction Prediction 760,000 95,000 95,000 [Lowe, 2012] https://github.com/dan2097/patent-reaction-extraction

ZINC-250k Molecular Generation 200,000 25,000 25,000 [Kusner et al., 2017] https://github.com/mkusner/grammarVAE

DrugBank Drug-drug interaction 489,910 61,238 61,238 [Lin et al., 2020] https://github.com/xzenglab/KGNN

KEGG-drug Drug-drug interaction 45,586 5,698 5,698 [Lin et al., 2020] https://github.com/xzenglab/KGNN/tree/master

Table 4: Datasets used in MRL study.

isting in chemistry. Guo et al. [Guo et al., 2021] and Wang
et al. [Wang et al., 2021] proposed meta-learning methods to
deal with this low-data problem on property prediction.

The property prediction task is mainly conducted as clas-
sification and regression. The classification task is to pre-
dict a discrete class label, for which the Area under the ROC
curve (ROC-AUC) and accuracy (ACC) are selected evalu-
ation metrics [Sun et al., 2020; Rong et al., 2020]. The
regression task is to predict a continuous quantity for each
molecule, where the mean absolute error (MAE) and Root
Mean Square Error (RMSE) are commonly used evaluation
metrics to provide the estimate of the accuracy for the tar-
get [Rong et al., 2020; Zhu et al., 2022].

4.2 Molecular Generation
The key challenge of drug discovery is to find target
molecules with the target properties, which heavily relies on
domain experts. The molecular generation is to automate this
process. Two steps are necessary to complete this task: one is
designing an encoder to represent molecules in a continuous
manner, which is beneficial to optimize and predict property;
the other is proposing a decoder to map the optimized space
to a molecular graph with the optimized property. Atom-by-
atom generations may generate atypical chemical substruc-
tures such as partial rings. To avoid invalid states [Jin et
al., 2018a], most studies generate graphs fragment by frag-
ment instead of node by node. JT-VAE [Jin et al., 2018a] and
VJTNN [Jin et al., 2018b] decompose the molecular graph
into the junction tree first, based on substructures in the graph.
Then they encode the junction tree using a neural network.
Next, they reconstruct the junction tree and assemble nodes
in the tree back to the original molecular graph. These meth-
ods are highly complex and frequently fail for substructures
involving more than 10 atoms. Different from the above sub-
structures, motifs have much larger and more flexible sub-
structures. Therefore, to deal with the problems existing in
the previous methods, Jin et al. [Jin et al., 2020b] proposed

HierVAE, which relies on motifs instead of substructures and
generates molecular graphs hierarchically based on motifs.
Following this direction, MoLeR [Maziarz et al., 2022] was
proposed to generate molecules by combining atom-by-atom
and motif-by-motif generation. What’s more, it supports the
scaffolds as an initial seed for molecular generation, which
outperforms previous methods on scaffold-constrained tasks.
Besides substructures and motifs, RationaleRL [Jin et al.,
2020c] utilizes Monte Carlo Tree Search to extract the sub-
graphs from the molecules and construct rationale vocabulary
for each property with their predictive models. It composes
molecules from the sampled rationales to preserve the proper-
ties of interest with a variational auto-encoder. In contrast to
the above encoder-decoder framework, GraphAF [Shi et al.,
2020] is a flow-based auto-regressive model to generate the
molecular graph in a sequential process, which allows it to
leverage chemical valency constraints in each generation step
and also enjoys efficient parallel computation in the training
process. ConfVAE [Xu et al., 2021] and UnifiedPML [Zhu
et al., 2022] were proposed for molecular 3D conformation
generation tasks.

For molecular generation tasks, validity is the percent-
age of the chemically valid generated molecules [Jin et al.,
2018a]. Diversity measures the diversity of the generated
positive compounds by computing their distance in chem-
ical space. Reconstruction accuracy is utilized to evaluate
how often the model can reconstruct a given molecule from
the latent embedding [Jin et al., 2020b]. Frechet ChemNet
Distance (FCD) is utilized to measure how much the sam-
pled molecules ensemble the training molecules [Maziarz et
al., 2022]. For property-constraints molecular generation
tasks, the model also needs to measure the fraction of gen-
erated molecules that match the target property. For molecu-
lar conformation generation tasks, coverage score (COV) and
matching score (MAT) are usually utilized for evaluation [Xu
et al., 2021; Zhu et al., 2022].
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4.3 Reaction Prediction
Reaction prediction and retrosynthesis prediction are funda-
mental problems in organic chemistry. Reaction prediction
means using reactants to predict reaction products. The pro-
cess of retrosynthesis prediction is the opposite of reaction
prediction. When taking SMILES as input, the reaction pre-
diction task is analogous to a translation task. When taking
molecular graphs as input, there are two steps to do both
for reaction prediction and retrosynthesis prediction. Like
WLDN [Jin et al., 2017] and WLDN++ [Coley et al., 2019],
the model needs to predict the reaction center first and then
predict the potential products which is the major product.
These tasks will be evaluated by coverage (whether the can-
didates cover the correct product) and accuracy (whether the
model can select the correct product). Different from pre-
vious work, MolR [Wang et al., 2022a] formulates the task
of reaction prediction as a ranking problem. All the prod-
ucts in the test set are put in the candidate pool. MolR ranks
these candidate products based on the embedding learned
from given reactant sets, using mean reciprocal rank (MRR)
and hits ratio (Hits) as the evaluation metrics.

4.4 Drug-drug Interactions
Detecting drug-drug interaction (DDI) is an important task
that can help clinicians make effective decisions and sched-
ule appropriate therapy programs. Accurate DDI can not only
help medication recommendations but also effectively iden-
tify potential adverse effects, which is critical for patients
and society. AttSemiGAE [Ma et al., 2018] predicts DDI by
measuring drug similarity with multiple types of drug fea-
tures. SafeDrug [Yang et al., 2021a] designs global and lo-
cal two modules to fully encode the connectivity and func-
tionality of drug molecules to predict DDI. MoleRec [Yang
et al., 2023] proposes a molecular substructure-aware repre-
sentation learning strategy for DDI. Both KGNN [Lin et al.,
2020] and MDNN [Lyu et al., 2021] build the drug knowl-
edge graph to improve the accuracy of DDI. DDI prediction is
evaluated according to Accuracy (ACC), ROC-AUC (AUC),
P-AUC (area under the precision-recall-curve), and F1 scores.

5 Molecular Datasets and Benchmarks
We summarize representative molecular representation learn-
ing algorithms in Table 2. To conveniently access the empiri-
cal results, each paper is attached with code links if available.
Encoding algorithms, pre-training methods, and the utilized
domain knowledge are also listed. Here, pre-training meth-
ods specify contrastive learning and reconstruction tasks we
discussed in Section 3. We also present the representative
methods for each application and their corresponding evalua-
tion metrics in Table 3. The SOTA for each application is also
labeled. In addition, we summarize commonly used datasets
for different chemical tasks in Table 4.

6 Future Directions
Graph-based methods for MRL develop fast. Although MRL
has achieved satisfactory results in various applications, there
are still some challenges that remain to be solved. We list
several future directions for reference.

6.1 Graph-based MRL with Spatial Learning
The 3D geometric information attracts great attention re-
cently in graph-based MRL. There are several ways to en-
code 3D information. One is an equivariant graph neural net-
work, like SE(3)-transformers [Fuchs et al., 2020]. Another
category of methods takes relative 3D information as input,
like the directional message passing methods [Klicpera et al.,
2019; Klicpera et al., 2021a] introduced in Section 3, which
include distances between atoms and angles between bonds
as features to learn geometric information. SphereNet [Liu
et al., 2022c] leverages spherical message passing to learn
3D molecular representation. Nevertheless, how different ge-
ometries contribute to molecular representation learning still
lacks rigorous justification. There is no established standard
spatial information learning method for now. It should be a
promising future research direction for MRL.

6.2 Graph-based MRL with Explainabitity
The explainability is always a challenge for MRL. To break
down the gap between machine learning and chemical sci-
ence, a well-designed MRL model to produce competitive
prediction or generation results on chemical tasks is impor-
tant but not the end of MRL research. Which molecular
features play the most important part in MRL? How can
MRL be helpful on explaining the process of reaction? How
can MRL support the transparent generation of new drugs?
The answers to these questions will facilitate the discovery
and innovation in chemical science and engineering, as well
as improving the trustworthiness of machine learning meth-
ods. AttSemiGAE[Ma et al., 2018], E2E[Gao et al., 2018]
and GCNN[Henderson et al., 2021] own initial strategies to
improve their model’s explainability. However, explainable
MRL remains a challenging research problem.

6.3 Graph-based MRL with Insufficient Data
Reliable data collection and annotation are time-consuming
and expensive via experiments in the laboratory. As a result,
data scarcity is a common problem in chemistry, and highly
hinders the development of MLR. Self-supervised and meta-
learning have been considered promising solutions in recent
years. Guo et al. [Guo et al., 2021] and Wang et al. [Wang
et al., 2021] proposed meta-learning algorithms to deal with
few-shot molecule problems, which appeals to some follow-
ing work. While only specific application tasks have been
investigated, novel MRL algorithms should be further devel-
oped to deal with insufficient data problems.

7 Conclusion
Molecular representation learning builds a strong and vital
connection between machine learning and chemical science.
In this work, we introduce the problem of graph-based MRL
and provide a comprehensive overview of the recent pro-
gresses on this research topic. To facilitate reproducible re-
search, we take the first step to summarize and release the
representative molecular representation learning benchmarks
and commonly used datasets for the research community.
This survey paper will be a useful resource for researchers
in both chemistry and machine learning to advance the study
of MRL and other molecular application tasks.
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