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Abstract
Human intelligence comes from the capability to
describe and make sense of the world surround-
ing us, often in a lifelong manner. Online Learn-
ing (OL) allows a model to simulate this capability,
which involves processing data in sequence, mak-
ing predictions, and learning from predictive errors.
However, traditional OL assumes a fixed set of fea-
tures to describe data, which can be restrictive. In
reality, new features may emerge and old features
may vanish or become obsolete, leading to an open
feature space. This dynamism can be caused by
more advanced or outdated technology for sensing
the world, or it can be a natural process of evolu-
tion. This paper reviews recent breakthroughs that
strived to enable OL in open feature spaces, re-
ferred to as Utilitarian Online Learning (UOL). We
taxonomize existing UOL models into three cat-
egories, analyze their pros and cons, and discuss
their application scenarios. We also benchmark the
performance of representative UOL models, high-
lighting open problems, challenges, and potential
future directions of this emerging topic.

1 Introduction
“A mind is like a parachute. It functions only when it is open.” –
Allan H. Mogensen, Fundamentals of Human Engineering (1939)

Online Learning (OL) is an exceptional machine learning
paradigm that builds predictive models in an environment
where data are presented sequentially as streams [De San-
tis et al., 1988; Vovk, 1997; McMahan, 2017; Cesa-Bianchi
and Orabona, 2021]. OL excels in scenarios where the data
deluge [Bell et al., 2009] makes it too memory and com-
putational intensive to load in and perform learning over
entire data matrices of huge quantities [Wu et al., 2013;
Aggarwal, 2007]. Despite its effectiveness, traditional OL
algorithms typically make a strict assumption that all data ob-
servations must be described by a fixed feature space.

This assumption may not be justified in many real-world
applications. To wit, consider an urban disaster monitor-
ing system aided by OL, in which streaming data are sent

from crowd sensors such as smart phones and sensor kits/sites
of local users scattered across a geographically wide re-
gion [Capponi et al., 2019]. New sensory features are likely
to emerge when new users join the crowd-sensing endeavor,
committing data collected by their own devices, e.g., a new-
generation cellphone equipped with totally new sensors; like-
wise, any old and pre-existing features can become unob-
served in later time snapshots, since any users can stop or fail
to commit data for various reasons, such as battery exhaustion
or network malfunction. Instead of being fixed and known-
in-advance, the feature space used to describe streaming data
in such applications varies over time and thus is open.

Recently, we have witnessed a surge of OL studies that
aim to tackle the challenge of learning data streams in open
feature spaces. Early appearances of the problem go back
to the seminal work of [Wenerstrom and Giraud-Carrier,
2006] and subsequent explorations by [Gomes et al., 2013;
Zhang et al., 2016; Hou et al., 2017; He et al., 2019]. How-
ever, the existing studies on this problem have been divided
into multiple communities. Each community possesses its
own modeling assumptions, tailored solutions upon disparate
ideas and design intuitions, and carried out evaluations with
different datasets and metrics. Evolution of ideas remained
parallel to date, communication became difficult.

Necessitated by the status quo of division, we deliver a
timely review of prior arts and, more importantly, strive to
unify and frame them under an umbrella paradigm, termed as
Utilitarian Online Learning (UOL). We coin the term “util-
itarian” to emphasize the common aim of previous studies,
which was to relax the traditional OL assumption of a fixed
feature space, so as to enhance the models’ functionality, use-
fulness, and practicality in real applications. Furthermore, to
facilitate comprehension of existing UOL models, we draw a
metaphor to the utilitarian apportionment problem in political
economy [Koriyama et al., 2013]. We argue that the various
UOL studies mainly differ in terms of their design intuitions
that lead to locally-optimal apportioning of feature weights in
repeated games. We will detail this metaphor in later sections.

Specific contributions of our survey are as follows:
(1) It is a timely and the first survey of recent OL studies that

built predictive models from streaming data in open fea-
ture spaces. We envision an umbrella term, Utilitarian
Online Learning (UOL), to frame the prior arts and can
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provide a unified perspective to bridge the fragmented
research communities and foster communication.

(2) We propose a taxonomy that classifies existing research
into three categories based on their feature apportion-
ment strategies. A metaphor to utilitarian apportionment
in political economy is drawn to aid comprehension.

(3) We examine the representative methods in each cate-
gory, analyze their pros and cons, and benchmark their
performance on four widely used datasets.

(4) We identify the open challenges faced by existing UOL
studies and endeavor to shed light on untrodden path-
ways. We hope this would stimulate future research and
discover where these paths lead and how they connect.

2 Utilitarian Online Learning (UOL)
We first formulate the UOL learning problem in a generic
form and then present our taxonomy of prior studies.

2.1 The UOL Problem
Write an input sequence {(xt, yt) | t = 1, 2, . . . , T}, where
each instance xt ∈ Xt ⊆ Rdt is a vector of dt features,
associated with a ground truth class label yt ∈ {−1,+1}.
The repeated game progresses as follows. At each round t,
the learner ht observes an instance xt, produces a prediction
ŷt = ht(xt), and then suffers an instantaneous loss ℓ(yt, ŷt)
based on the revealed ground truth yt. The loss serves as an
update to ht+1, thereby preparing it for the next round. In an
open feature space, the dimension of xt+1 could either be in-
cremental (i.e., dt+1 > dt) or decremental (i.e., dt+1 < dt),
due to the emergence of new features or unobserved old fea-
tures, respectively. A generic objective of UOL is to mini-
mize the regret [Cesa-Bianchi and Lugosi, 2006]:

R(T ) =
T∑

t=1

ℓ(yt, ht(xt))− min
h∗∈H

T∑
t=1

ℓ(yt, h
∗(xt)), (1)

which gauges the gap between the cumulative loss of the
learner over T rounds and that of the optimal decision h∗

chosen from the hypothesis spaceH in hindsight.

2.2 The UOL Challenges
Drawing a metaphor from political economy, we can analo-
gize the UOL problem to the apportionment models [Ko-
riyama et al., 2013], where a federation of members (e.g.,
the European Union) making repeated decisions under quali-
fied majority rules. Each member is assigned a voting weight.
New members can join at any time, while existing members
may arbitrarily abstain from any voting decisions. The goal
is to maximize the collective utility gain (minimize negative
cumulative loss) of the federation in the long run.

Analogizing to UOL, a feature can be deemed as a mem-
ber in the federation, where the weighted voting rule reduces
the learner to a linear classifier ht(xt) = sign(w⊤

t xt). The
“voting weight” of the i-th feature is wi, the i-th entry of wt.
Two technical challenges are naturally manifested:

Challenge 1: When introducing a new feature/member, it
is important to ensure that the current decision will not be
made with bias. A common strategy for assigning weight

to a member is proportional apportionment [Penrose, 1946],
which can be mapped to a learning problem by gauging the
amount of information conveyed by the feature for predic-
tion using mutual information between the feature and the
label [Kraskov et al., 2004]. However, in an online process, a
new feature may only be described by few instances, making
a precise information measurement next to impossible.

Challenge 2: When a majority of members are absent from
the decision-making process, the voting opinions of those
who abstain remain unobserved. This can lead to less in-
formed decisions, particularly in extreme cases where the
vast majority of features/members abstain. In such situations,
decision-making may be dominated by a few remaining fea-
tures that are less informative, leading to educated guesses.
Furthermore, if a member leaves the federation for an ex-
tended period or does not return, it is unclear how to redis-
tribute their voting weights to other members, so that the sub-
sequent decisions made by the remaining members still guar-
antee maximization of collective utility gain.

2.3 The UOL Taxonomy
We taxonomize the current UOL studies into three categories
based on their different ideas to tackle the learning problem in
an open feature space. We re-examine the metaphor of appor-
tionment, from which we can discern the core concept of each
category for achieving a utilitarian apportionment (UA). In
this section, we provide an overview of the key ideas and in-
tuitions behind them, while the technical details are discussed
in the remainder of this survey.

i) Passive-Aggressive (PA) methods are ubiquitous in
solving OL problems, which bear the principle of margin-
maximization [Crammer et al., 2006]. The margin of an in-
stance is proportional to the distance between this instance
and the decision hyperplane that the learner approximates. In
the case of PA learner, it iterates over an input sequence and
update its weights only when it receive a feedback of incor-
rect prediction. The key idea that generalizes PA into UOL
contexts is straightforward: any new member is not allowed
to vote until the decision made by other members in the feder-
ation is evidently wrong. This means that when a new feature
emerges in an incoming instance, its learning weight is set to
zero if the remaining features are sufficient to make an ac-
curate prediction. Otherwise, the PA learner apportions the
weights of other features to the new feature by descending a
proximal gradient. In doing so, the updated learner still main-
tains maximized margins in the incremented feature space.

ii) Feature Correlation (FC) methods. Correlation anal-
ysis among random variables finds many machine learn-
ing tasks, e.g., online feature selection [Wu et al., 2010;
Yu et al., 2020], where the streaming features that are not
correlated with the target variable can be pruned without sac-
rificing discriminant power. Instead of focusing on the pair-
wise correlation between feature and label, UOL puts more
emphasis on the correlation among features – two highly cor-
related features can be deemed as allies in the federation. In
the context of UA, this idea implies that the opinion of a mem-
ber who abstained from voting can be proxied by the opinions
of her allies who voted. In other words, if an old feature be-
comes unobservable, its value can be estimated from other

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6648



features that it is highly correlated with, allowing us to lever-
age its learned coefficient for accurate prediction.

iii) Evolutionary Ensemble (EE) methods. Voting of a
member in UA is not necessarily determined by an individ-
ual, but rather a group of commissaries. For example, in the
European Union, a country has multiple representatives that
must be re-elected on a regular basis; those who fail to maxi-
mize the utility of their represented member are replaced with
new ones. In UOL, likewise, a feature can be represented by a
set of weak learners (e.g., shape functions [Lou et al., 2012]),
from which a stronger classification model can be ensembled
and trained. However, when a new feature is introduced, its
weak learner may be initialized with bias due to a lack of
training instances. With the evolution of the input sequence
and its context, some weak learners may not be able to adapt
and begin to deteriorate the ensemble performance. The EE
models are designed to replace such outdated learners with
new ones, which can be better initialized with updated and
likely sufficient feature statistics.

3 The UOL Models and Discussion
In this section, we will explore the technical models of the
three categories of UOL methods in greater detail. We will
present key pieces of literature, distill generic forms of their
objective functions, elaborate on their shared merits and dif-
ferences, and discuss the application and learning scenarios
in which they excel or are less competent.

3.1 Passive-Aggressive (PA) Models
The study of applying PA algorithm to resolve UOL prob-
lem was initiated by [Zhang et al., 2015], which spurred a
flurry of subsequent research including [Zhang et al., 2016;
Bollegala, 2017; Beyazit et al., 2018; Beyazit et al., 2019;
Alagurajah et al., 2020; Dong et al., 2021; Liu et al., 2022b;
Gu et al., 2022]. Their shared idea is to rescale the weight
coefficients from the existing features to initialize new fea-
ture, as padding zero weights tends to incur prediction loss.
Let wt+1 ∈ Rdt+1 be the weight vector of xt+1. Align
wt+1 = [w̄t+1, ŵt+1]

⊤, where w̄t+1 and wt are associated
with the same set of features, thus ŵt+1 are the weights of
new features. Namely, w̄t+1 ∈ Rdt and ŵt+1 ∈ Rdt+1 \Rdt .

The objective shared by previous studies takes the form:

wt+1 = argminwt+1∈Rdt+1d(w̄t+1,wt) + λ∥ŵt+1∥p + µξ,

s.t. ℓt+1 ≤ ξ, µ ≥ 0, ξ ≥ 0, (2)

where d( · , ·) is a distance metric, and minimizing this term is
equivalent to searching a proximal gradient direction that en-
forces minimal update on weights of existing features. ∥·∥p
denotes ℓp-norm, which encourages the new features’ weight
vector to follow certain properties. ξ is a slack variable to
tolerate noises in data, and µ is a tuned parameter to balance
the rigidness and slackness of the updating step (i.e., a larger
µ requires a more rigid update). Existing models in this cate-
gory mainly differ in the realization of distance metric d( · , ·),
ℓp-norm regularizer, and loss function ℓt+1. We extrapolate
several prominent realization of these terms as follows.

Distance Metric. Prominent examples include Euclidean
distance d(w̄t+1,wt) = ∥w̄t+1 − wt∥22, which works par-
ticularly well in linear cases [Zhang et al., 2015; Zhang
et al., 2016; Beyazit et al., 2019; Alagurajah et al., 2020;
Liu et al., 2022b; Gu et al., 2022]. To promote nonlin-
earity, Mahalanobis distance in a latent metric space [Dong
et al., 2021], energy-based function for posterior maximiza-
tion [Bollegala, 2017], or gauging dissimilarity among hidden
representations in neural architectures [Beyazit et al., 2018]
have been proposed.
Regularizer. To ensure numerical stability and restrict the
wild initialization of new feature weights ŵt+1, Gaussian
priors are prescribed, commonly referred to as the ℓ2-
norm [Beyazit et al., 2019; Liu et al., 2022b; Gu et al.,
2022]. To promote sparsity, [Zhang et al., 2015; Zhang et
al., 2016; Alagurajah et al., 2020] exploited ℓ1-norm, which
is deemed as the tightest relaxation of ℓ0-norm. The in-
tuition is that, with the continual emergence of new fea-
tures, the total dimension will soon grow to an unmanage-
ably large size for efficient classification. To allow for fea-
ture pruning and a subsequent reduction in dimension, ŵt+1

is projected onto an ℓ1-ball at each round, namely, ŵt+1 ←
min{1, 1/∥ŵt+1∥1}ŵt+1, such that the feature vector is con-
centrated to its several largest-valued entries, and the features
with trivial values are dropped as dimension grows.
Loss Function. The margin-maximization principle is im-
plemented using the hinge loss ℓt+1 = max{0, 1 −
yt+1w

⊤
t+1xt+1} as a default choice, in both traditional OL

and the emerging UOL models. This relaxes overly harsh
constraints by introducing a soft-margin parameter ξ. In ad-
dition, the hinge loss lends a closed-form solution to Eq. (2),
making the proximal gradients easy to compute, as demon-
strated in [Zhang et al., 2016; Liu et al., 2022b]. Other loss
functions, such as cross entropy [Bollegala, 2017] or Eu-
clidean loss [Dong et al., 2021], can also be used to better
suit loss measurement in various designs.
Pros & Cons. The PA models for UOL problem enjoy sev-
eral remarkable advantages. First, they are usually equipped
with closed-form solutions and thus require no step-size,
making them amenable for implementation. Second, they
inherit theoretical guarantees from margin-based classifiers
such as SVMs, leading to tight regret bounds of O(

√
T ). As

a result, all such PA models are asymptotically no regret with
T → ∞. Moreover, they encourage sparse model solutions,
which gives them the capability of online feature selection - a
desirable trait in high-dimensional applications where not all
features are available at once, like spam filtering.

Unfortunately, the limitation of PA models is also notable.
A major drawback is that they fail to address unobserved, old
features. If the majority of existing features become miss-
ing, PA learners can only rely on the rest features for mak-
ing predictions, likely leading to inferior results. This issue
is further exacerbated by their sparsity steps. Consider a set
of informative features, with large weights, that become un-
observable for a long time span. The sparsity solution will
encourage value convergence to their weights, reducing the
learner’s discriminant power. Even if these missing features
never recur, their weights will persist in the learner with in-
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creasingly large values, negatively impacting prediction per-
formance and memory efficiency. As more such features ex-
ist, the UOL process is ill-conditioned.
Application Scenarios. The usability of PA models have
been widely demonstrated through their applications in a va-
riety of fields, such as Internet of Things (IoT) [Pishgoo et
al., 2022], epidemics [Kimura et al., 2022], document cate-
gorization [Xiao et al., 2017], photovoltaic harvesting [Yu et
al., 2021], and many more. In these applications, the feature
space is constantly evolving with new features being added,
while existing features remain part of the online learning pro-
cess. For example, each word can be considered a feature for
document categorization, forming a vast vocabulary. As natu-
ral, societal, and technological changes occur, new words are
continuously coined, resulting in an increase of 70% in the
English language’s vocabulary over the past eighty years. By
using PA methods, online document classifiers can be trained
to keep up with the ever-changing language landscape.

3.2 Feature Correlation (FC) Models
Unlike the PA models that focus on initializing new features,
FC models mainly deal with unobserved old features, striv-
ing to infer and reconstruct missing information in order to
remedy discriminant power loss. Feature correlation is es-
sential for this reconstruction process; prior FC studies differ
in their methods to capture and model these correlation struc-
tures. Denoted by Ut :=

⋃t
i=1 Xi a universal feature space

that records all emerged feature up to t. The goal of FC mod-
els is to find a mapping ϕ : Xt 7→ Ut, which captures fea-
ture correlation and enables missing feature reconstruction.
To maintain notational symmetry and succinctness, we write
ϕ(xt) = [x̄t, x̂t]

⊤ ∈ Ut, where x̄t = ΠRdtϕ(xt) denotes the
representation of observed features in Ut, and x̂t ∈ Ut \ Xt

denotes the reconstructed unobserved features.
A general objective of FC models is formulated as follows.

min
ht,ϕ

1

T

T∑
t=1

ℓ
(
yt, ht(ϕ(xt))

)
+ αΩ1(ht) + βΩ2(ϕ)

s.t. d(x̄t,xt) ≤ ϵ, α, β, ϵ ≥ 0, (3)

where the leaner ht and mapping ϕ are jointly trained for em-
pirical risk minimization, which encourages a positive syn-
ergy between them. In particular, the learner must become
increasingly more discriminative as it is trained on a more in-
formative Ut space. Regularizers Ω1 and Ω2 are imposed on
ht and ϕ, respectively, during the online process, while two
positive parameters α and β absorb different scales among
the three terms. The constraint d(x̄t,xt) ≤ ϵ ensures that
the observed feature information is not washed-out but accu-
rately recovered after reconstruction, as the distance between
x̄t and xt is bounded within a certain tolerance ϵ.
Learner and its regularizer. Linear classifiers are lever-
aged in pioneer studies [Hou et al., 2017; He et al., 2019;
He et al., 2021b; He et al., 2021a; Hou et al., 2021b]. Online
kernel machines can be easily extended from linear classi-
fiers for non-linear cases [Hou et al., 2021a]. However, when
the size of Ut increases, the dimension of linear and kernel
learners grows linearly and exponentially, respectively. To

promote sample efficiency, an ℓ1-norm regularizer is often
applied to yield sparse solutions and bound the maximum
dimension through feature pruning. Most research on UOL
has been conducted under a fully supervised setting, where
labels are abundant. Very recently, online semi-supervised
learners have been developed to reduce the labeling expen-
diture [He et al., 2021c; Wu et al., 2023]. They do so by
incorporating regularizers that respect certain kinds of geo-
metric structure underlying the data, such as manifold [He et
al., 2021c]. This structure enables data instances with sim-
ilar labels to be placed in neighboring regions, while other
dissimilar instances are expelled. By propagating the scarce
labeling information within local neighborhoods, pseudo la-
bels are generated to enable efficient UOL.

Mapping and its regularizer. Linear mapping which pos-
tulates a linear relationship among feature coefficients has pi-
oneered [Lou et al., 2013; Weld and Bansal, 2019]. In UOL
contexts, the linear mappings boil down to multivariate re-
gressor [Hou et al., 2017] or mean field [He et al., 2019;
He et al., 2021c], which lends high interpretability and an-
alytical tractability. Despite so, the linear assumption can be
stretched by the complexity and nonlinearity of real stream-
ing data, particularly in high-dimensional spaces such as texts
and images. In response, nonlinear mappings including Gaus-
sian copula [He et al., 2021a] generative-adversarial net-
work [Zhang et al., 2020], and variational auto-encoder [Lian
et al., 2022], have been proposed, which can capture more
complex and latent feature interplays. However, these map-
pings require reparameterization, leading to a search space
that is orders of magnitude larger than that of linear map-
pings. To address this tradeoff between learning effective-
ness and efficiency, [Lian et al., 2022] proposed a regular-
izer to learn an optimal depth of representation; it freezes the
deep layers of a neural network at early rounds to yield shal-
low representations for faster convergence, and only moves to
deeper layers if more complex feature correlation is required
for better learning performance.

Distance Metric. The distance d(x̄t,xt) is measured in ac-
cordance to the learner and mapping architectures. In cases
both are linear, the measurement is incidental, where Eu-
clidean distance often suffices [Hou et al., 2017; He et al.,
2019]. It becomes tricky when the learned Ut space is highly
nonlinear, which requires to tailor distance metrics ad hoc.
For example, geodesic distance is used in [He et al., 2021c] to
respect the manifold structure in Ut, sparsified by a random-
project tree [Freund et al., 2008] to avoid memory overhead.
In [He et al., 2021a], a Maximize a Posterior (MAP) sur-
rogate was employed for distance minimization, which was
integrated in an online Expectation-Maximization process to
estimate the parameters of Gaussian copula. In [Lian et al.,
2022], KL-divergence was used to measure the distance be-
tween two latent distributions, aiming to induce low-rank
variational Bayes from the learned Ut.
Pros & Cons. Unlike PA models which are purely discrim-
inative, the FC models possess a “generative” capability to
reconstruct missing features. This generative learning prop-
erty has three remarkable benefits. 1) The universal space
Ut captures feature correlations, making the model intelligi-
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ble [Weld and Bansal, 2019]. The fact that ϕ is bijective,
where each feature emerged in Xt has exactly one represen-
tation in Ut, enables to trace back the feature importance with
domain knowledge. 2) The design of learner ht and map-
ping ϕ is decoupled, which makes them flexible enough to ac-
commodate diverse data modalities and learning algorithms.
To wit, the mapping can be tailored with various feature ex-
tractors such as convolution filters, wavelet transforms, and
pretrained embeddings to deal with images, time series, and
texts, respectively. Learners can range from linear classifiers
to SVMs to deep neural networks, balancing accuracy and
interpretability. 3) FC models have theoretical guarantees.
With ht and ϕ both convex, Eq. (3) delivers a biconvex pro-
gram [He et al., 2019], which can be optimized via ADMM.
Sub-linear regret bound has been reported in most prior stud-
ies, placing them among the no-regret online algorithms [Hou
et al., 2017; He et al., 2021a].

Nevertheless, there are also some drawbacks to FC models.
1) There is no explicit treatment for new features. A buffer is
needed to learn the correlation between new and existing fea-
tures in minibatch; otherwise, the mapping is learned from
scratch and introduces noise. Even if the new features’ cor-
relation with other features is provided by a domain expert, it
remains unclear how to incorporate this prior knowledge into
the learning process. 2) It is difficult to bound the dimension
of Ut. ℓ1 regularizer is more of a heuristic workaround than
a robust solution. The fact that FC models are not step-size
free and require a careful setup of the step decay rate makes it
challenging to single out less informative and redundant fea-
tures. With new features inputting in different orders, the re-
sultant Ut can retain completely different features. There has
been no research yet on how to stabilize the sparse solution of
Ut when the feature space varies wildly. 3) Resilience to fea-
ture drift is restricted in gradual settings. Old features remain
observable through reconstruction, and their learned coeffi-
cients continue to influence decision-making at all rounds. If
the distribution of an unobserved feature evolves gradually,
its coefficient can be updated with incurred loss, conveying a
certain degree of resilience to the so-called concept drift [Hu
et al., 2020]. However, if such drift is abrupt, FC models are
inadequate as the drifted feature begins to disturb the learned
Ut and ϕ, resulting in large gradients and aggressive updates.
The UOL process is thus distorted.

Application Scenarios. Existing applications appointing
FC models as solutions include cyber threat detection [Li et
al., 2019], smart sensing [Shi et al., 2021], and neuroimage
analysis [Hou et al., 2023]. In these cases, features can be-
come unobserved due to various reasons, including sensor
failure, data transmission failure, battery exhaustion, and so
forth. Although new features can emerge, they must be sup-
plied with a foreseeable means. For example, when deploying
new sensors or allowing domain experts to engineer a new set
of descriptive features, there is an agenda for when the new
features will be included in the UOL process. A buffer can
be used to warm up the training of the learner and mapping
in proactive manners, thus mitigating the negative effects of
learning new features with a cold start. In these applications,
the unobserved features carry strong discriminant informa-

tion and simply omitting them from decision-making would
incur a large prediction risk. FC models provide an effective
solution for reconstructing the unobserved feature informa-
tion, thus enabling more accurate online predictive modeling.

3.3 Evolutionary Ensemble (EE) Models
The groundwork for applying ensemble methods to a con-
tinuously evolving feature space was laid by [Wenerstrom
and Giraud-Carrier, 2006], other types of methods were
more popular in the interim. Recently, however, Evolution-
ary Ensemble methods have once again gained some trac-
tion [Schreckenberger et al., 2023]. Unlike PA and FC mod-
els that maintain a single model, EE models maintain multi-
ple submodels (constructed using weak learners) correspond-
ing to a subset of the observed feature space. The conceptual
framework shared by these approaches includes three steps:
the initialization of multiple weak learners, the repeated up-
dating of these weak learners, and their combination to make
a final prediction. The goal of EE methods is to find the opti-
mal weight associated with each weak learner, taking a gen-
eralized additive [Lafferty, 1999; Lou et al., 2012] form:

ŷt = argmaxc∈C

I∑
i=1

wi · Li(xt), (4)

where wi is the associated weight of a weak learner Li.
Initialization. To initialize weak learners from the ob-
served feature space, it is required to either track instances
or at least approximate their statistics. For ensemble methods
that use an OL capable weak learner, the respective learner
can be updated with every matching instance from the feature
space [Wenerstrom and Giraud-Carrier, 2006]. However, if
the ensemble consists of offline weak learners, it is possible
to approximate the respective feature statistics and generate
weak learners from them [Schreckenberger et al., 2023].
Update. Generally, there are three components in EE that
require updating: the weak learners themselves, weights as-
sociated with the weak learners, and the membership of weak
learners. For ensemble methods that use online learning ca-
pable weak learners, the update strategy is straightforward by
simply updating the weak learner [Wenerstrom and Giraud-
Carrier, 2006]. Methods that track features to generate offline
weak learners require more effort, as decisions must be made
regarding when and how to update the weak learner [Schreck-
enberger et al., 2023]. A common pattern observed in EE
methods is that the weights associated with the weak learn-
ers are updated based on the individual performance of the
weak learner. The membership of the individual weak learn-
ers in the ensemble is managed by either age [Wenerstrom
and Giraud-Carrier, 2006] or observability of the respective
feature [Schreckenberger et al., 2023].
Pros & Cons. Ensemble methods are widely known for
their robustness, making them a suitable choice for UOL
problems as recent developments in EE have demonstrated.
Vanishing or obsoleting features can be easily addressed by
removing the associated weak learners, and new ensemble
members can be added at any time if necessary. While main-
taining multiple weak learners in an ensemble may lead to
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increased space and time complexity when compared to PA
or FC methods, it has been shown in [Schreckenberger et
al., 2023] that these complexities can scale linearly with the
growth of the feature space O(|Ut|).

Unobserved features can become particularly problematic
when dealing with complex weak learners, as those learned
from multiple features require all of them to be present simul-
taneously. This necessitates a trade-off between simple and
less discriminative weak learners involving fewer features,
and complex discriminative weak learners that are likely to
be inapplicable more frequently.
Application Scenarios. UOL has potential application sce-
narios in document classification [Wenerstrom and Giraud-
Carrier, 2006] and crowd-sensing networks [Schreckenberger
et al., 2023] in which the feature spaces may be highly vari-
able due to unreliable deployment of sensors by third parties.
While this could be seen as a drawback, it can also be advan-
tageous, as it increases the resolution of how the real world
is captured by the system. Methods that dynamically update
their composition and attribute importance to the observable
features are essential in these volatile environments.

4 Evaluation
4.1 Real Datasets
Whereas existing UOL studies mostly use synthetic datasets,
we argue that real-world datasets are a must to gain wider
acceptance in the promotion of UOL research. To this end,
we present four real datasets, which span various domains in-
cluding natural language, smart (crowd) sensing, cybersecu-
rity, and healthcare. We hope to stimulate further research by
elaborating on how the feature space dynamism is manifested
in real applications. Astute readers can map their research
projects onto the scenarios from which the presented datasets
are generated, thus writing a new chapter in UOL research.

1) imdb [Maas et al., 2011] is used for sentiment analy-
sis based on movie reviews, which are represented as bags
of words - counts of each word in a review. As language
evolves, the vocabulary used in these reviews can expand;
for example, due to new actors being mentioned. However,
old features may disappear over time, such as when actors
retire and cease to be mentioned in future reviews. 2) crowd-
sense [Schreckenberger et al., 2023] is collected from a
crowd-sensing network, where the features are created from a
variety of environmental sensors (e.g., sound pressure, eCO2

level, and eTVOC level) scattered across the 56 biggest cities
in Spain. The feature space is ever-changing as new sensing
data is continuously being generated while many old sensors
cease to provide data. The learning task is to predict the gov-
ernment’s restriction severity based on the sensed crowded-
ness of the regions. 3) naticusdroid [Mathur et al., 2021] is
tasked with the detection of mobile malware in Android de-
vices. It uses permission flags, such as those for accessing the
camera, as features. However, due to the ever-evolving An-
droid OS versions, various manufacturers, and different de-
vice models and functionalities, these permission flags may
vary over time. The goal is to identify malicious applications
based on their required permissions. 4) diabetes [Strack et
al., 2014] dataset documents a major concern in healthcare,

with patients often returning to the hospital within 30 days of
completing a treatment program [Strack et al., 2014]. This
dataset presents a unique challenge due to its varying feature
space, which is a result of different drugs administered and
missing characteristics such as age or weight.

4.2 Evaluation Protocol
Prior UOL studies impose different modeling assumptions on
feature space dynamics. PA models postulate trapezoidal data
streams (e.g., [Zhang et al., 2016]), where all emerged fea-
tures will be sustained in later rounds, leading to a mono-
tonically increasing feature space. Some of the FC models
assume feature evolvable streams (e.g., [Hou et al., 2017]),
where an overlapping time slot in which both old and new
features are concurrently available is required before the for-
mer turn to unobserved. We argue that these two assumptions
merely lead to special cases of open feature space. The corre-
sponding solutions tailored based on the assumptions are part
of the general UOL methods. To progress further, UOL re-
search should focus on the least constrained version of feature
dynamics. As such, we benchmark six state-of-the-art UOL
methods in the most general setting of open feature space.

Metric. On each dataset, the instances are presented to
model in a one-pass fashion. The accuracy of any algorithm is
gauged by cumulative error rate: CER = 1

T

∑T
t=1[[yt ̸= ŷt]],

where T equates to the number of samples in the dataset, and
[[ · ]] counts one if its argument is true and zero otherwise.

Performance Analysis. We analyze the performance of
two representative UOL models from each category (i.e., PA,
FC, and EE). The results are documented in Table 1, which re-
veals that the model performance has been steadily improving
over time, indicating a thriving yet competitive status quo of
UOL research. Of the models evaluated, ORF3V, published
in 2023, holds the lowest CER on average at 12.23%.

Upon closer inspection, however, some exceptional data
points can be observed. For instance, the low CERs attained
by FAE and ORF3V on diabetes may be attributed to an un-
fair metric, as the dataset holds an imbalanced ratio of 0.111
between positive and negative instances. This suggests that
ORF3V has yielded a highly biased classifier by predicting all
instances into the majority class, thus learning nothing. In ad-
dition, OVFM runs out of memory on imdb, highlighting the
drawback of FC models discussed in Section 3.2: their high
memory consumption for recording all emerged features. In-
deed, the overall dimension of imdb is 7500, which is larger
than the other three datasets by one order of magnitude. With-
out an effective sparsification mechanism, the feature recon-
struction mapping becomes complex and intractable.

These findings bring to light several open challenges in
UOL research, which will be discussed in the next section.

5 Open Challenges and Future Detections
Label Imbalance, Scarcity, and Noise. Binary classifica-
tion is the default setting in current UOL research due to its
simplicity, however, extending it to other setups is non-trivial
but vital. First, our study of the diabetes dataset revealed that
no previous studies have considered the imbalanced learning
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Category Model imdb crowdsense naticusdroid diabetes

PA OLSF [Zhang et al., 2016] .461 ± .015 .317 ± .029 .496 ± .010 .232 ± .052
OLVF [Beyazit et al., 2019] .392 ± .002 .298 ± .001 .423 ± .000 .201 ± .001

FC OCDS [He et al., 2019] .208 ± .015 .245 ± .004 .443 ± .012 .291 ± .009
OFVM [He et al., 2021a] − .182 ± .011 .418 ± .121 .323 ± .084

EE FAE [Wenerstrom and Giraud-Carrier, 2006] .488 ± .004 .501 ± .001 .492 ± .002 .164 ± .004
ORF3V [Schreckenberger et al., 2023] .285 ± .003 .136 ± .010 .237 ± .024 .111 ± .000

Table 1: Comparative results in CER ± variance, yielded from 10 repeated runs. The lower the better.

problem, where traditional metrics such as recall, precision,
F1, and AUC are missing. Second, labeling data is onerous
and costly, while semi-supervised or active learning meth-
ods for UOL are lacking. Third, human labelers are prone
to making mistakes, while current UOL is not equipped with
noise-tolerant functions. A commonality behind these issues
is to learn robust relations among data, which can outline a
decision boundary that is not overwhelmed by majority class,
unlabeled instances, or noisy labels. This task is challenging
when feature space varies, such that no distance metric exists
to probe data relation. Note that FC models cannot be directly
applied as they mostly require correct and full labels.

Concept Drift. Concept drift occurs when the distribution
of features, either conditioned on class or not, evolves over
time, although the set of features itself does not change [Hu
et al., 2020]. Unfortunately, UOL does not explicitly consider
drifting concepts, despite the fact that EE models refresh their
weak learners on a regular basis and thus possess certain re-
silience to it. Tailoring methods to detect and adapt to concept
drift is difficult in a UOL context, as existing distribution es-
timators are mainly parametric, requiring a fixed feature set.
To wit, a Bayesian estimator will have its density exceeding
1 if new random variables emerge halfway. In other words,
the core law of total probability cannot be applied unless one
presumes the probability of all unseen features is known.

Open-world Crisis. When evaluating traditional learning
systems pointwise with respect to a fixed test set, its static
coverage is limited in terms of assuring safety and resilience
to “unknown unknowns” in high-stakes operating environ-
ments [Hendrycks et al., 2021]. To address this chal-
lenge, UOL tackled the input end, leaving the output end
to a different track of research, coined open-world learning
(OWL) [Boult et al., 2019], which focuses on new and unseen
labels that can emerge during a learning continuum. By com-
bining UOL and OWL, a highly flexible computing paradigm
is enabled, one which does not impose any assumptions on
either the input or output of a learning system, thereby im-
proving methods for monitoring unexpected environmental
hazards. However, this is challenging, as most existing OWL
methods require gauging and minimizing the volume of the
region each known class spans, so that new classes can be dis-
tinguished as out-of-region samples. This idea cannot work
once the feature space changes, as each known class can en-
compass instances of different feature sets.

Security & privacy. Current UOL models compute all in-
stances on central servers, which may cause security and pri-
vacy (S&P) implications. Distributed UOL provides an al-
ternative approach that divides the computing endeavor into

multiple parties, each of whom holds their own data and does
not share with others. This distributed UOL can be further di-
vided into two research thrusts: 1) UOL for S&P: the current
S&P community is troubled by the fact that all data parties
have non-aligned feature sets (e.g., vertical federated learn-
ing [Liu et al., 2022a]). Rather than enforcing a protocol or
consensus to make them share a common feature subset, UOL
provides a more flexible and powerful learning paradigm that
allows any new party to join and introduce new features. 2)
S&P for UOL: distribution does not automatically guarantee
Security and Privacy. UOL will require carefully designed
protocols to ensure that original data cannot be reconstructed
by a honest but curious party. This may involve stipulating
communication among parties and/or applying obfuscation or
encryption on gradients.
Algorithmic Fairness. A superficial correlation between
label and new features that convey protected information,
such as gender, ethnicity, occupation, or even zipcode, can
easily lead to online learners with unwanted bias [Barocas et
al., 2017]. Surprisingly, the absence of certain features can
also cause bias; for instance, in crowdsensing applications,
a lack of access to technology, including sensors and smart-
phones, could be indicative of spatial injustice [Hino et al.,
2018]. To promote algorithmic fairness in UOL model, it is
essential to ensure that superficial correlation nor feature ob-
servability will result in disadvantaged prediction groups.

6 Conclusion
In this survey, we presented the concept of Utilitarian On-
line Learning (UOL), a unified framework for online learning
in open feature spaces. We taxonomized the state-of-the-art
models into three categories and outlined their generic objec-
tive functions. We discussed the pros and cons of each cat-
egory, conducted benchmarking evaluations, and highlighted
open challenges. UOL is an area with more unknowns than
knowns. We hope that our survey can provide researchers
with the most up-to-date knowledge, particularly those striv-
ing to tame streaming data from non-static and high-stakes
environments, and will shed some light on the future.

“Intelligence can be observed to grow and evolve . . . through
accumulation of knowledge of how to sense, decide, and act in a
complex and changing world.” - James S. Albus, Outline for a
Theory of Intelligence (1991)
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