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Abstract
The goal of Explainable AI (XAI) is to make the
reasoning of a machine learning model accessible
to humans, such that users of an AI system can
evaluate and judge the underlying model. Due to
the blackbox nature of XAI methods it is, however,
hard to disentangle the contribution of a model
and the explanation method to the final output. It
might be unclear on whether an unexpected output
is caused by the model or the explanation method.
Explanation models, therefore, need to be evalu-
ated in technical (e.g. fidelity to the model) and
user-facing (correspondence to domain knowledge)
terms. A recent survey has identified 29 differ-
ent automated approaches to quantitatively evalu-
ate explanations. In this work, we take an addi-
tional perspective and analyse which toolkits and
data sets are available. We investigate which evalu-
ation metrics are implemented in the toolkits and
whether they produce the same results. We find
that only a few aspects of explanation quality are
currently covered, data sets are rare and evaluation
results are not comparable across different toolkits.
Our survey can serve as a guide for the XAI com-
munity for identifying future directions of research,
and most notably, standardisation of evaluation.

1 Introduction
Explainable AI (XAI) has grown into its own research area,
mainly due to the emergence of deep learning, the DARPA
research grant [DARPA, 2016], and the inclusion of a right to
explanation in the European General Data Protection regula-
tion [Hoofnagle et al., 2019]. Over the last years many meth-
ods and approaches to explain (mostly deep) learning models
were proposed [Guidotti et al., 2018; Barredo Arrieta et al.,
2020; Gilpin et al., 2018; Adadi and Berrada, 2018]. Some
methods differ only slightly (e.g., GradCAM [Selvaraju et al.,
2017], GradCAM++ [Chattopadhyay et al., 2019], or differ in
their implementation with the same user-facing output (e.g.,
LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee,

2017]). Research established that the quality of explanations
has to be measured by multiple facets (see [Nauta et al., 2023]
for a recent survey). Quality criteria are, e.g, how reliably the
explanation represents the model’s inner reasoning, how com-
pact the explanation is (larger explanations are deemed harder
to comprehend by end-users) and how well the explanation
aligns with knowledge within the application domain. How-
ever, a practical question has not yet been answered: How to
reliably compare different methods and benchmark them to
track research progress in the community.

XAI toolsheets [Karunagaran et al., 2022] summarize
the main features of an XAI toolkit (similar to model
cards [Mitchell et al., 2019]), but without evaluation details.
Early work [Doshi-Velez and Kim, 2018] broadly categorizes
XAI evaluation in application-grounded (evaluating with do-
main experts in real applications), human-grounded (evaluat-
ing with lay persons on simplified tasks) and functionally-
grounded (evaluating with computational proxy measures,
without humans). Follow-up work extends and refines this
categorization [Zhou et al., 2021; Mohseni et al., 2021;
Vilone and Longo, 2021; Lopes et al., 2022; Nauta et al.,
2023]. We adopt the categorization by [Nauta et al., 2023],
who define 12 desirable criteria (Co-12) for functionally-
grounded evaluation and present a comprehensive list of data
types and explanation types. In contrast to previous XAI eval-
uation surveys, we focus on XAI evaluation toolkits from a
practical perspective.

In this survey, we investigate which easy-to-use implemen-
tations for evaluating XAI methods are available, and identify
gaps and future directions for research into reliable XAI eval-
uations. More precisely, we address the following questions:

1. Which XAI evaluation toolkits are available, how easily
can they be applied or extended to own methods or data?
[Overview]

2. Which datasets with ground-truth explanations are avail-
able and which benchmarks can be used? [Explanation
evaluation data sets]

3. Which specific XAI evaluation metrics are implemented
in which toolkit and which aspects of explanation qual-
ity are covered? [Metrics and coverage]

4. Do implementations of the same metric in different
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toolkits produce the same evaluation results? [Cross-
toolkit reproducibility]

We first discuss our strategy for collecting and annotating
our the toolkits. We then discuss XAI evaluation toolkits,
datasets and evaluation metrics separately, and present results
from a cross-toolkit reproducibility experiment. We conclude
by outlining open challenges for the XAI community.

2 Source Selection and Annotation
We performed a semi-systematic review of available toolkits.
A distinction between toolkit or library is not relevant for the
purpose of this paper and we refer to all software that goes
beyond the pure implementation of a single metric as toolkit.
We searched GitHub for XAI toolkits retrieving 48 reposito-
ries1. We excluded repositories that did not have an associ-
ated paper and had an insufficient README file. Addition-
ally we performed a general web search for ‘explainable AI
evaluation library’ and ‘explainable ml toolkit’. We included
results from the first two result pages, for which source code
was available and which were not behind a paywall. We addi-
tionally searched the NeurIPS 2022 program as proceedings
were not yet indexed by search engines. From the combined
result list, we further excluded toolkits that do not contain at
least one metric for evaluating XAI methods. All results were
checked by two annotators. This strategy resulted in 17 toolk-
its in total. In the following, we describe how we annotated
evaluation metrics, data types and usability in detail.

Evaluation metrics. For each toolkit we extracted the
available evaluation metrics from the GitHub repository and,
if applicable, the corresponding publication. We then double-
annotated each metric with the theoretical criteria developed
in [Nauta et al., 2023]. Specifically, we annotated type of data
(e.g., text, images, tabular), type of explanation (e.g., feature
importance, localisation), and the Co-12 evaluation criteria
(e.g., correctness, completeness, continuity). Disagreements
between annotators were discussed – if needed with a third
annotator – until a final decision was reached.

Data types. We found that a clear overview of supported
modalities by a toolkit is often missing. To identify for which
data types a toolkit is applicable (Table 1), we therefore anal-
ysed the toolkit’s documentation, README, source code,
used datasets and the publication about the toolkit. For col-
lecting the data types per evaluation metric (Table 3), we
analysed the toolkit’s metric documentation and the publica-
tion that introduced the evaluation metric.

Usability. To estimate how easy it would be for XAI
method developers to evaluate their method in each toolkit
or extend the toolkit with evaluation methods, we further
assessed all toolkits on three dimensions of usability: ac-
tive maintenance, interaction with community and documen-
tation, as shown in Table 1. Scores on each dimension can
range from 0 to 5. Active maintenance is evaluated by check-
ing whether: the toolkit has more than 3 commits on more
than 3 different days (+2), the latest commit was less than

1Search terms ‘XAI evaluation’, and ‘explainable AI evaluation’,
on Dec 1st, 2022

6 months ago (+2) and there are versions released (+1). The
community interaction is scored based on whether there was a
clear possibility for externals to contribute to the project (+2
for contributing statements or +1 for having a leaderboard),
and whether GitHub issues were answered (+2 if some are
answered, +3 if all are answered, ignored when there were
no issues). The documentation of the toolkit was scored by
checking whether the README includes a reference to a
publication or informative website (+1) and instructions on
usage and installation (+1), whether code was documented
(+1 for comments in code, +2 for formal documentation) and
whether examples or tutorials were available (+1).

3 Toolkits
Out of 17 identified toolkits, 12 are pure evaluation toolkits,
i.e., the focus of the toolkit is the evaluation of XAI methods,
whereas 5 are XAI toolkits, i.e., not focusing on evaluation,
but providing explanation methods and including some eval-
uation support. Table 1 provides a concise overview.

The majority of toolkits support images (11) and structured
data (9), whereas graph and time series data are only sup-
ported by one toolkit each. User-item matrices commonly
used in recommender systems as well as videos are not sup-
ported by any toolkit and thus omitted from the table.

We found a huge variance in the usability scores (main-
tenance - community interaction - documentation). Overall,
XAI toolkits are more mature than the evaluation toolkits,
with the exception of Ablation (5-4-5) and Quantus (5-4-5).

Ablation natively supports multiple major machine learn-
ing frameworks (Scikit-learn, PyTorch, Tensorflow and
Keras). While metric implementations that do not require
access to the predictive model (and/or explanation method)
should require only little implementation overhead, such a
built-in support still speeds up the evaluation process.

In turn, Quantus supports the largest variety of explanation
types (feature importance, heatmaps, localisation, prototypes
and decision trees/rules methods), whereas 13 toolkits only
support either feature importance (5) or heatmap (1) or both
(7). From the 13 types of explanations specified in [Nauta et
al., 2023], only 5 are covered in any of the toolkits. Quantus
also shows the highest coverage of the Co-12 criteria (6 out of
12), whereas 8 toolkits only support evaluation of 1 criterion
with correctness being the most prominent (5).

4 Datasets & Benchmarks
Out of 17 toolkits, 5 include datasets with ground-truth
explanations for XAI evaluation: ExPMRC, GraphXAI,
BAM, XAI-Bench and OpenXAI (c.f. Table 2). Some
of these datasets required additional annotation for creat-
ing the ground-truth explanation, e.g., evidence spans were
annotated in the ExPMRC datasets, whereas XAI-Bench
and OpenXAI created their own synthetic data with known
ground-truth explanation. Most datasets were associated with
graph classification task (5), followed by machine reading
comprehension task (4), structured data classification (2), im-
age classification (1) and regression (1). Further, 3 toolkits
also provide the option of benchmarking the XAI evaluation
methods on their dataset: ExPMRC and OpenXAI provide
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Toolkit Usability Stars ML Data Types Expl. Type Co-12 Coverage

XAI EVALUATION TOOLKITS

Ablation (2022)a 5-4-5 8 P G I S X T FI HM LC PT DT

CompareXAI (2022)b 4-2-3 7 S G I S X T FI HM LC PT DT

ExPMRC (2022)c 0-1-4 57 n.a.d G I S X T FI HM LC PT DT

GraphXAI (2022)e 4-2-4 57 P G I S X T FI HM LC PT DT

OpenXAI (2022)f 4-3-4 121 P G I S X T FI HM LC PT DT

Quantus (2022)g 5-4-5 271 PT G I S X T FI HM LC PT DT

Safari (2022)h 2-0-2 2 P G I S X T FI HM LC PT DT

Eval XAI (2021)i 4-0-1 5 P G I S X T FI HM LC PT DT

PhE-Eval (2021)j 2-0-4 1 ST G I S X T FI HM LC PT DT

XAI-Bench(2021)k 2-2-4 32 S G I S X T FI HM LC PT DT

XAI-Eval(2021)l 0-0-1 2 K G I S X T FI HM LC PT DT

BAM (2019)m 2-2-4 44 T G I S X T FI HM LC PT DT

XAI TOOLKITS

Doctor XAVler (2022)n 0-0-0 0 P G I S X T FI HM LC PT DT

IntepretDL (2022)o 5-5-5 160 D G I S X T FI HM LC PT DT

Shapash (2021)p 5-5-5 2.1k S G I S X T FI HM LC PT DT

AIX 360 (2020)q 5-4-5 1.2k SPTK G I S X T FI HM LC PT DT

Captum (2020)r 5-5-5 3.6k P G I S X T FI HM LC PT DT

Table 1: Overview of toolkits. Year indicates publication year for toolkits with publications, first software release otherwise, release version
or GitHub commit id in footnotes. Usability scores (in order): active maintenance, interaction with community, and documentation (3 scores
denoted as X-X-X, each in range 0-5 from lowest to best). ML refers to supported machine learning frameworks: Scikit-learn (S), PyTorch
(P), Tensorflow (T), Keras (K), PaddlePaddle (D). Data types (in order): Graph (G), Image (I), Tabular/Structured (S), Text (X), Time Series
(T). Expl. Type shows for which type of explanation the toolkit is applicable: feature importance (FI), heatmap (HM), localisation (LC),
prototypes (PT), decision trees and decision rules (DT). The Co-12 coverage indicates which criteria of the Co-12 XAI evaluation framework
are covered by evaluation metrics in the toolkit. Criteria (in order): Correctness, Completeness, Consistency, Continuity, Contrastivity,
Covariate complexity, Compactness, Composition, Confidence, Context, Coherence, Controllability.

av0.1.0 [Hameed et al., 2022], https://github.com/capitalone/ablation
b4f8bc24 [Belaid et al., 2022], https://github.com/Karim-53/Compare-xAI
c9827fed [Cui et al., 2022], https://github.com/ymcui/expmrc
dmodel predictions are uploaded to benchmarking suite
e2f0e94d [Agarwal et al., 2022b], https://github.com/mims-harvard/GraphXAI
f83c2ef1 [Agarwal et al., 2022a], https://github.com/AI4LIFE-GROUP/OpenXAI
gv0.3.1, [Hedström et al., 2022], https://github.com/understandable-machine-intelligence-lab/quantus/
h57be48f [Huang et al., 2022], https://github.com/havelhuang/Eval XAI Robustness
ie0b205a [Lin et al., 2021], https://github.com/yslin013/evalxai
j856131c, [Carmichael and Scheirer, 2021], https://github.com/craymichael/PostHocExplainerEvaluation
kf0431a7 [Liu et al., 2021], https://github.com/abacusai/xai-bench
lc6ca07f [Graziani et al., 2021], https://github.com/maragraziani/XAI evaluation

m0644a9e [Yang and Kim, 2019], https://github.com/google-research-datasets/bam
n114e943 [Ngai and Rudzicz, 2022], https://github.com/hillary-ngai/doctor XAvIer
ov2.4.1 [Li et al., 2022], https://github.com/PaddlePaddle/InterpretDL
pv2.2.0 https://github.com/MAIF/shapash
qv0.2.1 [Arya et al., 2020], https://github.com/Trusted-AI/AIX360
rv0.5.0 [Kokhlikyan et al., 2020], https://github.com/pytorch/captum
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Toolkit Dataset Description Task Size B

ExPMRC
Squad Span extraction from Wikipedia (English) MRC 1003 (Q), 632 (P)
CMRC Span-extraction (Chinese) MRC 1015 (Q), 768 (P)
Race+ Multiple-choice exams (English) MRC 1125 (Q), 335 (P)
C3 Multiple-choice exams (Chinese) MRC 1005 (Q), 517 (P)

GraphXAI

MUTAG Nitroaromatic compounds, mutagenicity prediction GC 1768 (G)
Benzene Molecules, with our without benzene ring GC 12000 (G)
Fluoride-carbonyl Molecules, with or without fluoride and carbonyl GC 8671 (G)
Alkanyl-carbonyl Molecules, with or without alkane and carbonyl GC 4326 (G)
SG-X 4 datasets of synthetic graphs with varying properties NC >13000 (N)

BAM Obj, Scene,
Scene only

3 datasets combining MSCOCO and MiniPlaces,
labels are objects or scene labels

C 100 k (I)

XAI-Bench Synthetic (Mixtures) of probability distributions R/C n.a. (S)

OpenXAI Synthetic 20 continuous features from Gaussian distribution C 5000 (S)

Table 2: XAI evaluation datasets with explanation ground truth available in the analysed toolkits. (B) indicates whether there is a bench-
mark available. Tasks: machine reading comprehension (MRC), graph-level classification (GC), node classification (NC), classification (C),
regression (R). Size (Number of): questions (Q), passages (P), graphs (G), nodes (N), images (I), structured data (S). n.a. – information not
available, neither in the publication nor in the GitHub repository.

a website, where developers can submit their scores to be in-
cluded in the leaderboard, and XAI-Bench provides command
line support to benchmark 6 feature attribution methods on
synthetic datasets. Note, that XAI methods are also evaluated
on datasets without explanation ground-truth, e.g. using the
single deletion evaluation method [Nauta et al., 2023]. We
omitted those datasets from the table. Specifically, GraphXAI
and OpenXAI include the German credit card [Dua and Graff,
2017], recidivism, credit defaulter [Agarwal et al., 2021],
give me some credit [Freshcorn, 2022], HELOC [Holter et
al., 2018] and adult income datasets [Yeh and Lien, 2009].

5 Evaluation Metrics
The overview in Table 1 is an aggregated view of supported
explanation/data types and Co-12 coverage per toolkit. In this
section, we provide details on the Co-12 coverage per expla-
nation/data type combination (Figure 1, Section 5.1) and from
the perspective of evaluation metrics (Figure 3, Section 5.2).
In total, we annotated 86 evaluation metrics implemented in
17 toolkits. Each implementation of a metric in a toolkit is
annotated with the corresponding Co-12 criteria, supported
explanation and data types and similar metrics are grouped to-
gether according to the categorization by [Nauta et al., 2023].

5.1 Co-12 Coverage
Figure 1 shows a strong imbalance in how well individual Co-
12 criteria are covered, as well as in the coverage of explana-
tion and data types per Co-12 criterion. Faithfulness of the ex-
planation to the model (Correctness), stability to slight varia-
tions (Continuity) and plausibility for end users (Coherence)
are covered by multiple metrics in multiple toolkits. Only a
few metrics are readily available in toolkits for how much of
the predictive model’s behavior is covered by the explanation
(Completeness), how informative the explanation is w.r.t. al-
ternative events (Contrastivity) and how compact the explana-

tion is (Compactness - smaller explanations are deemed eas-
ier to comprehend). Five of the twelve Co-12 criteria are not
covered by any metric in any toolkit at all and hence omitted
in the figure. These comprise: complexity of feature interac-
tions in the explanation (Covariate complexity), format and
structure (Compositionality), probabilistic information (Con-
fidence), relevance to users’ needs (Context) and extent of
user interaction or control (Controllability). Further, there is a
strong focus on the explanation types feature importance and
heatmap and image and structured/tabular data (top left cor-
ner of the last heatmap in Figure 1). Conceptually, heatmaps
are 2-dimensional feature importance scores and localisation
explanations correspond to binary feature importance, em-
phasizing the focus on feature importance even more. On
average, five out of twelve Co-12 criteria are covered for fea-
ture importance/heatmap explanations and image/structured
date, whereas only Coherence (1/12) is covered for localisa-
tion explanations on textual data.

5.2 Metrics in Detail
Table 3 can serve as a guide for XAI researchers, looking for
means to evaluate a newly proposed XAI method. Towards
this goal, the first column indicates the explanation type, fol-
lowed by Co-12 coverage (2nd column), evaluation method
groups (3rd column) and available toolkit implementations in
the last column, indicating corresponding metric names and
applicable data types (in boldface black squared boxes). Un-
fortunately, toolkit documentation rarely indicates the sup-
ported explanation and data types individually for each met-
ric. Hence, there are data types that are supported by a partic-
ular metric (according to the original publication introducing
that metric), but for which the toolkit implementing this met-
ric does not claim native support. These may be supported
with minor or no modifications (gray squared boxes). Simi-
larly, we omitted time-series in Figure 1 and Table 3 as they
are not explicitly supported by any metric.
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Co-12 Evaluation Method
Group [Nauta et al., 2023]

Toolkits with toolkit’s evaluation metric

Correctness White Box Check PhE-Eval I S X Ground truth Alignment
Controlled Synthetic Data XAI-Bench I S GT-Shapley, Eval XAI I IoU, RR, RD, OpenXAI S FA, RA,

SA, SRA, RC, PRA, CompareXAI I X Stability, Stress test, I Simplicity, S
Fidelity, Fragility

Single Deletion Quantus I Monotonicity, SensitivityN, Quantus/AIX 360 I S / XAI-Bench
I S Faithfulness, OpenXAI I S PGI, PGU

Incremental
Deletion/Addition

Quantus I S Faithfulness correlation, I Monotonicity, ROAD, Selectivity,
AIX 360/XAI-Bench I Monotonicity, Ablation S Feature perturbation,
Doctor XAVler X FAD curve, InterpretDL I DeletionInsertion

Completeness Preservation Check GraphXAI G GEF, GEGF
Fidelity for Variations Quantus I S X Sufficiency

Continuity Stability for Variations Quantus I S Local Lipschitz estimate, I Max-Sensitivity, Avg-Sensitivity,
Continuity, Input Invariance, Captum I Sensitivity, OpenXAI S RIS, RRS,
ROS, GraphXAI G GES, GECF, Shapash S Stability

Fidelity for Variations Quantus I S X Sufficiency, Consistency, I Infidelity,
Captum/XAI-Bench/InterpretDL I Infidelity

Compactness Size Quantus I S X Effective Complexity, I S Complexity, Shapash S Compacity
Coherence Alignment Domain

Knowledge
Quantus I AUC, Non-Sensitivity, GraphXAI G GEA, CompareXAI I X
Stress test

Fe
at

ur
e

Im
po

rt
an

ce

XAI Methods Agreement OpenXAI S FA, RA, SA, SRA, RC, PRA, Shapash S Consistency

Correctness Model Parameter Random. Quantus I Model parameter randomisation
White Box Check PhE-Eval I S X Ground truth Alignment
Controlled Synthetic Data OpenXAI S FA, RA, SA, SRA, RC, PRA, Eval XAI I IoU, RR, RD, BAM I

Model contrast scores, Input dependence rate
Single Deletion Quantus I Pixel Flipping, SensitivityN, Quantus/AIX 360 I S /XAI-Bench

I S Faithfulness, OpenXAI I S PGI, PGU
Incremental
Deletion/Addition

Quantus I Region Perturbation, Selectivity, IROF, ROAD, AIX 360 I
Monotonicity, XAI-Bench I Monotonicity, ROAR, InterpretDL I MoRF,
LeRF, DeletionInsertion

Consistency Implementation Invariance XAI-Eval I Consistency, Repeatability Explanations
Continuity Stability for Variations Quantus I Max-Sensitivity, Avg-Sensitivity, Continuity, Input Invariance,

Captum I Sensitivity, OpenXAI S RIS, RRS, ROS, BAM I Input
independence rate, Safari I Worst-case interpretation discrepancy,
Probabilistic interpretation discrepancy

Fidelity for Variations Quantus/Captum/XAI-Bench/InterpretDL I Infidelity
Contrastivity Target Sensitivity Quantus I Random logit test, BAM I Model contrast scores
Compactness Size Quantus I S X Effective Complexity, I S Complexity, I Sparseness
Coherence Alignment Domain

Knowledge
Quantus I Pointing game, Attribution Localisation, Top-K Intersection,
Relevance rank accuracy, Relevance mass accuracy, AUC, Focus,
Non-Sensitivity, InterpretDL I X Pointing game segmentation, I Pointing
game, XAI-Eval I Alignment with Clinical factors

H
ea

tm
ap

XAI Methods Agreement OpenXAI S FA, RA, SA, SRA, RC, PRA, XAI-Eval I SSIM

Consistency Implementation Invariance XAI-Eval I Consistency

L
C Coherence Alignment Domain

Knowledge
Quantus I AUC, Focus, Pointing game, Attribution Localisation, Top-K
Intersection, ExPMRC X Correctness

Completeness Fidelity for Variations Quantus I S X Sufficiency

D
T

Continuity Fidelity for Variations Quantus I S X Sufficiency, Consistency

Correctness Controlled Synthetic Data BAM I Model contrast scores
Contrastivity Target Sensitivity BAM I Model contrast scoresPT

Compactness Size Quantus I Effective Complexity

Table 3: Overview of XAI evaluation metrics for Feature Importance, Heatmap, Localisation (LC), Decision Trees/Rules (DT) and Prototypes
(PT). Showing toolkits implementing an evaluation method, with the metric name from the documentation, and data types (I for Images, X
for Text, S for Structured/Tabular and G for Graphs). Gray, e.g. S : not natively supported by the toolkit, but supported by the metric.
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Figure 1: Number of metrics available in toolkits per Co-12 criterion and explanation/data type. The last heatmap shows the number of Co-12
criteria covered per explanation/data type.

Looking at explanation type coverage from the perspective
of metrics, we observe the same pattern as in Section 5.1:
a strong focus on feature importance and heatmaps. In de-
tail, heatmaps are supported by 52 metrics (out of 86), fea-
ture importance by 51, localisation by 7, and prototypes and
decision trees/rules by 2 each. This enumeration is without
duplicates, i.e., metrics implemented in multiple toolkits are
counted only once. In particular, well-known metrics are im-
plemented in multiple toolkits. For instance, Faithfulness es-
timate is implemented in 3 toolkits (Quantus, AIX 360 and
XAI-Bench), for both, feature importance and heatmap ex-
planations. Quantus and AIX 360 explicitly support image
and structured data for this metric, whereas XAI-Bench only
supports images explicitly. We also observed that the names
of the metrics in toolkits are not necessarily the same as in the
original paper. For instance, Avg-Sensitivity in Quantus and
Sensitivity in Captum implement the same metric.

In summary, we observe a strong focus on feature impor-
tance explanations (even more when considering heatmaps
and localisation as special case of feature importance), on
image and structured data and on the 3 criteria Correctness,
Continuity and Coherence. This focus is further amplified by
the implementation of the same metrics in multiple toolkits.

6 Reproducibility
The same metric may be implemented differently across vari-
ous toolkits. This raises the question of whether variations in
implementation result in differing outcomes. In this section,
we therefore conduct an experimental comparison of the eval-
uation results from different toolkits for the same metric. We
analyze results for Infidelity [Yeh et al., 2019], the evaluation
metric with the highest number (4) of implementations.

Infidelity [Yeh et al., 2019] measures the expected dif-
ference between a perturbed explanation and the change in
the predictive model’s output when the same perturbation is
applied to the input. In detail, it is the expected difference
between the dot product of the input perturbation, and the
change in function values resulting from the input perturba-
tion. Given a black-box function f , explanation functional Φ,
and a random variable I ∈ Rd with probability measure µI,
which represents meaningful perturbations of interest, the
explanation infidelity of Φ is defined as:

INFD(Φ, f ,x) = EI∼µI

[(
ITΦ(f ,x)− (f(x)− f(x− I))

)2]

IntegratedGradients GradientShap Saliency

Figure 2: Original image and explanations from Intergrated Gradi-
ents, GradientShap and Saliency methods (left to right).

We classify a single instance from the MNIST dataset us-
ing the predictive model presented in the original paper [Yeh
et al., 2019]. On the prediction of this instance, we em-
ploy three different explainable AI methods, Integrated Gra-
dients [Sundararajan et al., 2017], GradientShap [Lundberg
and Lee, 2017], and Saliency [Baehrens et al., 2010], as im-
plemented in Quantus [Hedström et al., 2022], to generate
explanations. We then calculate Infidelity in the original im-
plementation2 and three out of four toolkits - Quantus [Hed-
ström et al., 2022], Captum [Kokhlikyan et al., 2020], Inter-
pretDL [Li et al., 2022], which support image and explana-
tion inputs in the form of arrays or tensors, and output an
infidelity score. We exclude the remaining toolkit - XAI-
Bench [Liu et al., 2021] as it requires an unspecified input
data format and would require significant adaptations to per-
form the metric calculation. In both, toolkits and original im-
plementation, we use the default settings.

Figure 2 shows the original image and the generated ex-
planations. Saliency, which is an older method, returns noisy
explanations, while the more recent methods, Integrated Gra-
dients and GradientShap, produce concise explanations. Ta-
ble 4 shows the Infidelity calculated by three different toolk-
its and results from the original implementation. There is a
significant discrepancy in the resulting values across toolkits,
which can be attributed to the different default perturbation
functions used. However, there is a relatively strong correla-
tion among the toolkits. Specifically, high infidelity for noisy
explanations (Saliency) and low infidelity for concise expla-
nations (Integrated Gradients and GradientShap) align with
the results of the original paper. It is worth noting that there
is consistency in the ranking of the methods (Integrated Gra-
dients < GradientShap < Saliency), but not in the distances

2https://github.com/chihkuanyeh/saliency evaluation
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Toolkit XAI method
IG GradientShap Saliency

Original 1.21 1.56 10.02
Quantus 24780 25635 5356752
Captum 5735 7098 7423
InterpretDL 2.36 3.19 13.81

Table 4: Infidelity measure as calculated by the original implementa-
tion and the implementations in three different toolkits for explana-
tion methods Integrated Gradients (IG), GradientShap and Saliency.

between the methods. For example, in Captum, the differ-
ence between GradientShap and Saliency is smaller than the
difference between Integrated Gradients and GradientShap,
while the opposite is observed in InterpretDL.

The results of our comparison on the same metric imple-
mented in multiple toolkits suggest that the specific imple-
mentations have a significant impact on the resulting values.
Therefore, it is not recommended to directly compare the val-
ues obtained from different toolkits. However, comparisons
within a toolkit are still valuable.

7 Discussion
Choice of Toolkits. For standard explanation tasks, such as
feature importance or heatmaps on images, there are multiple
toolkits available. For the majority of XAI method develop-
ers, Quantus seems the most obvious choice, as it is a mature,
well-documented and comprehensive (in terms of explana-
tion types and Co-12 coverage) tool for evaluating XAI meth-
ods, with native support of PyTorch and TensorFlow models,
and high usability scores. It is the only toolkit that supports
time series data, but misses support for textual data, which is
promised by the developers as next on their agenda. For eval-
uating methods on graph data, GraphXAI is the only toolkit
available.

Toolkit-Metric Information Alignment. Matching data
types claimed to be supported by the toolkit with the paper
introducing the evaluation metric implemented in the toolkit
was not straight forward. We have added both the informa-
tion claimed by the toolkits and the information reported by
the original paper introducing the metric.

Extending Co-12 Coverage. Toolkits only support evalua-
tion metrics corresponding to at most 6 Co-12 criteria. We see
opportunities to extend toolkits with more evaluation metrics
that cover other Co-12 criteria. The collection of evaluation
methods by [Nauta et al., 2023] may be a good starting point,
though some criteria such as Controllability, Confidence and
Context may not be easily benchmarked automatically and
are better suited for evaluation with user studies.

Reproducibility and Comparisons. Some evaluation met-
rics are implemented in different toolkits, but with slightly
different hyperparameters and implementations. As a result,
values can not be directly compared across different XAI
tools, but only within a toolkit. Thus, care has to be taken
when comparing results reported in publications – without

knowledge of the toolkit, and the parameters for the evalua-
tion functions such comparisons are meaningless.
Benchmarks & Datasets. We found only a handful of
toolkits that include any additional XAI evaluation dataset
and even fewer promote benchmarking. As a recommen-
dation, we call for inclusion of benchmarking in evaluation
toolkits, as it could foster standardization while advancing the
field of evaluating XAI. The limited availability of datasets
in the analysed toolkits shows that XAI evaluation toolkits
mainly focus on including evaluation metrics, without accom-
panying datasets for evaluation. We acknowledge that the
identification of standalone datasets developed for the pur-
pose of XAI evaluation was not the aim of this survey and
could be an interesting direction for future work.

8 Conclusion
Our semi-structured review of XAI evaluation toolkits reveals
that currently only a few aspects of explanation quality are
covered and that results of the same metric may differ across
toolkits, due to varying implementations. This work can serve
as a guide for the XAI community for identifying evaluation
methods that cover explanation quality more broadly and fa-
cilitating future implementations of evaluation metrics. We
also aim that our work contributes to a standardization of XAI
evaluation, that includes standard datasets and benchmarks
for advancing development of XAI methods. Specifically, our
call for action is as follows:

Researchers evaluating their XAI methods should use
multiple metrics in order to cover explanation quality more
broadly. When using an XAI evaluation toolkit, we recom-
mend to take care of providing sufficient details for repro-
ducibility. In addition to reporting the metric name, also the
toolkit version and used hyperparameters should be provided
in order to enable a transparent evaluation. Table 3 can serve
as a useful starting point to find toolkit that support a particu-
lar type of explanation and data.

Researchers targeting evaluation of XAI are encouraged
to think more broadly on explanation quality to cover other
aspects when developing new evaluation metrics. Addition-
ally, we recommend to investigate how existing evaluation
metrics can be adapted to other data and explanation types.

Researchers developing metrics and creating datasets
with ground-truths for evaluating XAI should consider to
contribute them to an existing XAI toolkit.

Toolkit developers and maintainers could investigate the
evaluation gaps we identified and consider adding support
for more modalities, explanation types and evaluation met-
rics in the future. Furthermore, they are encouraged to im-
prove usability by extending their documentation and report
for each metric which data and explanation types are sup-
ported, what input data format is required, and what the rec-
ommended hyperparameters are based on the original met-
ric publication. Cross-evaluation between evaluation toolkits
(and with the original metric implementation) is encouraged
in order to identify and rectify inconsistencies.
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