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Abstract
Fair allocation of indivisible goods is a central topic
in many AI applications. Unfortunately, the corre-
sponding problems are known to be NP-hard for
many fairness concepts, so unless P = NP, exact
polynomial-time algorithms cannot exist for them.
In practical applications, however, it would be
highly desirable to find exact solutions as quickly
as possible. This motivates the study of algorithms
that—even though they only run in exponential
time—are as fast as possible and exactly solve such
problems. We present known complexity results for
them and give a survey of important techniques for
designing such algorithms, mainly focusing on four
common fairness notions: max-min fairness, max-
imin share, maximizing Nash social welfare, and
envy-freeness. We also highlight the most chal-
lenging open problems for future work.

1 Introduction
In fair division of indivisible goods, one seeks to allocate
the goods (or items, or resources) to the agents so as to sat-
isfy certain fairness conditions. This is an old problem with
many important applications in economics, artificial intelli-
gence (AI), and related fields (see, e.g., the recent survey by
[Amanatidis et al., 2022] and the book chapters by [Bouveret
et al., 2016] and [Lang and Rothe, 2015]). From a computer
scientist’s point of view, there is a range of fascinating com-
putational problems that need to be solved, and computational
techniques that need to be explored. The survey by [Walsh,
2020] provides a comprehensive list of fair allocations prob-
lems along with challenging open questions, while the work
of [Aziz et al., 2022a] is more focused on approximation al-
gorithms, which produce near-optimal solutions with guaran-
teed bounds. To complement these works, our paper aims to
give a best understanding of the state-of-the-art approaches
that can be applied to solve these problems exactly, rather
than approximately. The reasons of studying such approaches
are two-fold. Firstly, exact fair solutions may be required in
certain real-world applications where approximate solutions
may not be allowed or may not be good enough. Secondly,
the research on faster exponential-time algorithms helps to
better understand the reasons for the intrinsic intractability of

fair allocation problems, which may also show ways for how
to tackle them. Also, even though many of these problems are
known to be NP-hard, some of them have been shown to be
solved by algorithms running much faster than the brute-force
approach, while others do not seem to allow such sophisti-
cated algorithmic techniques. Therefore, research on faster
exponential-time algorithms for fair allocation problems will
be very useful for practical applications. We survey the state
of the art and point to some of these research challenges.

2 Preliminaries
The input I = {A,O,U} of an allocation problem consists
of three components: A = {1, 2, . . . , n} = [n] is the set of
agents, O = {1, 2, . . . ,m} = [m] is the set of items, and U =
{u1, u2, . . . , un} is the set of the agents’ valuation functions
expressing their utilities over the set of items. Formally, we
have that ui : 2

O → N for i ∈ A. We restrict our attention
to the class of monotonic additive valuation functions which
have been widely used in the context of resource allocation.
A valuation function is monotonic additive if for any subset
(or bundle) S ⊆ O, ui(S) =

∑
j∈S uij , where uij is agent

i’s nonnegative integer value for item j. We assume that the
value of the empty bundle is zero for every agent and, to avoid
triviality, that m ≥ n. An allocation π is a partition of the
set of items into n subsets, denoted as π1, . . . , πn, such that⋃n

i=1 πi = O, where πi is the bundle allocated to agent i.
High-multiplicity setting. In this setting, the set A of

agents can be partitioned into p types [p] = {1, . . . , p}, and
the set O of items can be partitioned into q types [q] =
{1, . . . , q}. Agents are said to be of the same type if they
agree on the values of all items. That is, for every two agents
i, i′ of type k, it holds that uij = ui′j for every item j. Simi-
larly, we say that two items are of the same type if they have
the same value for every agent. Formally, for every two items
j, j′ of type l, it holds that uij = uij′ for every agent i.

Fairness notions. There are two common ways for in-
terpreting fairness. The first one is to make use of collec-
tive utility functions (CUFs) to fairly aggregate individual
agents’ utilities, which then is maximized. The CUFs that
perhaps have been most intensively studied are the min func-
tion, which is defined as the lowest utility among agents’
utilities [Moulin, 1988], and the product function, which is
defined as the product of individual agents’ utilities [Nash,
1950] (see, e.g., [Moulin, 1988] for other choices of CUFs).
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Definition 1 (max-min fairness). The egalitarian social wel-
fare (ESW) of an allocation π is defined as minni=1ui(πi). We
say an allocation of maximum ESW is max-min fair (MMF).

Definition 2 (Nash social welfare). The Nash social wel-
fare (NSW) of an allocation π is defined as

∏n
i=1ui(πi).

An allocation of maximum NSW is said to be maximal Nash
(MNSW).

Another way of defining fairness is to first specify what can
be considered to be a fair share of an agent, and then to de-
fine an allocation to be fair if every agent can receive her fair
share in it. Two common notions of fair shares studied in the
literature are maximin share [Budish, 2011] and proportional
share originally introduced by [Steinhaus, 1948].

Definition 3 (maximin share). We define the maximin share
of an agent i ∈ A as mmsi = maxπ mink∈A{ui(πk)}. An
allocation π is said to be maximin share (MMS) if ui(πi) ≥
mmsi for every i ∈ A.

Intuitively, the maximin share criterion means that an agent
may choose an allocation first but then has to take the last
bundle that is left in the chosen allocation, thus maximizing
her worst utility over all allocations. We will focus on this
notion and will mention the dual notion of the minimax share
[Bouveret and Lemaı̂tre, 2016] only en passant, which is de-
fined by letting agent i, faced with the worst allocation for
her, choose her bundle first in it: minπ maxk∈A{ui(πk)}.

Proportional share allocations (PROP) can be defined sim-
ilarly. Such an allocation must allocate to each agent a bundle
of value at least 1/n of the whole. The most frequently used
concept of fairness is envy-freeness, which has been mainly
studied in the context of cake-cutting (i.e., allocation of divis-
ible goods) in the last few decades. An allocation is envy-free
if no agent prefers another agent’s bundle to their own.

Definition 4 (envy-freeness). An allocation π is said to be
envy-free (EF) if ui(πi) ≥ ui(πj) for every i, j ∈ A.

Note that every EF allocation is a PROP allocation, and
every PROP allocation is MMS, but the reverse is not true,
so EF is the strongest fairness notion among these three.

Example 1. Consider an instance with three agents, so A =
{a1, a2, a3}, and six items, so O = {g1, g2, g3, g4, g5, g6},
and the agents’ values for single items are given in Table 1.

g1 g2 g3 g4 g5 g6

a1 2 1 0 3 6 3
a2 9 9 0 1 1 0
a3 4 4 1 6 1 2

Table 1: Values of the agents in Example 1

One can see that the maximum value that a worst-off
agent can get by an allocation is 9. For example, π =
({g5, g6}, {g1}, {g2, g3, g4}) is an MMF allocation. This al-
location has a Nash social welfare of 9 · 9 · 11 = 891. How-
ever, π′ = ({g5, g6}, {g1, g2}, {g3, g4}) is a maximal Nash
allocation with an NSW of 9 · 18 · 7 = 1134, but it is easy
to see that π′ is not an MMF allocation. Also, both π and

π′ are not EF allocations, as a2 envies a3 in π, while a3 en-
vies a2 in π′. We get an envy-free allocation π′′ by allocating
{g4, g5} to a1, {g1} to a2, and {g2, g3, g6} to a3. Unfortu-
nately, π′′ is neither MMF nor maximal Nash. Finally, one
can find the maximin share of the agents 1, 2, and 3 as 4, 2,
and 6, respectively, and thus all the three allocations π, π′,
and π′′ are MMS. In fact, they are even PROP.

Additional constraints. In addition to the fairness require-
ment, it is sometimes further required by practical applica-
tions that a fair allocation must satisfy a certain type of con-
straint such as cardinality and connectivity constraints. For
example, a cardinality constraint requires every agent to be
assigned no more than a given number of items, whilst a con-
nectivty constraint seeks to allocate a connected bundle of
items to every agent. We refer to the survey by [Suksompong,
2021] for detailed descriptions of various constraints.

Problem notation. We do not formally define the fair al-
location problems that we will consider. We simply use, re-
spectively, MMF, MNSW, MMS, and EF to refer not only
to the property but also to the associated problem regarding
max-min (fair), maximal Nash, maximin share, and envy-
free allocations, and depending on the context it will be clear
whether we mean a decision problem (e.g., when we speak
about NP-hardness)—given an input, decide if there exists
such an allocation—or a functional problem (e.g., when we
speak about dynamic programming)—given an input, com-
pute such an allocation.

3 Complexity Results
In this section, we present a survey of computational com-
plexity results for fair allocation problems without con-
straints, for additive valuations. Note that adding a constraint
to a fair allocation problem may or may not lead to a harder
problem.

General additive valuations. Most of the fair allocation
problems are known to be NP-hard to solve to optimality,
even under restricted settings. The first hardness result comes
from the simple setting with two agents of the same valuation
function [Lipton et al., 2004; Nguyen et al., 2014]. In such
a setting, the problems MMF, MNSW, and EF are equally
hard: They each have been shown to be NP-hard by a reduc-
tion from PARTITION,1 a standard NP-complete problem.

However, for MMS it is still unknown whether the problem
is NP-hard, and this is probably one of the most important
open questions in the area of fair allocation. [Kurokawa et al.,
2018] have shown the existence of problem instances that do
not admit an MMS allocation; their sophisticated counterex-
ample is based on what they call a “Sudoku-like” construc-
tion. So far, NP-hardness for MMS could be shown by [Bou-
veret and Lemaı̂tre, 2016] only in the setting of 2-additive
valuations, which is a generalization of additive valuations.

Much work has focused on relaxations of fairness, which
has the advantage that allocations satisfying them indeed exist
and can be efficiently computed. For instance, one may look

1Given a sequence of positive integers, we ask whether they can
be partitioned into two subsequences such that the sums of the inte-
gers in both subsequences are equal.
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Agent type Item type d-value instance Scoring-based valuation

p = 1 q = 1 q = 2 {0, 1} {0, 1, a} {a, b} Borda val. Lex. val.
MMF NP-hard P ? P NP-hard NP-hard NP-hard NP-hard
MNSW NP-hard P ? P NP-hard NP-hard NP-hard NP-hard
EF NP-hard P ? ? ? ? ? P
MMS NP-hard P ? P ? ? P P

Table 2: Complexity results for unconstrained fair allocation problems in several settings.

for an approximate solution whose value is within a certain
distance from that of a max-min fair allocation [Aziz et al.,
2022a], or may investigate relaxed notions of EF such as EF1
(envy-freeness up to one item) and EFX (envy-freeness up to
any item). Unlike EF allocations, an EF1 allocation always
exists and can be found in polynomial time by using either
round-robin methods [Caragiannis et al., 2019] or the cycle-
elimination algorithm [Lipton et al., 2004].

Recently, there has been a growing interest in work that
considers fair allocation problems in a high-multiplicity set-
ting, assuming that the number of agents and/or the number
of items is small. While all the four considered fair alloca-
tion problems are NP-hard even with identical agents (i.e.,
the case with one agent type), the complexity status of the
case with a fixed number item types is unknown. [Koutecký
and Zink, 2020] obtain an NP-hardness result for the min-
max objective in the context of machine scheduling, and we
believe that it can also be extended to MMF. [Nguyen and
Rothe, 2020a] prove that MMF, MNSW, and MMS can be
solved in polynomial time in m and n, as long as the number
of item types is constant, yielding that these problems are in
XP (slice-wise polynomial) w.r.t. parameter q, i.e., they are
solvable in time O(|x|f(q)) for some function f . It remains
open if a similar result holds for EF. [Aziz et al., 2022b]
give a positive answer to this question for the case of q = 2
item types. [Gorantla et al., 2023] show that an EF alloca-
tion exists if q is at least a particular finite threshold and there
is some agent i whose valuation is unique, i.e., ui cannot be
represented as λuj for some λ > 0, for any j ̸= i. They also
propose a polynomial-time algorithm for computing EFX al-
locations when q = 2, but leave the case q ≥ 3 open.

Scoring-based valuations. [Baumeister et al., 2017] and
[Darmann and Schauer, 2015] show that MMF and MNSW
are NP-hard, even for scoring-based valuation functions
such as Borda (using the scoring vector (m,m − 1, . . . , 1))
and lexicographic functions (using the scoring vector
(2m, 2m−1, . . . , 1)). EF is easy to check for lexicographic
functions, since every agent needs to get a top-ranked item
in an envy-free allocation. This is, however, not true for the
Borda function. For MMS, [Bouveret and Lemaı̂tre, 2016]
show that there is always a maximin share allocation for in-
stances with scoring-based valuation functions.

d-value functions. Denote by D the domain of the agents’
valuation functions, i.e., D = {uij |i ∈ [n], j ∈ [m]}, and let
d = |D|. Several complexity results have been obtained un-
der the assumptions made on the size of D, or on the numbers
used in D. For D = {0, 1} (i.e., binary valuations), MMF

and MNSW are polynomial-time solvable [Golovin, 2005;
Darmann and Schauer, 2015]. Also, finding an MMS al-
location (if any exists) is easy, just by following a decen-
tralized protocol where the agent take turns to pick one of
their preferred items among the remaining ones [Bouveret
and Lemaı̂tre, 2016]. However, it is still open whether check-
ing the existence of EF allocations is NP-hard. [Chan et
al., 2016] present an NP-hardness result for MMF when
D = {a, b} for a, b > 0. [Akrami et al., 2022] obtain a
similar result for MNSW, showing that the problem is solv-
able in polynomial time when D = {1, a} for any a > 1.
MNSW becomes NP-hard when D = {0, 1, a} [Nguyen et
al., 2014]. [Amanatidis et al., 2017] show that MMS is in P
for D = {0, 1, 2}, but their method does not seem to extend
to the case when D = {0, 1, a} with a > 2.

We conclude this section by giving some open problems re-
garding the complexity of fair allocation problems that would
be of much interest for future work.
Open problem 1. • Is EF in XP w.r.t. parameter q?

• Is EF NP-hard for q = O(1)?
• Is EF NP-hard for Borda or binary valuations?

Open problem 2. For general additive valuations:
• What is the complexity of deciding whether MMS allo-

cations exist?2

• Are MMF, MNSW, and MMS NP-hard for q = O(1)?

4 Dynamic Programming
A naive approach for finding a fair allocation is to search over
the space of all possible allocations of m items to n agents.
In particular, we need to try every single allocation that could
possibly be fair until we find a right one. Since there are
nm allocations, the running time of the naive approach is
O(nm), which is exponential in the number of items. Ob-
viously, this approach is not practical, as the running time
is going up very fast as m increases. Because of this phe-
nomenon, brute-force search is applied only when problem-
specific observations can be used to reduce the number of
available candidate allocations to a size that is manageable.
Perhaps the main advantage of brute-force search is that it can
be used to solve fair allocation problems w.r.t. most fairness
notions, even with constraints. To achieve algorithms with
running time better than O(nm), we need to develop more
sophisticated techniques such as the dynamic programming
(DP) approach, which will be discussed in this section.

2For minimax share allocations (introduced by [Bouveret and
Lemaı̂tre, 2016]), [Heinen et al., 2018] showed NP-hardness.
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4.1 A General DP
[Horowitz and Sahni, 1976] were among the first to study the
DP approach for solving machine scheduling problems. This
approach can be modified to work well with fair allocation
problems [Nguyen et al., 2014; Bliem et al., 2016; Aziz et
al., 2019; Garg et al., 2022]. Basically, DP can be seen as an
alternative way of doing brute-force search. Instead of gen-
erating all possible bundle vectors (π1, . . . , πn), we generate
all possible valuation vectors (a1, . . . , an), where ai encodes
agent i’s value for bundle πi. Based on this encoding, let Vj

be the set of all possible value vectors which present alloca-
tions of the first j items among agents, for j ∈ [m]. Formally,
the set Vj+1 can be generated as follows: For each vector
a in Vj , we create n vectors a + uij+1 · ei, for each i, and
then put them into Vj and remove the duplicates. Here, the
ei’s are vectors in the standard basis of Rn. It is easy to see
that the size of Vj+1 is at most n|Vj |, and thus |Vm| ≤ nm.
On the other hand, for every j, the number of vectors in Vj

cannot be greater than Kn, where K = maxni=1{ui(O)} =
O(m · umax) with umax = max{uij | i ∈ [n], j ∈ [m]},
since every vector contains integer coordinates not exceed-
ing K. This implies that |Vj | = O(Kn) for every j ∈ [m].
Therefore, the overall complexity of the DP algorithm is
O(max{m(m · umax)

n, nm}). Its correctness is easy to ver-
ify, since all possible valuation vectors are enumerated, and
the allocations that are discarded at each step cannot lead to
an optimal allocation.

One can see that the DP approach above can be used to
solve MMF, MNSW, and MMS. Unfortunately, it does not
work directly for EF, since every valuation vector only con-
tains the value of each agent. This obstacle can be over-
come by using an n2-dimension vector to encode an allo-
cation. In particular, we define a valuation vector a =
(a11, . . . , a1n, . . . , an1, . . . , ann) in which aii denotes the
value of agent i, and aij for j ̸= i denotes the value of agent
i for agent j’s bundle. Hence, an EF allocation corresponds
to a vector a ∈ Vm with aii ≥ aij for every i, j ∈ [n].

Remark 1. It is worth noting that the dynamic program-
ming approach above may also be viewed as a branch-and-
bound method in which Vj represents the nodes at level j of
the branch-and-bound tree. The elimination rule eliminates
those nodes that are dominated by other nodes in the tree and
thus corresponds to the bounding operation performed in a
branch-and-bound algorithm.

4.2 Another DP
In this section, we present a DP algorithm that has an ex-
ponential running time of O(nm · 3m). This algorithm is
suggested by [Jansen et al., 2016] in the context of machine
scheduling problems. We first present the DP algorithm for
MMF and then show how to modify it to work for MMS and
MNSW, as well as for other constrained allocation problems.

Optimal Substructure. For each subset S ⊆ O and each
agent k ∈ [n], we define a subproblem, denoted as (S, k), in
which we want to find an optimal value F [S, k] when allocat-
ing the items in S to the first k agents: 1, . . . , k.

Recurrence equation. Obviously, if we know S′ ⊆ S that
is allocated to agent k in an optimal allocation, then the re-

cursive subproblem to solve is to compute F [S \ S′, k − 1].
Therefore, the values F [S, k] satisfy the recurrence equation

F [S, k] =

{
u1(S) if k = 1
max
S′⊆S

min{F [S \ S′, k − 1], uk(S
′)} otherwise.

We can compute all values F [S, k] with a dynamic program
in 3m · n iterations, where each iteration requires time O(m)
to compute the value of the current item set S. Thus our algo-
rithm has a total running time of O(nm · 3m). The objective
value of an maximal schedule can then be read from F [O, n].
Note that the running time of the DP is almost optimal, since
achieving an exact O(|I| ·2o(m)) algorithm is impossible, un-
less the Exponential Time Hypothesis fails.

The DP can be modified to work with MMS and MNSW.
Indeed, for MNSW, one just needs to replace the min oper-
ator in the recurrence equation by the product operator. A
similar approach also applies to PROP but not to EF.

4.3 A DP for Few Item Types
Another DP algorithm, recently studied independently by
[Koutecký and Zink, 2020] and by [Nguyen and Rothe,
2020a; Nguyen and Rothe, 2023] (remotely related, see also
[Nguyen and Rothe, 2020b; Nguyen and Rothe, 2021]),
yields a running time that is exponential in the number of item
types. Indeed, the DP algorithm runs in time O(nm2q) and
returns (if there exists any) an allocation in which the value
of every agent i is at least βi, for given thresholds β1, . . . , βn.
The idea is to show that such an allocation will correspond to
a longest path of a suitable weighted directed acyclic graph
(DAG) constructed from a given instance I as described be-
low.
Vertices. Recall that q is the number of item types. Let
s = (s1, . . . , sq) denote a vector with integer coordinates
such that sj ≤ mj for every j ∈ [q], where mj is the num-
ber of items of type j. Also, let ξ = (m1, . . . ,mq) and
0 = (0, . . . , 0). There are two vertices v0,ξ and vn,0, and
a vertex vi,s for each pair (i, s), i ∈ [n − 1]. Vertices are
grouped into n + 1 disjoint sets B0, B1, . . . , Bn, where the
first and the last vertex sets, contain only one vertex v0,ξ and
vn,0, respectively, and Bi = {vi,s| s ∈ [m1] × · · · × [mq]},
for i ∈ [n − 1]. Intuitively, a vertex vi,s ∈ Bi represents a
state giving partial information about an allocation of items
to agents: It indicates that agents 1, . . . , i have been allocated
items (but we do not know which items are assigned to which
agents), and s represents the number of items of each type that
are unallocated yet at the current state and will be assigned to
the remaining agents i+ 1, . . . , n at the next states.
Edges and weights. There are only edges between vertices
of two consecutive vertex sets Bi−1 and Bi, which are de-
fined as follows. For each i ∈ [n], there is a direct edge from
a vertex vi−1,s ∈ Bi−1 to a vertex vi,s′ ∈ Bi if and only if
sj−s′j ≥ 0 holds for all j ∈ [q], and

∑q
j=1 uij ·(sj−s′j) ≥ βi.

In this case, the weight of the edge (vi−1,s, vi,s′) is defined as
w(vi−1,s, vi,s′) =

∑q
j=1 uij · (sj − s′j). Intuitively, by this

edge we mean that agent i is allocated a bundle of items en-
coded by the vector s − s′ = (s1 − s′1, . . . , sq − s′q), where
sj − s′j is the number of items of type j allocated to agent i.
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Moreover, the weight w(vi−1,s, vi,s′) is exactly the value that
agent i achieves by this allocation.

A longest path of the DAG. One can see that a (simple)
path of the constructed directed acyclic graph above corre-
sponds to an allocation for I, and vice versa. Our problem is
therefore equivalent to computing a longest path (i.e., a path
of maximum total weight) in the DAG which can be done via
dynamic programming. In fact, finding a longest path in a
DAG G can be reduced to finding a shortest path in −G, ob-
tained by changing every weight to its negation. If the path
is of positive weight, it corresponds to an allocation satisfy-
ing that every agent i gets a value of at least βi; otherwise,
there is no such allocation. Note that the number of vertices
is O(nmq), and for each vertex we have at most mq outgoing
edges. Therefore, the overall running time of DP is O(nm2q).

To solve MMF, we apply the dynamic program above with
βi = T , for i ∈ [n], where T is the optimal egalitarian so-
cial welfare, which can be found via binary seach. The case
of maximin share can be treated similarly by setting agent i’s
maximin share to βi. For MNSW, we need to redefine the
weighted fucntion as w(vi−1,s, vi,s′) = log(

∑q
j=1 uij · (sj −

s′j)), since maximizing
∏

i ui(πi) is equivalent to maximiz-
ing

∑
i log(ui(πi)). Unfortunately, the DP cannot be applied

to EF, and it remains open if we can solve the problem in
polynomial time in n and m whenever q is fixed.

Remark 2. We would like to emphasize that all three DPs
presented above are applicable to the setting with cardinality
constraints or the setting with a mixture of items (goods and
chores). Also, it is not hard to see that, while the DPs in Sec-
tion 4.2 and Section 4.3 can be used to handle both connectiv-
ity constraints and the nonadditivity of the agent valuations,
the DP in Section 4.1 cannot. Finally, it is worth mention-
ing that studying DP algorithms is important as this is one of
the most efficient techniques for designing fast approximation
schemes for many fair allocation problems.

5 Integer Programming Approaches
An alternative idea for solving a fair allocation problem is to
model it as a mixed integer program (MIP), which then can be
either solved by standard solvers (e.g., CPLEX or Gurobi) or
be formulated in structured forms (N -fold IPs or IPs of fixed
dimension) from which efficient algorithm can be derived.

5.1 General MIP Models
Max-min fairness. Naturally, finding a max-min fair allo-
cation amounts to finding a maximum value of T (via binary
search) for which the following system is feasible w.r.t. T :∑m

j=1
uijxij ≥ T, (1)∑n

i=1
xij = 1, xij ∈ {0, 1}, for i ∈ [n], j ∈ [m], (2)

where the binary variable xij specifies if item j is assigned
to agent i. In what follows, we assume w.l.o.g. that the opti-
mal T is given when solving MMF, and by solving MMF we
mean finding optimal values of variables xij w.r.t. T .

Envy-freeness. To achieve an IP formulation for EF, we re-
place the constraint (1) by the set of constraints∑m

j=1
uijxij ≥

∑m

j=1
uijxkj , for i, k ∈ [n], i ̸= k, (3)

which guarantee the envy-freeness among agents.
Maximum Nash social welfare. In the natural MIP model
of MNSW, we have an objective function of maximizing∏n

i=1

{∑m
j=1uijxij

}
, subject to the constraint (2). Because

of the nonlinearity of the objective function, we will not be
able to use CPLEX for solving it directly. To address this is-
sue, one can employ the technique introduced by [B.-Tal and
Nemirovski, 2001] to propose an equivalent model, called
Second-Order Cone Program (SOCP), which indeed can be
handled by CPLEX. To do so, they introduce new variables
zi =

∑m
j=1uijxij and write

max η

such that 0 ≤ η ≤ z1 ≤ · · · ≤ zn, (4)
(2) (5)

Let k = ⌈log2 n⌉. The constraint (4) can be represented as

0 ≤ η ≤
√

yk−1
1 yk−1

2 ,

0 ≤ ylj ≤
√
yl−1
2j−1y

l−1
2j , j ∈ [2k−1], l ∈ [k − 1],

0 ≤ y0i = zi, i ∈ [n],

0 ≤ y0j = η, j = n+ 1, . . . , 2k,

where η, {ylj}, j = 1, . . . , 2k, l = 0, . . . , k−1, are additional
variables. The above formulation is mixed integer SOCP
since any constraint of the form {u, v, w ≥ 0 | u ≤

√
vw}

is equivalent to {u, v, w ≥ 0 | 4u2 + (v − w)2 ≤ (v + w)2}.
Based on the MIP (or SOCP) models constructed for the

fair allocation problems above, one can directly use the stan-
dard solvers to find optimal solutions. Among others, CPLEX
and Gurobi are the most frequently used ones. The idea be-
hind CPLEX is to make use of kind of branch-and-bound or
branch-and-cut methods combined with a dynamic search,
while the main essential parts of Gurobi are cutting planes
algorithms, heuristics, and search techniques. [Lesca and
Perny, 2010] have empirically examined the effectiveness of
CPLEX in solving MMF. However, so far there has not been
any similar study for MMS, MNSW, or EF.

5.2 Integer Linear Programs of Fixed Dimension
In this section, we present various ways for modeling
fair allocation problems in IP forms, which might result
in polynomial-time algorithms or fixed-parameter tractable
(FPT) algorithms when some input parameters are small.
A parameterized problem A is FPT if there is an algo-
rithm solving any instance I of A with parameter k in time
f(k) · poly(|I|) for some computable function f , where |I|
denotes the size of the instance. Such an algorithm is called
an FPT algorithm. [Mnich and Wiese, 2015] utilize mathe-
matical programming techniques in fixed dimension to obtain
an FPT algorithm for the minimum makespan on unrelated
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machines. Their method is naturally extended to the fair allo-
cation problems as well. Let β1, . . . , βn be given nonnegative
integers. We consider the problem of computing an allocation
in which each agent i receives a bundle of value at least βi,
which is equivalent to find a nonnegative integer solution of
the following integer linear program ILP(β1, . . . , βn):∑n

i=1
xij = mj , for j ∈ [q], (6)∑q

j=1
uijxij ≥ βi, for i ∈ [n], (7)

where the integer variable xij denotes the number of items of
type j assigned to agent i. Hence, the total number of inte-
ger variables is nq, yielding an O((nq)O(nq) log(β̄m̄umax))
algorithm [Kannan, 1987], which is FPT in n + q, where
β̄ = maxi βi and m̄ = maxj mj = O(m).
Theorem 1. MMF, MMS, EF, and MNSW are FPT with
parameters n+ q or n+ d.

Proof. To solve MMF, one can solve ILP(T, . . . , T ), where
T = O(mqumax) is the maximal egalitarian social welfare.
For MMS, we first compute the maximin share mmsi of each
agent i by solving ILP(T, . . . , T ) for the case of idential
agents, and then again solve ILP(mms1, . . . ,mmsn). For EF,
one needs to replace the constraint (7) by (3), noting that the
number of variables is not affected by this change, whilst the
number of constraints increases additively by at most O(n2).
Finally, for MNSW, since the objective function is nonlinear
but quasi-concave, we can obtain an FPT algorithm by utiliz-
ing the result that maximizing a quasi-concave function over
linear constraints in fixed dimension can be efficiently solved
[Heinz, 2005]. Note that q = (d + 1)n, thus all the results
above yield FPT algorithms with parameter n+ d.

One may argue that the assumption that the number n of
agents is small is quite strong. We can relax this assump-
tion by considering the high-multiplicity setting where it is
allowed to have many agents but only a few agent types. In
such a seting, one can have an ILP model that admits an algo-
rithm that is exponential in the number of agent types and the
number of item types, but polynomial in the input size. Our
method takes advantage of recent findings about structures of
the integer cone proposed by [Goemans and Rothvoß, 2014]
and [Jansen and Klein, 2020].
Theorem 2. MMF and MMS can be solved in polynomial
time when the number of agent types and the number of item
types are fixed.

In what follows, we give a proof for MMF only, as MMS
can be treated similarly. As before, let T be the maximal
egalitarian social welfare of the given problem instance.
Structure of integer cone. Given a polytope P = {x ∈
Rq| Ax ≥ b}, where A ∈ Zr×q and b ∈ Zr

+, let ∆ be the
largest coefficient in A and b, and set M = rqqO(q)(log∆)q .
[Goemans and Rothvoß, 2014] show that one can compute
in time MO(1) a subset X ⊆ P ∩ Zq of size at most M
such that: For any vector a ∈ int.cone(P ∩ Zq), there exists
a vector λ ∈ ZP∩Zq

+ such that a can be decomposed as a =∑
x∈P∩Zq λx ·x, where λx ∈ {0, 1} for all x ∈ (P∩Zq)\X ,

|supp(λ) ∩X| ≤ 22q , and |supp(λ) \X| ≤ 22q.

An ILP of fixed dimension. In the high-multiplicity set-
ting, it is useful to encode the entire set O of items by a vector
ξ = (m1, . . . ,mq). Thus every subset S ⊆ O can be repre-
sented by a vector a = (a1, . . . , aq) ∈ Zq

+ with aj ≤ mj

representing the number of items of type j contained in S.
We call such a vector a configuration. Suppose that we know
that ξ(t) = (ξ

(t)
1 , . . . , ξ

(t)
q ) is a configuration that is allocated

to the group of agents of type t ∈ [p] in a proportional allo-
cation, for every t ∈ [p]. Then ξ(t) belongs to the polytope
Pt = {x ∈ Rq|

∑q
j=1 ut,jxt,j ≥ T, 0 ≤ xt,j ≤ mj}, where

ut,j is the value of agents of type t for item j. By the re-
sult above, one can compute a set Xt ⊆ Pt ∩ Zq of size at
most (q log umax)

O(q) such that ξ(t) can be represented us-
ing at most 22q configurations from Xt and at most 22q con-
figurations from Xt = (Pt ∩ Zq) \ Xt. Moreover, these
configurations from Xt are only used once. Therefore, by
enumeration, one can guess in time (log umax)

2O(q)

the cor-
rect subset of configurations from Xt that are used in the
representation of ξ(t). Let us denote these configurations as
ξ(t,ℓ) = (ξ

(t,ℓ)
1 , . . . , ξ

(t,ℓ)
q ), for ℓ ∈ [2O(q)]. In addition, one

can guess in time 2O(q2) the correct number zt ≤ 2O(q) of
configurations from Xt that are used in the presentation. De-
note them as ζ(t,ℓ) = (ζ

(t,ℓ)
1 , . . . , ζ

(t,ℓ)
q ), for ℓ ∈ [zt]. Also,

let yt,ℓ be the number of agents of type t that are assigned the
configurations ξ(t,ℓ). Based on this guessing, one can estab-
lish an integer program whose number of integer variables is
at most 2O(q2), which can be solved (using, e.g., Kannan’s
algorithm [Kannan, 1987]) in time 22

O(q2)

(log umax)
O(1):∑

ℓ
yt,ℓ = nt − zt, ∀ t, (8)∑

j
ut,jζ

t,ℓ
j ≥ T, ∀ t, ℓ, (9)∑

t,ℓ
ζt,ℓj +

∑
t,ℓ
yt,ℓξ

(t,ℓ)
j = mj , ∀ j, (10)

yt,ℓ, ζ
t,ℓ
j ∈ Z+, ∀ t, ℓ, j. (11)

This ILP can be solved in O(logTq(q−1)2q+1(m ·n ·umax))
time. This result can be slightly improved using a recent re-
sult by [Jansen and Klein, 2020] regarding the structure of the
integer cone, for which the set X is chosen as the vertex set in
the integer hull of the polytope P . Unfortunately, this method
is not directly applicable to EF and MNSW, as it is not clear
how to define the polytope Pt in these cases.

Open problem 3. Can EF and MNSW with few agent types
and few item types be solved in polynomial time?

5.3 N-Fold ILPs
N -fold integer programs can be seen as an important class
of block-structured IPs for which fast algorithms can be de-
veloped. It turns out that many fair allocation problems in
the high-multiplicity setting can be succinctly formulated in
terms of N -fold IPs, and thus algorithms running in time
polynomial in the size of the succinct encoding can be de-
signed, which may be significantly smaller than the size of
the natural IP models presented in Section 5.1.
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Consider the following N -fold ILP:

max
{
cTx

∣∣ Qx = b; ℓ ≤ x ≤ u, x ∈ Zn×t
}
, (12)

where Q =


A1 A2 · · · An

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bn

 , (13)

with A1, . . . , An ∈ Zr×t and B1, . . . , Bn ∈ Zs×t, and 0 de-
notes the (s × t)-matrix containing only zero entries. [Hem-
mecke et al., 2013] were the first to prove that there is an FPT
algorithm solving problem (12) with Ai = A and Bi = B for
every i ∈ [n]. In fact, the running time of the algorithm is
O(a3t(rs+st)n3L), where L is the size of the input and a is
the maximum absolute value among the coefficients in A, B,
ℓ, and u. [Knop and Koutecký, 2018] model the minimum
makespan on unrelated machines of the form (12) and utilize
the result of [Hemmecke et al., 2013] to give a (u

O(q2)
max · n3)

algorithm. Note that q = (umax+1)p, and thus we also have a
(up

max)
O(u2p

max) ·n3 algorithm, which is FPT with parameters
umax and p. Since then, several improved algorithms have
been proposed for solving the problem (12), and the currently
best one is due to [Cslovjecsek et al., 2021].
Theorem 3. There is an algorithm that solves the prob-
lem (12) in time 2O(rs2)(rs∆)O(r2s+s2)(nt)1+o(1), where ∆
is the largest absolute value of an entry in Q.

Consider the model ILP(β1, . . . , βn) with constraints (6)
and (7). By adding slack variables, one can rewrite the con-
straints (7) as

∑q
j=1uijxij − yi = βi, for nonnegative vari-

ables yi. Indeed, by a suitable order of the constraints (6)
and (7), the constraint matrix Q of ILP(β1, . . . , βn) has the
form (13), with Bi = (ui1, ui2, . . . , uiq,−1)T and Ai =
A = [Iq 0], where Iq is the identity matrix of size q,
and 0 is the zero column. Therefore, the matrix Q has size
(n+ q)× n(q + 1). Hence, by Theorem 3, ILP(β1, . . . , βn)

can be solved in time 2O(q) · (qumax)
O(q2) · n1+o(1).

Theorem 4. MMF, MMS, and MNSW can be solved in time
2O(q) · (qumax)

O(q2) · n1+o(1).
As before, using the above algorithm together with a suit-

able choice of the vector (β1, . . . , βn), one can solve MMF,
MMS, and MNSW. However, a similar N -fold IP for EF is
still not known yet. [Bredereck et al., 2019] give an FPT
algorithm with parameters umax and n for the problem.
Open problem 4. Is EF in FPT with parameter q + umax?

6 Other Approaches
Beyond the DP and IP approaches, several other specific ap-
proaches have been successfully developed and applied to fair
allocation problems under restricted settings.
Greedy approach. Under certain circumstances, solutions
to fair allocation problems can be found just by doing some
greedy strategy. For binary valuations, [Barman et al., 2018b]
have shown that a maximal Nash allocation can be found
by using some kind of greedy technique. Starting from any

suboptimal allocation, the greedy algorithm runs for at most
O(m(n+1) log(nm)) iterations, and at each iteration, it iden-
tifies a pair of agents such that a chain of swaps between them
yields the largest improvement in NSW. [Benabbou et al.,
2021] show that an EF1 allocation that is also Pareto optimal
(PO) can be computed by a simple greedy algorithm: Start-
ing with an allocation that is optimal w.r.t. utilitarian social
welfare, it iteratively diminishes envy by transferring an item
from the envied bundle to the envious agent.

Another greedy algorithm, called Round-Robin, can be
used to find EF1 allocations [Caragiannis et al., 2019]. The
idea is to first fix a permutation σ of the agents, and then to
cycle through the agents according to σ. In each round, allo-
cate to an agent her most preferred item among those remain-
ing. [Conitzer et al., 2017] prove that the Round-Robin al-
gorithm can also find proportional-up-to-one-item (PROP1)
allocations. In a similar fashion, the cycle elimination pro-
posed by [Lipton et al., 2004] works in rounds, and in each
round, one of the remaining goods is assigned to an agent that
is not envied by any other agent. Such an agent always exists
and is found via resolving cyclic envy relations in a so-called
envy graph of an allocation.
Graph-matching-based approach. In the special case
where the number of agents is equal to the number of items,
both MMF and MNSW can be efficiently solved via a graph-
matching approach. We construct a weighted bipartite graph
G = (A×O, E), where the two disjoint vertex sets, A and O,
correspond, respectively, to the set of agents and the set of
items. In the case of MMF, there is an edge between an agent
vertex in A and an item vertex in O, and its weight is set to
1 if the item has value at least T for the agent, and is set to 0
otherwise, where T is the maximal egalitarian social welfare.
Now, a max-min fair allocation w.r.t. T is corresponding to a
maximum-weight perfect matching of graph G, which can be
found in polynomial time. For MNSW, one needs to define
the weight of an edge connecting an agent i with an item j as
log uij if uij > 0, and −∞ otherwise.
Network-flow-based approach. [Golovin, 2005] shows
that MMF is solvable in polynomial time for binary valua-
tions, using MAX-FLOW computations in a network. [Dar-
mann and Schauer, 2015] give a similar result for MNSW by
transforming it to a MIN-COST FLOW problem. Interestingly,
this method has been shown to be able to produce even a lex-
imin allocation [Aziz and Rey, 2020].
Local search. [Akrami et al., 2022] give a local-search-
based algorithm for computing a maximal Nash allocation
for two-value instances, where the values for items are in
the domain {a, b} and a divides b. [Barman et al., 2018a]
use local search (a sequence of item swaps and price rises)
to compute an integral competitive equilibrium that is price
envy-free up to one good. [Conitzer et al., 2019] prove that a
locally Nash-maximal allocation that satisfies group fairness
up to one good can be computed in pseudo-polynomial time.
Fisher-market-based approach. This algorithm, due to
Barman et al. [2018], uses local search and price-rise sub-
routines in a Fisher market associated with the fair division
instance, and returns an EF1 and PO allocation. The worst-
case running time of this algorithm is pseudo-polynomial.
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[Moulin, 1988] Hervé Moulin. Axioms of Cooperative Deci-
sion Making. Cambridge University Press, 1988.

[Nash, 1950] John F. Nash. The bargaining problem. Econo-
metrica, 18(2):155–162, 1950.

[Nguyen and Rothe, 2020a] Trung Thanh Nguyen and Jörg
Rothe. Approximate Pareto set for fair and efficient allo-
cation: Few agent types or few resource types. In Proceed-
ings of the 29th International Joint Conference on Artifi-
cial Intelligence, pages 290–296. ijcai.org, 2020.

[Nguyen and Rothe, 2020b] Trung Thanh Nguyen and Jörg
Rothe. Bi-criteria approximation algorithms for load bal-
ancing on unrelated machines with costs. In Proceedings
of the 31st International Symposium on Algorithms and
Computation, volume 181 of Leibniz International Pro-
ceedings in Informatics, pages 14:1–14:14, 2020.

[Nguyen and Rothe, 2021] Trung Thanh Nguyen and Jörg
Rothe. Improved bi-criteria approximation schemes for
load balancing on unrelated machines with cost con-
straints. Theoretical Computer Science, 858:35–48, 2021.

[Nguyen and Rothe, 2023] Trung Thanh Nguyen and Jörg
Rothe. Fair and efficient allocation with few agent types,
few item types, or small value levels. Artificial Intelli-
gence, 314:103820, 2023.

[Nguyen et al., 2014] Nhan-Tam Nguyen, Trung Thanh
Nguyen, Magnus Roos, and Jörg Rothe. Computational
complexity and approximability of social welfare opti-
mization in multiagent resource allocation. Journal of Au-
ton. Agent Multi Agent Syst., 28(2):256–289, 2014.

[Steinhaus, 1948] Hugo Steinhaus. The problem of fair divi-
sion. Econometrica, 16(1):101–104, 1948.

[Suksompong, 2021] Warut Suksompong. Constraints in fair
division. ACM SIGecom Exchanges, 19(2):46–61, 2021.

[Walsh, 2020] Toby Walsh. Fair division: The computer sci-
entist’s perspective. In Proceedings of the 29th Interna-
tional Joint Conference on Artificial Intelligence, pages
4966–4972. ijcai.org, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6740


	Introduction
	Preliminaries
	Complexity Results
	Dynamic Programming
	A General DP
	Another DP
	A DP for Few Item Types

	Integer Programming Approaches
	General MIP Models
	Integer Linear Programs of Fixed Dimension
	N-Fold ILPs

	Other Approaches

