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Abstract

In the multi-objective shortest-path problem we are
interested in computing a path, or a set of paths
that simultaneously balance multiple cost func-
tions. This problem is important for a diverse range
of applications such as transporting hazardous ma-
terials considering travel distance and risk. This
family of problems is not new with results dating
back to the 1970’s. Nevertheless, the significant
progress made in the field of heuristic search re-
sulted in a new and growing interest in the sub-field
of multi-objective search. Consequently, in this pa-
per we review the fundamental problems and tech-
niques common to most algorithms and provide a
general overview of the field. We then continue
to describe recent work with an emphasis on new
challenges that emerged and the resulting research
opportunities.

1 Introduction
Many optimization problems involve multiple objectives that
should be optimized. For example, when planning a driving
route, one may wish to minimize both driving distance as well
as tolls. Alternatively, when planning power line routes one
may wish to consider both economic and ecological impacts
Such problems have been used in numerous applications
where decisions need to be taken when it is not possible to
simultaneously optimize the different objectives [Miettinen,
2012; Roijers and Whiteson, 2017; Hwang and Masud, 2012;
Emmerich and Deutz, 2018]. Multiobjective optimization
typically consists of an optimization phase in which a set of
possible solutions is computed and a decision-making phase
in which a decision maker chooses a solution computed in the
optimization phase [Roijers and Whiteson, 2017].

In this paper we restrict ourselves to the optimization phase
that occurs in a very specific instance of multiobjective-
optimization problems termed the multi-objective shortest-
path problem, a generalization of the well-studied shortest-
path problem. This family of problems is not new with re-
sults dating back to the 1970’s [Vincke, 1976] and several
surveys on the topic appeared [Clı́maco and Pascoal, 2012;

Current and Marsh, 1993; Skriver, 2000; Tarapata, 2007;
Ulungu and Teghem, 1991].

Nevertheless, the field of heuristic search has made sig-
nificant progress which resulted in a new and growing inter-
est in the sub-field of multi-objective search. To this end,
we present an overview of the field with an emphasis on
results obtained in recent years using heuristic-search tech-
niques. Importantly, other approaches which are out of the
scope of this paper have been used. These include evolu-
tionary algorithms (see, e.g., [Pangilinan and Janssens, 2007;
Li et al., 2015]), integer programing (see, e.g., [Halffmann et
al., 2022]), as well as reinforcement-learning algorithms (see,
e.g., [Tozer et al., 2017; Hayes and others, 2022]).

Perhaps the most closely-related books and reviews are on
the topic of multi-objective optimization in sequential deci-
sion problems, commonly modeled as Markov decision pro-
cesses, which can be seen as a generalization of our prob-
lem [Roijers et al., 2013; Roijers and Whiteson, 2017]. How-
ever, restricting the problem to multi-objective shortest-path
computation opens the door for highly-efficient algorithms as
well as new algorithmic challenges. Advances in our setting
can then be used to advance the field of multi-objective opti-
mization in sequential decision problems.
Outline We begin in Sec. 2 by introducing notation and our
problem definition and continue in Sec. 3 to describe general
algorithmic building blocks common to many state-of-the-art
algorithms. Subsequently, we start with a general overview
of relevant work in Sec. 4 followed by a deep-dive into re-
cent work in Sec. 5 with an emphasis on new challenges.
We then move on (Sec. 6) to describe commonly-used bench-
marks and conclude (Sec. 7) with a discussion and summary.

2 Notation and Setting
In this section, we introduce relevant notation (Sec. 2.1) and
the multi-objective shortest-path problem (Sec. 2.2).

2.1 Notation
As we will see, paths in our setting will have a cost value for
each objective. Thus, a common practice is to associate cost
vectors with paths. Here we introduce the relevant notation.

Boldface font indicates vectors, lower-case and upper-case
symbols indicate elements and sets, respectively. The nota-
tion pi will be used to denote the i’th component of p. The
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Figure 1: Types of solutions. Dominated solutions that are not part
of Π∗ are denoted by ×, Solutions that belong to Π∗ and are and
aren’t extreme (see Sec. 4.2) are denoted by # and ■, respectively.

addition of two d-dimensional vectors p and q and the mul-
tiplication of a real-valued scalar k and a d-dimensional vec-
tor p are defined in the natural way, namely as p + q =
(p1+q1, . . . , pd+qd) and kp = (kp1, . . . , kpd), respectively.

Let p and q be d-dimensional vectors. We say that p
weakly dominates q and denote this as p ⪯ q if ∀i, pi ≤ qi.
We say that p dominates q and denote this as p ≺ q if p
weakly dominates q and ∃j, pj < qj . Similarly, when p
doesn’t dominate (resp. doesn’t weakly dominate) q, we will
write p ⊀ q (resp. p ⪯̸ q). For p ̸= q, if p ⪯̸ q and q ⪯̸ p
we say that p and q are mutually undominated. Finally, we
say that p is lexicographically smaller than q and denote this
as p ≺lex q if pk < qk for the first index k s.t. pk ̸= qk.

Let X be a set of d-dimensional vectors. We say that X
is a mutually undominated set if all pairs of vectors in X
are mutually undominated (namely, no vector in X weakly
dominates any other vector in X). Now, given a (not-
necessarily mutually undominated) set X, MU(X) is a cost-
unique subset of X that is a mutually undominated set.1 Note
that MU(X) ⊆ X and that MU(X) may not be unique.

Finally, let p and q be two d-dimensional vectors and let ε
be another d-dimensional vector such that ∀i εi ≥ 0. We
say that p approximately dominates q with an approximation
factor ε and denote this as p ⪯ε q if ∀i, pi ≤ (1 + εi) · qi.
Example 1. Consider the following two-dimensional vectors
p = (2, 4), q = (2, 4), r = (3, 6) and w = (3, 2) Here,
p ⪯ q (i.e., p weakly dominates q), p ≺ r (i.e., p domi-
nates r) and both p ⊀ w and w ⊀ p (i.e., p and w are
mutually undominated). Similarly, for ε = (1, 2) we have
that r ⪯ε p (i.e., r approximately dominates p). Finally, we
have that p ≺lex w ≺lex r and if we set X = {p,q, r,w},
then MU(X) can be either {p,w} or {q,w}.

2.2 Setting
A multi-objective search graph is a tuple (S,E, c), where S
is the finite set of states, E ⊆ S × S is the finite set of edges,
and c : E → Rd

≥0 is a cost function that associates a d-
dimensional vector of non-negative real costs with each edge.
A path π from s1 to sn is a sequence of states s1, s2, . . . , sn
such that (si, si+1) ∈ E for all i ∈ {1, . . . , n− 1}.

We define the cost of a path π = s1, . . . , sn as c(π) =∑n−1
i=1 c(si, si+1). Given paths π and π′, we extend all the

1A set X is said to be cost unique if ∀p,q ∈ X ∃k s.t. pk ̸= qk.
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Figure 2: An illustrative bi-objective search graph with four solu-
tions connecting sstart to sgoal. Figure best viewed in color.

above definitions to paths. E.g., we say that π dominates
(resp. weakly dominates) π′ and denote this as π ≺ π′ (resp.
π ⪯ π′) if c(π) ≺ c(π′) (resp. c(π) ⪯ c(π′)).

Let (S,E, c) be a multi-objective search graph and sstart ∈
S a start state. The complete Pareto-optimal frontier of s, de-
noted as Π̃s, is the set of all paths from sstart to s that are not
weakly dominated by any other path from sstart to s. As Π̃s

may contain multiple paths with the same cost, we are often
interested in a subset of Π̃s which contains only mutually-
undominated paths. We call such a set the cost unique pareto
optimal frontier or just Pareto-optimal frontier for short.

Typically, we are also given a goal state sgoal ∈ S and
we call a path from sstart to sgoal a solution and its Pareto-
optimal frontier, which we denote Π∗, as the Pareto-optimal
solution set. See Fig. 1. Intuitively, Π∗ contains all “in-
teresting” paths—those that are not dominated by any other
solution and may be candidate solutions that the decision
maker will choose from. However, computing Π∗ is NP-
hard [Serafini, 1987] as its cardinality may be exponen-
tial in |S| [Hansen, 1980; Ehrgott, 2005; Breugem et al.,
2017]. Even determining whether a path belongs to Π∗ is
NP-hard [Papadimitriou and Yannakakis, 2000].

In real-world settings we are often not interested in the en-
tire Pareto front—it’s too large to present to decision makers.
Thus, we are often interested in computing a bounded approx-
imation of Π∗. To this end, given an approximation factor ε,
an ε-approximate Pareto-optimal solution set Π∗

ε is a set of
solutions such that every path in Π∗ is ε-dominated by a path
in Π∗

ε . Note that (i) the ε-approximate Pareto-optimal solu-
tion set is not necessarily unique and that (ii) Some variants
of this definition require that Π∗

ε ⊆ Π∗ while others don’t.
Namely, they allow Π∗

ε to contain solutions that do not belong
to Π∗ (but still approximately dominating solutions in Π∗).

Example 2. Consider the graph presented in Fig. 2 that
contains the following solutions πp = ⟨sstart, s1, s3, sgoal⟩
with c(πp) = (2, 4), πq = ⟨sstart, s3, sgoal⟩ with c(πq) =
(2, 4), πr = ⟨sstart, sgoal⟩ with c(πr) = (3, 6) and πw =
⟨sstart, s2, s3, sgoal⟩ with c(πw) = (3, 2). Note that solution
costs correspond to the vectors used in Example 1. Here, the
complete Pareto-optimal frontier Π̃s3 to s3 contains all three
paths to s3 while a Pareto-optimal frontier to s3 contains the
paths that traverse s1 and s2. Finally, a Pareto-optimal so-
lution set Π∗ is {πp, πw}, and for an approximation factor of
ε = (1, 2) an ε-approximate Pareto-optimal solution set Π∗

ε
can be {πp}, or {πr},
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3 Algorithmic Problems and Building Blocks
In this section, we describe the fundamental problems that
multi-objective search algorithms typically need to solve
(Sec. 3.1) as well as key algorithmic building blocks used by
many state-of-the-art algorithms (Sec. 3.2 and 3.3).

3.1 Dominance Checks
Recall that in the single-objective shortest-path problem we
are only required to maintain one path to each state (as one
path weakly dominates all other paths found so far). In con-
trast, in the multi-objective case we often need to store a mu-
tually undominated set of paths. When an algorithm consid-
ers a new path, we need to check if it is dominated by any of
the paths found so far. If this is not the case, we need to update
the mutually undominated set of paths maintained, possibly
deleting an existing path if it is dominated by the new path.
These operations, which are key in many algorithms, are for-
malized in the following two problems, which pinpoint the
additional complexity inherent in multi-objective search.

Problem 1 (Dominance Check (DC)). Given a mutually un-
dominated set X of d-dimensional vectors (with d ≥ 2) and
a new d-dimensional vector p, the DC problem calls to verify
whether there exists a vector q ∈ X such that q ⪯ p.

Problem 2 (Mutually Undominated Set Update (MUSU)).
Given a mutually undominated set X of d-dimensional vec-
tors (with d ≥ 2) and a new d-dimensional vector p that is
not dominated by any vector in X, the MUSU problem com-
putes MU(X

⋃
{p}).

Naive solutions to the DC and MUSU problem may require
O(|X|) vector comparisons in the worst case. However, data-
structures such as ND-Trees [Jaszkiewicz and Lust, 2018]
have been specifically tailored to improve the efficiency of
these problems (see, e.g. [Fieldsend, 2020; Altwaijry and
Menai, 2012]). Interestingly, these data structures are typi-
cally employed by evolutionary algorithms and not heuristic-
search algorithms.

Example 3. Consider the following two-dimensional vectors
used in Example. 1 p = (2, 4), q = (2, 4), r = (3, 6) and
w = (3, 2) and set X = {p, r}. Solving the DC problem
for both q and w on X yields that p ∈ X dominates w and
that there is no element in X that dominates w. Now, if we
solve the MUSU problem for w on X we can conclude that
MU(X

⋃
{w}) = {p,w}.

3.2 Dimensionality Reduction
The following approach, first presented by Pulido et
al. [2015] and termed dimensionality reduction, is a general
technique that helps to solve the DC problem (Prob. 1). How-
ever, to describe it, we need to introduce some additional
notation. For a d-dimensional vector p = (p1, . . . , pd), its
truncated vector TR(p) is a (d−1)-dimensional vector with-
out p’s first component, i.e., TR(p) := (p2, . . . , pd). Simi-
larly, given a set of vectors X, its associated set of truncated
vectors is TR(X) := {TR(p)|p ∈ X}

Let X be a set of vectors and p be a vector lexicograph-
ically larger than all elements in X. Namely, ∀q ∈ X,

q ≺lex p. Then, p is weakly dominated by a vector in X
iff ∃q ∈ MU(TR(X)) for which TR(q) ⪯ TR(p).

We can complete the DC test in O(|MU(TR(X))|) time
instead of O(|X|) time. As the cardinality of MU(TR(X))
is often much smaller than that of X, the procedure just de-
scribed often requires far less comparison operations than
naive solutions to Prob. 1. Moreover, for the specific setting
where we have two objectives, |MU(TR(X))| = 1 (as it is
the minimum of the second component of all elements in X),
regardless of |X| and the test takes O(1) time.
Example 4 (adapted from [Pulido et al., 2015]). Consider the
set X = {p,q, r} with p = (6, 2, 4), q = (4, 4, 5) and r =
(2, 3, 6) and note that X = MU(X) and MU (TR(X)) =
{TR(p)}. To test if w = (7, 2, 4) is dominated by a vector
in X (not using dimensionality reduction) may require up to
three vector comparisons but because |MU (TR(X)) | = 1
and TR(p) ⪯ TR(w), we only need one vector comparison
to conclude that w /∈ MU (X

⋃
{w}).

3.3 Heuristics
Similar to single-objective search algorithms, multi-objective
search algorithms often use a heuristic function to guide the
search. A single-valued heuristic h : S → Rd

≥0 estimates
the cost to sgoal from every state s.2 We say that h is ad-
missible iff ∀s ∈ S, h(s) ⪯ c(π) for any path π from s
to sgoal. Similarly, h is consistent iff h(sgoal) = (0, . . . , 0)
and h(s) ≤ c(s, s′) + h(s′) for all (s, s′) ∈ E.

For any path πs from sstart to some state s, if h is ad-
missible and if there exists a path πgoal ∈ Π∗ such that
c(πgoal) ⪯ c(πs)+h(s), then any path extending πs to sgoal
will be dominated by πgoal. If such a setting is identified by a
search algorithm, it can discard πs. We call this goal pruning
(other pruning techniques exist that do not use heuristics).

Unless stated otherwise (see Sec. 5.1), existing algorithms
use the so-called “ideal point heuristic” hideal which com-
bines a set of d single-objective heuristics h1, . . . , hd. Here,
hi : S → R≥0 corresponds to the shortest path from each
state according to the i’th objective and ∀s ∈ S hideal(s) :=
(h1(s), . . . , hd(s)). The ideal point heuristic, which is ad-
missible, is easily computed by running d (single-objective)
instances of Dijkstra’s algorithm starting from sgoal (i.e., one
instance for each objective).
Example 5. The ideal point heuristic hideal for state sstart in
the graph depicted in Fig. 2 is (2, 2).

4 Existing Algorithms—Overview
In this section we start by reviewing algorithms to com-
pute Π∗ (Sec. 4.1), and subsets of Π∗ (Sec. 4.2). We con-
clude (Sec. 4.3) by describing algorithms for variants of the
multi-objective shortest-path problem.

4.1 Efficient Computation of Π∗

To efficiently compute Π∗, both generalizations of the label-
correcting paradigm to the multi-objective setting were sug-
gested [Guerriero and Musmanno, 2001] as well as adapta-

2The reason we call this a single-valued heuristic and not simply
a heuristic will be evident in Sec. 5.1.
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tions of the celebrated A* algorithm [Hart et al., 1968]. Here,
we focus on the latter approach.

Stewart et al. (1991) introduced Multi-Objective A*
(MOA∗) which is a multi-objective generalization of A∗.
Similar to A∗, MOA∗ maintain a priority queue OPEN, which
contains the generated but not yet expanded nodes. MOA∗

also stores a set of solution nodes (A∗ does not do this because
it halts once the first solution is found). Each node n contains
a state s(n), a g-value g(n) which is the cost to reach s(n)
from sstart along a path π(n), an h-value h(n), and an f -
value f(n) = g(n)+h(n). At each iteration, MOA∗ extracts
a node n that is not dominated by any other node in OPEN
(similar to using the minimal f -value in A∗). It then solves the
DC problem to determine if g(n) is weakly dominated by the
g-value of some other node n′ with s(n) = s(n′) or if f(n) is
weakly dominated by the f -value of a solution node. If so, the
node is pruned. If n is extracted and not pruned, MOA∗ ex-
pands it by either generating its child nodes if s(n) ̸= sgoal or
adding it to the solution set by solving the MUSU problem.
When OPEN becomes empty, MOA∗ terminates and returns
the solution set.

MOA∗ served as the foundation to multiple extensions
(see, e.g., [Mandow and De La Cruz, 2005; Mandow and
De La Cruz, 2010]) which differ in which information is con-
tained in the nodes, how nodes are ordered in OPEN, and how
dominance checks are implemented and at what stages they
are performed (upon generation or upon expansion). Unfortu-
nately, as we discuss in Sec. 6, different benchmarks are used
and it is not always clear if one algorithm always outperforms
other state-of-the-art methods.

A key insight that was used to dramatically improve the
performance of these algorithms was to order nodes in OPEN
in increasing lexicographic order and apply the notion of di-
mensionality reduction introduced by Pulido et al. [2015]
and described in Sec. 3. This was used to suggest a multi-
objective search algorithm named NAMOA-dr3. Hernández
et al. [2023a] adapted and simplified NAMOA-dr for the bi-
objective setting to suggest the Bi-Objective A* algorithm
(BOA*) which allows to perform dominance checks in O(1)
time when a consistent heuristic is used.

Ahmadi et al. [2021] extended BOA* by simultaneously
running two BOA*-like searches from sstart—one where the
lexicographical order is done according to (c1, c2) and the
second where the lexicographical order is done according
to (c2, c1). Ren et al. [2022c] presented Enhanced Multi-
Objective A* (EMOA∗) which efficiently maintains Pareto-
optimal frontiers for multiple (i.e., more than two) objectives
by incrementally constructing balanced binary search trees
within the MOA∗ search framework

Sedeño-Noda and Colebrook [2019] introduced an adap-
tion of Dijkstra’s algorithm to the bi-objective setting named
Bi-objective Dijkstra or BDA. Key to the efficiency of BDA
is that one candidate node is stored for each state at any given
point of time. This dramatically simplifies the complexity
of the DC and MUSU problems solved within BDA. Conse-
quently, the theoretical running time of BDA is |Π∗| multi-
plied by Dijkstra’s running time.

3Here, ‘dr’ stands for dimensionality reduction.

BDA was recently extended to the multi-objective setting.
Specifically, de las Casas et al. [2021b] used both a heuristic
and an upper-bound on the cost to reach the target in order to
improve running times. While de las Casas et al. [2021c] sug-
gested a memory-efficient multi-objective shortest-path algo-
rithm generalizing BDA. Here, the size of the priority queue
used in the algorithm is bounded by |S|. This yields an
output-sensitive running time bound for the new algorithm
that is roughly the running time of Dijkstra’s algorithm.

4.2 Efficient Computation of Subsets of Π∗

Following the aforementioned hardness results, and as we are
often only interested in one or a few solutions that lie on, or
close to Π∗, an active line of work has been concerned with
computing only a subset of Π∗ or computing Π∗

ε .

Bounded Approximations of Π∗

Early approaches towards approximating Π∗ focused on Fully
Polynomial Time Approximation Schemes4 (FPTAS) [Vazi-
rani, 2001]. Warburton [1987] used scaling and rounding
techniques while Perny and Spanjaard [2008] presented an-
other FPTAS assuming that a finite upper bound L on the
numbers of arcs of all solutions in Π∗ is known. This as-
sumption was later relaxed [Tsaggouris and Zaroliagis, 2009;
Breugem et al., 2017] by partitioning the space of solution
into a grid of cells whose dimensions are a function of the ap-
proximation factor and, roughly speaking, take only one so-
lution in each grid cell. Recently de las Casas et al. [2021a]
suggest an FPTAS for the dynamic multi-objective shortest-
path problem in which edges undergo cost changes. Unfortu-
nately, the complexity of FPTASs is typically bounded by a
polynomial of high degree, and hence they are often slower in
practice than approaches to compute Π∗ even when applied
to relatively-small instances. Consequentally, running these
approaches on moderately-sized graphs (i.e., with roughly
10, 000 states) is often impractical [Breugem et al., 2017].

An alternative approach to compute Π∗
ε (though not neces-

sarily in polynomial time) was suggested by Perny and Span-
jaard [2008]. They suggest a simple variation of MOA∗,
termed MOA∗

ε that reduces computation times by punning
intermediate paths that are approximately dominated by
already-computed solutions. Subsequently, Goldin and Salz-
man [2021] suggested PPA∗, an extension of BOA* that
outperforms MOA∗

ε by introducing new pruning techniques.
This was later generalized by Zhang et al. [2022b] to allow
approximation of Π∗ for any number of objectives. Notewor-
thy is that while they all return solutions that approximate Π∗,
MOA∗

ε returns solutions that belong to Π∗ while PPA∗ may
return solutions not on Π∗.

General Subsets of Π∗

A different approach to compute a subset of Π∗ is to compute
the set of extreme solutions, also known as the set of sup-
ported solutions [Sedeño-Noda and Raith, 2015]. Formally,
the set of extreme solutions Π∗

extreme is defined as the set of

4An FPTAS is an approximation scheme whose time complexity
is polynomial in the input size and also polynomial in 1/ε where ε
is the approximation factor.
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solutions whose cost lie on the convex hull of Π∗. For a visu-
alization, see Fig. 1.

Interestingly, any extreme solution corresponds to finding
a solution that minimizes a linear combination of the differ-
ent objectives [Roijers et al., 2013]. Thus, computing the
set of extreme solutions is useful when we know that the de-
sired solution is a linear combination of the different objec-
tives but we don’t know a-priori which weights will be used
and want to have all options available. Approaches to com-
pute Π∗

extreme for the bi-objective setting include a Dijkstra-
like method [Sedeño-Noda and Raith, 2015] as well as a
branch-and-bound-based approach that only executes a se-
ries of (single-objective) shortest-path searches [Zhang et al.,
2016]. Noteworthy is that |Π∗

extreme| may be orders of mag-
nitude smaller than |Π∗|. E.g., when comparing the two on
road maps from the 9’th DIMACS Implementation
Challenge: Shortest Path (see Sec. 6), |Π∗| is
larger (on average) than |Π∗

extreme| by 17× on the small NY
instance and by 168× on the large LKS instance.

Taking a different approach to approximate Π∗, Legriel
et al. (2010) suggest a method based on satisfiability/con-
straint solvers. Alternatively, Rivera et al. [2022] consider
the bi-objective setting and suggest to transform the original
bi-objective search problem P into another bi-objective prob-
lem P ′ such that the number of solutions of P ′ is smaller
(potentially orders of magnitude smaller, depending on val-
ues of the algorithm’s hyperparameters) than the number of
solutions of P . Importantly, each solution to P ′ is a solution
to P (though not vice-versa).

4.3 Variants of Multi-Objective Shortest-Path
Skyler et al. [2022] consider the setting where we want a
solution which belongs to Π∗ whose costs are below given
upper bounds on each objective. This is a variant of the
constrained shortest-path problem (CSP) [Storandt, 2012].
Zhang et al. [2022a] suggest an anytime algorithm for the
bi-objective setting such that whenever the algorithm is ter-
minated, it outputs an approximate Pareto-optimal solution
set.

Ren et al. [2022b] consider the problem of finding
collision-free Pareto-optimal solutions for agents moving
amid obstacles that follow known trajectories while simulta-
neously optimizing multiple objectives. Ren et al. [2022a]
propose an approach based on D* Lite [Koenig and
Likhachev, 2002] that allows interleaving planning and ex-
ecution in the multi-objective case while Ren et al. [2021]
propose to extend the multi-agent path finding problem
(MAPF) [Stern et al., 2019; Salzman and Stern, 2020] to the
multi-objective case.

5 Recent Advances and Open Challenges
In this section, we perform a deeper-dive into several topics
in multi-objective search with an emphasis on new emerging
challenges in the field.

5.1 Single-Valued vs. Multi-Valued Heuristics
Following Mandow and De La Cruz [2010] and in contrast
to the single-objective setting, in the general case of multi-
objective search, the heuristic value of a state s is not a single

number, but a set of cost vectors. Formally, a multi-valued
heuristic is defined as a mapping H : S → 2R

d
≥0 . The notions

of admissibility and consistence introduced for single-valued
heuristics are naturally extended to multi-valued heuristics as
well as the notion of goal pruning which we now detail.

A multi-valued heuristic H is admissible iff for every
state s and every path πs from s to sgoal, H contains a cost
vector that weakly dominates c(πs).

Example 6. Consider the graph presented in Fig. 2 and the
single-valued heuristics h1 and h2 s.t. h1(sstart) = (2, 4),
h2(sstart) = (3, 2), h1(s1) = h2(s1) = (2, 3), h1(s2) =
h2(s2) = (2, 2) and h1(s3) = h2(s3) = (1, 1). If we set
H = {h1, h2}, then it is easy to verify that H is admissible

Goal Pruning Using Multi-Valued Heuristics
Let n be a node in a search algorithm corresponding to some
path π(n) leading to a state s(n). Furthermore, assume that
we are using an admissible multi-valued heuristic H and
that Πgoal is the current mutually-undominated set of solu-
tions found by the algorithm. The node n can be pruned if
for every single-values heuristic h ∈ H there exists a solu-
tion πgoal ∈ Πgoal that weakly dominates n’s f -value when
computed according to h. Namely, n can be pruned if

∀h ∈ H, ∃πgoal ∈ Πgoal s.t. c(πgoal) ⪯ c(π(n)) + h(s(n)).

Testing for goal pruning can be easily implemented in O(d ·
|H| · |Πgoal|) time. However, for the case where a single-
valued heuristic is used (i.e., when |H| = 1) recent results
suggest how to do this more efficiently: As mentioned in
Sec. 4.1, Hernández et al. [2023a] describe a method to test
for goal pruning in constant time when considering only two
objectives and Ren et al. [2022c] show that testing for goal
pruning can be done in O(log (|Πgoal|)) time when consider-
ing three objectives and in O((d−1) · |Πgoal|) for an arbitrary
number of objectives d. However, it is not clear how to extend
these results when using multi-valued heuristics.

Heuristics Used in Empirical Evaluations
Typical empirical evaluation (see e.g., [Stewart and White III,
1991; Hernández et al., 2023a] and Sec. 6 below) only make
use of the “ideal point heuristic” hideal. The only work that
empirically considers the implication of using a multi-valued
heuristic is the recent paper by Geißer et al. [2022] in which
they study the question of how to construct informative multi-
valued admissible heuristics. Specifically, they generalized
several classes of well-known admissible planning heuristics
to the multi-objective case . Namely abstraction-based (see,
e.g., [Sievers and Helmert, 2021]), critical path-based (see,
e.g., [Haslum and Geffner, 2000]), and LP/IP-based heuris-
tics (see, e.g., [Pommerening et al., 2014].Interestingly, on
the benchmarks tested, these heuristics are often more in-
formed than hideal.5 Having said that, on other benchmarks
test, either this is not true or the overhead of computing these
heuristics is large and the total runtime is larger than when
using hideal.

5Roughly speaking, Geißer et al. [2022] define a multi-valued
heuristic H1 to be more informed than another heuristic H2 if us-
ing H1 results in less node expansions than when using H2.
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To summarize, using multi-valued heuristics in the context
of multi-objective shortest-path problems offers the potential
to dramatically speed up multi-objective search algorithms.
However, it also raises two key challenges:

C1 How to efficiently compute informative multi-
value heuristics?

C2 How to effectively use multi-value heuristics to
prune nodes in heuristic search algorithms?

5.2 Correlated Objectives
In many multi-objective settings there is some correlation
between the different objectives which may be positive or
negative. For example, in road networks, one may con-
sider distance and time as two positively-correlated objectives
(shorter routes are typically fast to traverse). Alternatively,
one may consider distance and how beautiful a route is as
two negatively-correlated objectives (scenic routes are typi-
cally longer to traverse).

Clearly, the correlation between the objectives may have
a dramatic effect on the size and structure of Π∗. In the
extreme case, where all objectives are identical (and hence
perfectly correlated), the multi-objective problem essentially
collapses to a single-objective problem. When the correlation
is high, |Π∗| may be extremely large but |Π∗

ε| may be quite
small, even for small approximation factors. However, it is
not clear how correlation is defined in our setting: is this cor-
relation along edges? along paths? Moreover, it is not clear
how correlation can be used to design efficient algorithms.

Interestingly, these types of questions received little atten-
tion from the research community and, to the extent of our
knowledge, these were primarily focused on the bi-objective
setting. Mote et al. [1991] evaluated random graphs and grid
graphs with a positive correlation between the two objectives
associated with each edge. They showed that |Π∗| decreases
when the correlation increases and that in such cases |Π∗| is
relatively small. Similar results were shown by Brumbaugh-
Smith and Shier [1989] when evaluating graphs where the
two objectives associated with each edge are randomly gen-
erated from a bi-variate normal distribution.

The only work that introduces a formal model related to
correlated objectives is the work of Müller-Hannemann and
Weihe [2006]. Specifically, their model can be used to de-
scribe (to some extent) the structure of road networks, com-
munication networks and train graphs.6 Roughly speak-
ing, this model assumes that edges can be classified into a
small number of classes (e.g., in road networks, edges can
be classified into highways, national roads, local roads etc.).
Consequently, solutions on Π∗ often have the structure that
edge class increase and then decrease (such paths are termed
bitonic). For example, it is quite atypical that solutions in a
road network that belong to Π∗ will include a local road con-
necting two highways or that in a train network paths belong-
ing to Π∗ include a local train between two high-speed trains.
While in the worst-case graphs that fall under this model may
include an exponentially large Pareto-optimal solution set, the

6For a precise definition of train graphs, see [Schulz et al., 2000].

Instance |Π∗| D-T -M T -D-M M -T -D
1 4.4k 10.9 3.7 1.5
2 26.6k 117.1 35.9 21.4
3 41.7k 1,068.0 205.5 94.9
4 108.9k 2,546.7 783.2 472.8

Table 1: Runtime (in seconds) of a variant of EMOA∗ for different
lexicographic ordering of cost functions on four instances.

empirical evaluation of Müller-Hannemann and Weihe sug-
gest that the size of Π∗ for each visited state can be regarded
as constant for all practical purposes.

A deeper understanding of how objectives are correlated
can, and should, be used in practical applications. To this
end, we suggest to explore the following research challenges:

C3 How to define the correlation between different
objectives?

C4 Assuming we know that the objectives are corre-
lated, how can this be used to speed up heuristic
search algorithms?

5.3 Ordering Objectives
Recall that in multi-objective search problem it is com-
mon practice to order nodes in lexicographical order.
This implies that there is some intrinsic ordering be-
tween the different objectives. Interestingly, this order
may have a dramatic effect on the algorithm’s running
times. For example, we evaluated (Tbl. 1) the running time
of LazyLTMOA* [Hernandez et al., 2023b], a variant of
EMOA∗, on four tri-objective instances of the New York
(NY) map from the 9’th DIMACS Implementation
Challenge: Shortest Path. Here, the first, sec-
ond and third objectives are the travel time T , the travel dis-
tance D and the economic cost M (see [Pulido et al., 2015]
for a precise definition of the economic cost).

As expected, the runtime increases when |Π∗| grows. How-
ever, we observed that order M -T -D can be several times
faster (two orders of magnitude faster in instance three) than
order D-T -M . A similar phenomena was observed for two
objectives [Hernández et al., 2023a; Ahmadi et al., 2021].

Thus, we suggest to explore the following challenge:

C5 How to choose the best lexicographic order
when ordering nodes to expand?

5.4 Paralelizing Multi-Objective Algorithms
In early work, Guerriero and Musmanno [2001] state that
“parallel computing [. . . ] represents the main goal for future
developments”. However, there is surprisingly little work on
parallel multi-objective shortest-path algorithms.

More than a decade later, Sanders and Mandow [2013]
present a parallel variant of one of the first algorithms for
the bi-objective setting [Martins, 1984].Their approach, fo-
cused on the bi-objective setting with an emphasis on the
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theoretical asymptotic running time, targets the heap opera-
tions used to order OPEN as the main source of parallelism.
However, no experiments are provided and the authors state
that their algorithm “might be too complicated to be prac-
tical”. Soon after, Erb et al. [2014] present a parallel bi-
objective shortest-path algorithm that uses weight-balanced
B-trees with bulk updates. Their work, which was empirically
evaluated and demonstrated dramatic speedups builds on the
the work by Sanders and Mandow [2013] that on first glance
looks impractical. Finally, Medrano and Church [2015]
present another parallel approach for computing the set of
extreme solutions for the bi-objective setting. Their results
indicate the applicability of their method both on small-scale
personal machines as well as large-scale shared memory su-
percomputers.

Additional work is a modification of BOA*, suggested
by Ahmadi et al. [2021], in which one search runs from the
source and another from the target. These searches may be
executed in parallel with limited information reuse but no big
empirical improvement was reported when paralelization was
used. de las Casas et al. later adopts the similar modification
for their bi-objective [de las Casas et al., 2021b] and multi-
objective [de las Casas et al., 2021c] search algorithms.

To summarize, parallelizing multi-objective search is ex-
tremely under-explored and a challenge, already identified
over twenty years ago, largely left unnoticed is

C6 How to efficiently and effectively parallelize
search algorithms in the multi-objective setting?

5.5 Memory Footprint
Multi-Objective search algorithms often suffer from a large
memory footprint, especially when the number of solutions
in Π∗ and the number of states S are large. This is because
we typically store multiple paths for each state that need to
be allocated in memory. For example, Ahmadi et al. [2021]
reports the use of 96GB of memory (allocating 1B search
states). While runtime is key in multi-objective search perfor-
mance, typically improving memory usage implies increasing
runtime [Coego et al., 2009; Kothare et al., 2022].

To cope with high memory usage, Kothare et al. [2022]
proposed PE-EMOA* which applies the notion of partial ex-
pansion (see, e.g., [Yoshizumi et al., 2000]) to the multi-
objective setting. PE-EMOA* uses a user-defined hyper-
parameter to balance runtime and memory footprint and was
shown to be effective in grid maps with a large branching
factor [Rivera et al., 2020]. However in road maps, the im-
provement in memory usage is negligible.

Another recent technique to save memory was presented by
Ahmadi et al. [2021]. Considering that BOA* only expands
nodes once, they propose to recycle the memory used to store
already-processed nodes, while storing their backtracking in-
formation in other compact data structures. They report a de-
crease of 5× in memory used on average on road maps while
also slightly improving the runtime. Other techniques to save
memory include extensions of linear-memory algorithms for
single objective search to the multi-objective setting [Coego
et al., 2009; Coego et al., 2013].

C7 How to efficiently cope with the memory
footprint in heuristic-search algorithms without
compromising on runtime?

6 Benchmarks

Key to the advancement of a research field that contains the
empirical evaluation of algorithms is a standard set of bench-
marks that spans multiple domains, each with its own char-
acteristics. For example, the standardization of such a set
of benchmarks in the MAPF domain presented by Stern et
al. [2019] played a critical role in the advancement of the
field. Similarly, the International Planning Competition (IPC)
(see, e.g. [Vallati and others, 2015]) has been an important
driver for research in the field of classical planning. In par-
ticular, they have resulted in a language for describing plan-
ning domains and problems (PDDL), a body of benchmark
domains and problems in that language, and the ability to di-
rectly compare different generative planning techniques. Un-
fortunately, the multi-objective community is lacking such
a set of benchmarks with different papers using different
benchmarks to evaluate their algorithms. In this section, we
review different benchmarks used in the hope that this will
spark a discussion by the community which, in turn, will lead
to a standard set of benchmarks.

Many papers (see, e.g., [Hernández et al., 2023a; Pulido
et al., 2015]) use the 9’th DIMACS Implementation
Challenge: Shortest Path7 which is a set of road
networks with two cost functions available. A third cost
function was suggested by Enriqueand and Lawrence [2011]
and used in subsequent studies. A recent paper by Weise
and Mostaghim [2022] proposes five objective functions
commonly-available on road networks representing distance,
traveling time, delays caused by accidents, curvature and el-
evation. These can be applied to any real-world data such as
OpenStreetMap.8

Another set of benchmarks used (see, e.g., [de las Casas
et al., 2021c; de las Casas et al., 2021b]) is NetMaker9

which allows one to generate synthetic graphs with a moder-
ate number of nodes. Alternative studies (see, e.g., [Pulido et
al., 2015; Ren et al., 2022c]) suggested to use four-connected
grids, where each component of the cost vector of an edge is
a randomly generated integer from a given range.

Recently, Geißer et al. [2022] show that some well-known
planning domains can be seen as multi-objective. For ex-
ample, in the Sokoban puzzle, the number of moves and the
number of pushes are two different objectives.

C8 How to generate a publicly-available, diverse,
comprehensive set of benchmarks that will be
used by the entire community?

7http://www.diag.uniroma1.it//∼challenge9/.
8https://www.openstreetmap.org/.
9https://www.netmaker.org/
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7 Summary and Discussion
Multi-objective search is an important research topic with ap-
plications ranging from route planning for power lines con-
sidering economic and ecological impacts [Bachmann et al.,
2018], transporting hazardous materials considering travel
distance and risk [Bronfman et al., 2015], and inspecting
a region of interest using cameras placed on-board robotic
platforms [Fu et al., 2019; Fu et al., 2021].

While being an active area of research for several decades,
there is ample room to improve the state-of-the-art by ad-
dressing the key challenges that we described in this paper.
A catalyst that will allow the field to further progress is a
unified suite of benchmarks agreed upon by the community.
To this end, we lay the groundwork by reviewing different
domains used in different papers. However, the work is not
complete: a comprehensive set of benchmarks should be di-
verse and analyzed according to how much the objectives are
correlated and what the structure of the Pareto-optimal solu-
tion set for each benchmark is (see Sec. 5).
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