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Abstract
Recently, speech-to-text translation has attracted
more and more attention and many studies have
emerged rapidly. In this paper, we present a com-
prehensive survey on direct speech translation aim-
ing to summarize the current state-of-the-art tech-
niques. First, we categorize the existing research
work into three directions based on the main chal-
lenges — modeling burden, data scarcity, and ap-
plication issues. To tackle the problem of modeling
burden, two main structures have been proposed,
encoder-decoder framework (Transformer and the
variants) and multitask frameworks. For the chal-
lenge of data scarcity, recent work resorts to many
sophisticated techniques, such as data augmenta-
tion, pre-training, knowledge distillation, and mul-
tilingual modeling. We analyze and summarize the
application issues, which include real-time, seg-
mentation, named entity, gender bias, and code-
switching. Finally, we discuss some promising di-
rections for future work.

1 Introduction
Speech-to-text translation (ST) is a task that aims to translate
speech in one language to text in another language. It has
numerous practical applications, including global commu-
nication, language learning, and accessibility for non-native
speakers.

Early solutions for speech translation are to break down
the task into smaller and more manageable sub-tasks, such as
automatic speech recognition (ASR) and machine translation
(MT). This is the idea of the cascaded system. For exam-
ple, to fulfill the ST task, we can cascade an ASR system
to transcribe speech into text with an MT system to translate
text into another language in tandem [Stentiford and Steer,
1988]. Research on cascaded systems mainly aims at solving
the problem of error accumulation, such as utilizing multiple
recognition results and training robust MT models.

Meanwhile, the end-to-end speech translation (E2E ST)
model, which eliminates the need for intermediate steps (e.g.,
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ASR and MT), is designed and also has the potential to elimi-
nate error accumulation. In addition, it also has the advantage
of reduced latency, more contextual modeling [Bentivogli et
al., 2021], and applicability to unwritten languages [Bérard
et al., 2016]. In recent years, research on end-to-end models
in speech translation has gained momentum, leading to diver-
sity in model architectures and training methods. However, a
comprehensive survey that thoroughly reviews their motiva-
tions and practices is currently lacking.

ST corpus usually contains the source speech s, transcrip-
tion x, and translation y. The basic model framework of E2E
ST is mainly based on the encoder-decoder structure. The
encoder encodes the speech input into a sequence of hidden
states, and the decoder outputs the final translation result con-
dition on the hidden states, which is basically autoregressive.
The objective training function of the ST model θ is the neg-
ative log-likelihood loss:

Lθ = −Es,y log p(y|s; θ) = −Es,y

T∑
t=1

log p(yt|y<t, s; θ)

where T is the length of y. In the inference stage, we usually
apply beam search to generate target sentences.

However, we find that training an E2E ST model is not
easy. Although the study also confirms that the performance
of the end-to-end model is approaching the results of the cas-
caded solution, it is still not the best-performing technology.
Existing literature mainly attributes and attempts to address
the following challenges:

• Modeling burden: Conventional cascaded systems de-
couple it into ASR and MT models, while it is non-
trivial and burdensome for speech translation in an E2E
manner. This is because the E2E model requires both
cross-modal and cross-lingual mapping at the same time.
Training the E2E model often encounters poor con-
vergence and low performance [Bérard et al., 2016;
Weiss et al., 2017].

• Data scarcity: Annotating speech translation data is de-
manding, so labeled parallel data for training is scarce.
For example, an ASR dataset like Librispeech1 contains
960 hours of speech and the MT dataset typically has

1https://www.openslr.org/12
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Figure 1: Taxonomy of speech-to-text translation approaches.

millions of bi-texts, while the ST dataset, such as MuST-
C2 contains only about 400 hours of speech with 230k
utterances. Data scarcity results in the E2E model being
inferior to cascaded systems trained on abundant ASR
and MT data [Sperber and Paulik, 2020], which is more
severe in the industry.

• Application issues: In addition to performance, there
are other considerations in the practical implementation,
such as real-time, long-form audio segmentation, gen-
der bias, named entity translation, and code-switching
speech.

Correspondingly, in this paper, we provide a comprehen-
sive survey of how previous work has tackled the above chal-
lenges, and hope to suggest some directions for future re-
search in this community. As shown in the taxonomy in Fig-
ure 1, our survey is developed as follows.
• Section 2 describes how to alleviate the modeling burden

challenge in the existing literature. Modeling methods can
be divided into three categories: Transformer and the vari-
ants, multitask frameworks, and non-autoregressive mod-
eling.

• Section 3 summarizes approaches to tackle the problem
of data scarcity, including data augmentation, pre-training,
knowledge distillation, and multilingual training.

• Section 4 briefly introduces application issues (real-time,
segmentation, named entity, gender bias, code-switching)
in practice and recent related work.
2https://ict.fbk.eu/must-c/

• Section 5 anticipates some promising directions for future
ST research.

2 Tackling Modeling Burden
For the long sequence input, like speech, we require high-
capacity E2E models, typically Transformer-based ST mod-
els and their variants (Section 2.1). Additionally, to address
the issue of modeling burden, the existing literature generally
employs a multitask framework to make modifications to the
original Transformer-based model. We categorize and intro-
duce them in Section 2.2. Finally, for the consideration of
decoding efficiency, there are also non-autoregressive models
introduced in Section 2.3.

2.1 Transformer and Variants
The ST task is based on the sequence-to-sequence model-
ing, which typically adopts the encoder-decoder architec-
ture, as shown in Figure 2(a). Among many well-established
networks, Transformer [Vaswani et al., 2017] is chosen for
its state-of-the-art performance across almost all sequence
generation tasks. Several variants have been proposed to
make Transformer more suitable for speech modeling. Here
we highlight Speech-Transformer, Conformer, and SSL-
Transformer.

Speech-Transformer. Speech-Transformer [Gangi et al.,
2019] is built on top of the text-to-text Transformer [Vaswani
et al., 2017]. The major difference is that the sequence of
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audio features (e.g. Fbank) is first compressed by the convo-
lutional layers (typically two layers with a stride of 2, com-
pressing the length by a factor of 4) and a normalization layer
before the self-attention encoder.

Conformer. Conformer is a convolution-augmented
Transformer model [Gulati et al., 2020]. The main feature of
the Conformer is the convolution module, which is inserted
between the multi-head self-attention module and the feed-
forward layer of each encoder block. The convolution mod-
ule has the attention and convolution modules, sandwiched
by two Macaron-net style feed-forward layers and the resid-
ual connections. The combination of CNN and Transformer
helps to model both local and global information, which is
suitable for encoding long-sequence speech.

SSL-Transformer. With the success of self-supervised
learned (SSL) speech representations, such as Wav2vec-
family [Schneider et al., 2019] and HuBERT [Hsu et al.,
2021] on ASR, they have also been utilized in the en-
coder of ST models, which we collectively refer to as SSL-
Transformer. The original audio waveform is fed into the SSL
model, which subsequently processes the waveform through
several convolutional layers and Transformer encoder lay-
ers to extract speech features. In the SSL-Transformer
model, the SSL model can be incorporated into the de-
coder either as a standalone encoder [Wu et al., 2020;
Wang et al., 2021] or as a speech feature extractor, which
is then connected to the whole Transformer [Han et al., 2021;
Ye et al., 2021].

2.2 Multitask Frameworks
The idea of the multitask framework is to utilize related aux-
iliary tasks to enhance the target task. For ST, the auxiliary
tasks are often ASR and MT. As for the model structure,
some parameters of the target and auxiliary task modules can
be shared, while there are parts of the modules that remain
independent. We summarize the multitasking frameworks
in the extant literature (in chronological order), which can
be broadly classified into the following three types, namely
decoupled decoder (Figure 2(b)), decoupled encoder (Fig-
ure 2(c)), and two-stream encoder (Figure 2(d)).

Decoupled Decoder
To facilitate the burden of direct cross-modal and cross-
lingual modeling, the additional decoder is introduced to
guide the learning of transcript, while the model is still
trained in an E2E manner, as shown in Figure 2(b). The
naive approach only decodes the transcription as the auxil-
iary task [Weiss et al., 2017], and then the researchers fur-
ther explore how to better prompt translation by the gener-
ated transcription (two-pass decoder) [Anastasopoulos and
Chiang, 2018] or generate transcription and translation syn-
chronously (dual decoder) [Liu et al., 2020a].

• Two-pass decoder: Taking the acoustic feature as in-
put, the model generates the transcription by the first de-
coder, then combines the representation of the encoder
and the first decoder to generate the translation [Sperber
et al., 2019]. However, two-pass decoding loses the in-
herent advantages of low latency due to sequential gen-
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Figure 2: Schematic diagram of the model architectures. The dashed
lines indicate possible interactions between the modules.

eration. To do this, Inaguma et al. [2021a] utilize the
non-autoregressive method for the first-stage decoding.

• Dual decoder: Considering that generation processes
of transcription and translation can help each other, in-
teractive decoding [Liu et al., 2020a] is proposed to gen-
erate transcription and translation using two decoders
synchronously. Also, an additional cross-attention mod-
ule is used to capture the information from the two de-
coders to each other. To further improve translation per-
formance, the wait-k policy is introduced, where tran-
scribed tokens are first predicted, in order to provide
more useful information for the decoding of the trans-
lation tokens.

Decoupled Encoder
Although the E2E model can use the decoupled decoder to
partially alleviate the heavy modeling burden, multiple in-
ferences usually lead to complex designs and high latency.
Instead of the decoupled decoder, a better choice is to simul-
taneously recognize and understand the semantics of the orig-
inal speech input by a decoupled encoder. As shown in Fig-
ure 2(c), the decoupled encoder generally has two encoders
— the low-level speech encoder first encodes the acoustic in-
formation from the speech input, and the semantic encoder
further learns the semantic representation needed for transla-
tion decoding.

Each stage of encoding can be supervised by the informa-
tion from the transcription, such as phonemes, text, etc. Such
decoupling mimics the cascaded system while transcription
provides an alignment to the speech, which helps to ease the
encoding burden. For example, studies [Liu et al., 2020b;
Dong et al., 2021; Xu et al., 2021] decouple the encoder and
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add a Connectionist Temporal Classification (CTC) loss term
after the speech encoder to predict the transcription. Xu et
al. [2021] analyze the different behavior of the self-attention
in the encoders of ASR, MT and ST models with respect to
the attention to local information, and demonstrate that for
ST, the CTC module acts more efficiently over the low-level
acoustic encoder. Given the length gap between speech and
text, Liu et al. [2020b] propose a shrinking mechanism based
on CTC loss and integrate with multitask learning. In addi-
tion, Dong et al. [2021] introduce an additional pre-trained
BERT model to supervise the output of the high-level acous-
tic encoder.

Two-stream Encoder
In decoupling methods, it is easy to further boost part of com-
ponents by utilizing the additional ASR data. However, hav-
ing the potential to help the ST model improve the ability of
semantic understanding, abundant knowledge from MT data
is not exploited. As shown in Figure 2(d), the two-stream en-
coder is proposed to accept either speech or text or both as
inputs during training. Speech and text have both their sepa-
rate encoders (speech encoder and text encoder, respectively)
as the pre-net and a shared encoder stacked on top. This
structure is usually optimized by multitask training losses,
such as NLL losses for both ST and MT [Ye et al., 2021;
Han et al., 2021; Tang et al., 2021a; Tang et al., 2021b;
Ye et al., 2022]. Its advantage is that better semantic rep-
resentations can be learned by sharing with the MT encoder
to improve translation performance. During inference, we in-
put the speech, and the translated text is generated through
the speech encoder, shared encoder, and decoder.

• Speech encoder: Speech encoder needs to be more ca-
pable to extract acoustic features of the speech input sep-
arately. Pre-trained speech models such as Wav2vec2
can be used as the speech encoder better ST perfor-
mances [Ye et al., 2021; Han et al., 2021; Tang et al.,
2021a; Fang et al., 2022; Ye et al., 2022].

• Text encoder: Text encoder can be the text embedding
layer or a few layers of the textual Transformer encoder.
Tang et al. [2021b] propose to replace the original tran-
scription with the phoneme of the speech as the text in-
put, which helps to reduce the gap between two input
modalities, thus improving performance.

• Interaction: Under the overall two-steam encoder
framework, there are also multiple variants of interac-
tion between the speech encoder and the text encoder or
their output representations. Ye et al. [2022] notice the
sentence-level representation gap in the vector space be-
tween the speech and text, and propose to apply the con-
trastive learning method to draw close the two represen-
tations. Starting from the length gap between the speech
and text, Han et al. [2021] propose the Chimera model,
whose core idea is to align and map audio and text rep-
resentations to the same length by a fix-size shared se-
mantic memory module, and the decoder cross-attends
to the memory module during autoregressive generation.
Considering both representations and the length differ-
ence, Tang et al. [2021a] add a cross-attentive regular-

ization module after the shared encoder. The regulariza-
tion module first generates two reconstructed sequences
from text or speech encoders with the same length via
self-attention or cross-attention, and then optimizes the
L2 distance between the reconstructed sequences. In-
durthi et al. [2021] design a Task Characteristics Net-
work (TCN) that produces a task embedding to modulate
the parameters of the shared encoder-decoder.

2.3 Non-autoregressive Modeling
E2E modeling reduces latency by almost half compared to
cascaded counterpart, which helps applications in real-world
scenarios with limited computational resources. However,
this advantage only holds in the context of autoregressive
decoding, which generates each token depending on the
previously predicted tokens. The recently proposed non-
autoregressive (NAR) decoding predicts the whole sequence
in parallel, eliminating the advantage of the E2E model in
inference latency.

To combine E2E modeling and NAR generation, several
studies explore NAR speech translation. There are two design
concepts. Following the methods in ASR and MT tasks, one
can combine multiple existing techniques, like conditional
masked language model and re-scoring. Another route ex-
plores a more efficient architecture that relies only on CTC
for prediction [Chuang et al., 2021], which has the poten-
tial to achieve high speed-up. However, the current non-
autoregressive model is still inferior to the autoregressive
counterpart with a large gap of about 2 ∼ 3 BLEU points.
We need more effort to develop a powerful NAR model with
comparable performance.

3 Tackling Data Scarcity
Because of the difficulty in accumulating data, the training
data for ST is much less, compared to MT or ASR. First,
expanding the dataset and data augmentation are the most
straightforward ideas (Section 3.1). Second, the majority of
the existing research focuses on how to gain more knowl-
edge or information from MT or ASR data or models to im-
prove the performance of the ST model. We divide them into
two parts: pre-training (Section 3.2) and knowledge distilla-
tion (Section 3.3). Finally, we present some progress on the
current multilingual speech translation in Section 3.4.

3.1 Data Augmentation
Data augmentation is the most straightforward idea when
training data is scarce.
Expanding ST data. Intuitively, we can expand a large
amount of target language translation by using a high-quality
off-the-shelf MT system on a large amount of ASR data [Pino
et al., 2020; Wang et al., 2021]. This method is often referred
to as pseudo-labeling or sequence-level knowledge distilla-
tion (SeqKD). Inaguma et al. [2021b] propose bidirectional
SeqKD that fully leverages knowledge in both source and
target language directions (corresponding to forward SeqKD
and backward SeqKD) for bilingual E2E-ST models. The
source language speech can also be augmented, we can use
the text-to-speech (TTS) model to extend the source-side text
of MT into speech [Jia et al., 2019].
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Speech augmentation. Speech augmentation is also use-
ful to improve performance as well as robustness, because
speech is more complex and varied than text, and a single ut-
terance can have different continuous signals depending on
the speaker, recorder, environment, and so on. SpecAug-
ment [Park et al., 2019] is commonly applied directly to the
filter bank coefficients of speech inputs. The augmentation
strategy contains warping features, masking blocks of fre-
quency channels, and time steps. It has been proven to be
effective on both ASR and ST tasks [Bahar et al., 2019]. In
addition, more diverse ST data can also be constructed by var-
ious segmentation methods and recombination to enhance the
utility of the original ST data.

3.2 Pre-training
On many tasks in the AI field, pre-training can greatly im-
prove model performance in low-resource situations. Pre-
training is generally considered to have the following bene-
fits: (1) Compared to speech-to-translation corpora, the data
used for pre-training is usually easy to obtain, such as a large
amount of raw data of text sentences or speech. The large-
scale data used in pre-training (whether in-domain or out-
of-domain) helps to improve the robustness of the model for
the downstream tasks. (2) Through basic and various pre-
training tasks, such as reconstruction, mask-prediction, and
contrastive learning, we can obtain more accurate representa-
tions with contextual information. These representations are
generally helpful for various downstream tasks.

Pre-training is very effective in improving the performance
of end-to-end speech translation, and throughout the state-
of-the-art (SOTA) E2E ST models, pre-training is always in-
volved. We outline two pre-training modes, namely separate
pre-training and joint pre-training, based on the percentage
of pre-trained modules in the E2E ST model.

Separate pre-training. Separate pre-training refers to
the pre-training of a portion of the model parameters or the
pre-training of different sub-modules via different tasks. The
earlier work explores better pre-training methods to enhance
the ability of the encoder in terms of semantic understanding.
Wang et al. [2020b] pre-train the encoder using a curriculum
learning method to improve syntactic and semantic modeling
abilities. Chen et al. [2020] propose a self-supervised method
called Masked Acoustic Modeling (MAM), which randomly
masks part of the speech spectrogram and then recovers it on
top of the encoder. In addition, as discussed in Section 2.1,
the self-supervised model such as Wav2vec [Schneider et al.,
2019] can act as a feature extractor [Wu et al., 2020] instead
of random parameter initialization, providing effective acous-
tic features as input.

Joint pre-training. Joint pre-training means that the
model (all modules including both encoder and decoder) par-
ticipates in pre-training as a whole. Joint pre-training usually
enjoys a multitask learning framework, which is introduced in
Section 2.2). In the multitask pre-training framework, unified
models are built to jointly pre-train ASR, MT, masked lan-
guage modeling, or even speech (re-)synthesis tasks, using
speech-text supervised data as well as large amounts of un-
labeled text and speech. After pre-training, the models only

need to be fine-tuned with the speech-translated parallel cor-
pus to achieve a decent result. For instance, Ao et al. [2022]
propose SpeechT5, which pre-trains various speech/text-to-
speech/text tasks, including ASR, ST, text-to-speech, speech
conversion, and speech enhancement. Tang et al. [2022]
incorporate both self-supervised and supervised pre-training
tasks, including (self-)supervised text-to-text, speech SSL
learning, speech-to-phoneme, ASR, and ST. In addition, pre-
training can also be combined with multilingualism. Bapna et
al. [2022] propose mSLAM, a large multilingual speech-text
Conformer model based on the two-stream encoder, which
surprisingly shows some zero-shot learning capability. Cheng
et al. [2022] further combine mSLAM with multitask learn-
ing, propose Mu2SLAM and obtain the SOTA results on
CoVoST-2 [Wang et al., 2020a] multilingual ST benchmark.

3.3 Knowledge Distillation
Knowledge distillation (KD) is typically used for model com-
pression, using the output of a larger teacher model that typi-
cally performs better to guide the learning of a student model,
with the expectation that the student model will achieve the
same performance as the teacher model. With limited data,
how can we get the ST performance close to that of the MT
teacher? The idea of knowledge distillation is then widely
used in speech translation. A straightforward approach is to
use the ST model and the MT model to predict translation to-
kens separately, with the prediction probabilities of the MT
model serving as the teacher to guide the ST output [Liu et
al., 2019; Tang et al., 2021a]. With a two-stream encoder
framework, Fang et al. [2022] propose to distill the speech-
to-text translation module with the translation output from the
speech-text manifold mix-up sequence. Experiments show
that the mix-up sequence can bridge the representation gap
between speech and text, thus making the learned semantic
representation of text more readily transferable to speech.

3.4 Multilingual Training
Multilingual speech translation includes one-to-many, many-
to-one, and many-to-many scenarios. Like MT, adding lan-
guage indicators, such as <2de>, <2fr>, to the decoder is
the most straightforward and effective way to evolve from
bilingual to multilingual ST [Inaguma et al., 2019]. Wang et
al. [2020a] also show that with limited data for each trans-
lation direction, training a many-to-many multilingual ST
model is better than training bilingual ST models individu-
ally, because the multilingual model can capture more pro-
nunciation similarity between languages. Current research
on multilingual ST mainly focuses on pre-training, such as
how to build a unified multilingual speech-text pre-training
model [Bapna et al., 2022] and how to design various and ef-
fective pre-training tasks [Cheng et al., 2022]. These models
can be helpful for translation as well as multilingual ASR.
There is also some work focusing on efficient fine-tuning.
Li et al. [2021] concatenate multilingual pre-trained XLSR
speech encoder with mBART decoder and experimentally
find that fine-tuning the parameters of layer-norm and atten-
tion layers is better than fine-tuning all parameters. Le et
al. [2021], on the other hand, freeze the pre-trained ASR en-
coder and the mBART decoder, and complete one-to-many
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ST by only tuning the language-specific adapter modules on
top of a multilingual system, with only tens of millions of
parameters.

4 Tackling Application Issues
Current research is usually conducted under presupposed set-
tings with manual segmentation, noise-free environment, etc.
And the demands of practical application are rarely discussed.
Real-time. Simultaneous decoding aims for the quality-
latency trade-off for real-time translation on the depend of
a decision policy, which determines whether to wait for
more audio stream or decode one or more tokens. Simul-
Speech [Ren et al., 2020] propose a speech segmenter, based
on the CTC criterion, to split the streaming speech in real
time. Chang and Lee [2022] adapt Continuous Integrate-and-
Fire module to play a role as the adaptive policy, which
makes WRITE decisions at each firing step. Liu et al. [2021]
extend RNN-Transducer into Cross Attention Augmented
Transducer, which can jointly optimize the decoding policy
and translation quality by considering all possible READ and
WRITE action paths.
Segmentation. The direct ST model cannot handle long
audios alone, such as a complete speech or a movie, which
have to be segmented into shorter utterances using auto-
matic segmentation methods (VAD-based, fixed-length, and
hybrid). However, there exists a gap between manual seg-
mentation during training and automatic segmentation at run-
time. Tsiamas et al. [2022] propose Supervised Hybrid Au-
dio Segmentation (SHAS) method, which uses Wav2vec2 and
trains a classifier to predict the split locations supervised by
the manual segmentation information.
Named entity. How to handle the translation of named
entity (NE) is a critical demand for ST systems in real-world
scenarios. Gaido et al. [2022a] discover that the national-
ity of the referred person is the key factor for the failures in
person name translation, and propose multilingual models to
increase the robustness of varied pronunciations. Gaido et
al. [2022b] design two methods to jointly perform ST and
recognize NE, of which the inline method generates NE tags
and tokens successively, while the parallel method predicts
NE tags and tokens in parallel with two linear layers.
Code-switching. Code-switching (CS) speech commonly
exists in casual situations, and as blending different lan-
guages, translating CS speech is a challenge. Weller et
al. [2022] create a CS corpus and explore both cascaded
and end-to-end architecture to perform CS speech translation.
Huber et al. [2022] propose a unified Language Agnostic E2E
ST model (LAST) by training both ASR and ST tasks, as well
as enlarging CS data through concatenation.
Gender bias. Addressing gender bias in translation is a
relatively new area of NLP and speech research. For ST task,
audio input contains more clues about gender identity. Ben-
tivogli et al. [2020] release MuST-SHE benchmark allowing
for the fine-grained analysis of gender bias in ST. They also
find that the end-to-end approach can directly use audio in-
formation and have more potential to better address gender
issues. Savoldi et al. [2022] later extend MuST-SHE with two

additional linguistic information, part-of-speech and agree-
ment chains. Gaido et al. [2021] investigate how segmenta-
tion methods influence the translation of gender, and propose
a combined segmentation method with both subword splitting
and character-based splitting.

5 Future
In this paper, we thoroughly present recent advances in direct
speech-to-text translation. Specifically, we review and sum-
marize existing approaches in this field for the first time with
an original taxonomy. Despite the recent attractive progress
of direct ST technology, there remain many unresolved prob-
lems to be explored. Finally, we discuss some promising top-
ics for the future.

LLM. Today, large language models (LLMs), such as
ChatGPT, have shown powerful dexterity in a variety of
NLP applications, such as text generation and even in the
zero-shot scenario. First of all, we believe that it is worth-
while to further explore how to integrate the powerful gen-
erative capabilities of LLMs into ST tasks and to incorpo-
rate speech data into the training of LLMs. As an initial
step, for instance, we may optimize speech representation to
be comparable to the text representation as a prompt func-
tion to interact with LLMs. We conjecture that speech dis-
crete representations as pseudo-language [Hsu et al., 2021;
Wu et al., 2022] may be interesting prompts. Further-
more, pre-training large-scale acoustics-aware LLMs is also a
promising direction that will greatly promote the entire NLP
and speech community. We anticipate that after scaling up
further, the models will have the capability for few-shot ST,
zero-shot ST, and transfer learning.

Multimodality. Numerous human-computer interac-
tion (HCI) application scenarios have emerged with the re-
cent worldwide surge in AI-generated content (text, images,
voice, and video, etc.), which drives the ST field to explore
more sophisticated directions, like speech-to-speech transla-
tion and video translation. With the explosive growth of mul-
timodal resources, how to perform in-context learning (ICL)
on multimodal data is also a promising research topic. Re-
cently, multimodal pre-training has already been proved to be
effective in many fields. However, the interactions and in-
terrelated information between multiple modalities (e.g., the
speech of characters in videos and their corresponding image
frames and prosodic environments) remain underutilized. We
believe that a more unified and robust pre-training paradigm,
aimed at learning universal cross-lingual cross-modal repre-
sentations, is important for ST and the more demanding HCI
scenarios mentioned above.

Acknowledgements
This work was supported in part by the National Science
Foundation of China (No. 62276056), the National Key
R&D Program of China, the China HTRD Center Project
(No. 2020AAA0107904), the Natural Science Foundation
of Liaoning Province of China (2022-KF-16-01), the Yun-
nan Provincial Major Science and Technology Special Plan

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6801



Projects (No. 202103AA080015), the Fundamental Re-
search Funds for the Central Universities (Nos. N2216016,
N2216001, and N2216002), and the Program of Introducing
Talents of Discipline to Universities, Plan 111 (No. B16009).

Contribution Statement
Chen Xu, Rong Ye, and Qianqian Dong have the equal con-
tribution to the conception and design of the survey. They
performed the literature search, collected relevant papers, and
drafted the main sections of the manuscript. They also con-
tributed to the synthesis and analysis of the surveyed work
and were responsible for creating the figures.

Chengqi Zhao provided substantial contributions to the re-
finement of the survey’s scope and focus. He helped in the
analysis of the surveyed work and provided insights on poten-
tial future research directions. In addition, he was responsible
for critically reviewing the manuscript at different stages and
provided suggestions for improving the clarity and coherence
of the paper.

Tom Ko, Mingxuan Wang, Tong Xiao, and Jingbo Zhu
provided guidance on the overall direction and structure of
the survey paper. They contributed to the refinement of the
paper’s scope and focus, and provided critical feedback on
the manuscript at various stages of development. They also
helped in the identification of relevant literature and offered
insights on the state-of-the-art and future trends in end-to-end
speech translation.

References
[Anastasopoulos and Chiang, 2018] Antonios Anastasopou-

los and David Chiang. Tied multitask learning for neural
speech translation. In NAACL, 2018.

[Ao et al., 2022] Junyi Ao, Rui Wang, Long Zhou, Chengyi
Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li,
Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei.
SpeechT5: Unified-modal encoder-decoder pre-training
for spoken language processing. In ACL, 2022.

[Bahar et al., 2019] Parnia Bahar, Albert Zeyer, Ralf
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