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Abstract

With the increasing popularity of masked autoen-
coders, self-supervised learning (SSL) in vision un-
dertakes a similar trajectory as in NLP. Specifically,
generative pretext tasks with the masked predic-
tion have become a de facto standard SSL prac-
tice in NLP (e.g., BERT). By contrast, early at-
tempts at generative methods in vision have been
outperformed by their discriminative counterparts
(like contrastive learning). However, the suc-
cess of masked image modeling has revived the
autoencoder-based visual pretraining method. As
a milestone to bridge the gap with BERT in NLP,
masked autoencoder in vision has attracted un-
precedented attention. This work conducts a survey
on masked autoencoders for visual SSL.

1 Introduction

In recent years, the mainstream trend of deep learning has
gradually shifted from designing better models to solving the
data-hungry issue in deep learning. For example, ImageNet
with more than one million labeled images has become a typ-
ical benchmark dataset for vision models, and vision trans-
former (ViT) [Khan et al., 2022] is reported to demand hun-
dreds of times more labeled images. A common way to per-
form satisfactorily with a relatively small labeled dataset is to
pre-train the model on another larger dataset, which is widely
known as transfer learning. Outperforming its supervised
counterpart for pre-training, visual SSL [He et al., 2020;
He et al., 2022] has become an active research field.

With the advent of contrastive SSL [He et al., 2020], joint-
embedding methods have become a dominant visual pre-
training framework; however, this status has been recently
challenged by the success of a generative method termed
masked image modeling (MIM). A successful attempt [Bao
et al., 2022] adopts a mask-then-predict strategy to train the
model with the target visual tokens generated by an off-the-
shelf tokenizer trained by a discrete variational autoencoder
(dVAE). More recently, MAE [He er al., 2022] simplifies this
two-stage approach into an end-to-end masked autoencoder
method, which has attracted unprecedented attention. No-
tably, we use MAE to refer to the method in [He er al., 2022]
not as shorthand for masked autoencoder to avoid confusion.
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As the term suggests, a masked autoencoder is an autoen-
coder with masked prediction, i.e. predicting a property of
masked input from unmasked input content. It is worth men-
tioning that masked autoencoder is not something new in un-
supervised visual pretraining. Dating back to 2008, an early
work [Vincent et al., 2008] predicted masked pixels from un-
masked ones but was referred to as denoising autoencoder.
The success of MAE [He er al., 2022], outperforming joint-
embedding methods, revives this straightforward visual pre-
training method. Except for the competitive performance, an-
other reason for the attention on masked autoencoder is that
a similar generative SSL framework termed masked language
modeling (like BERT [Devlin et al., 2019]) has been widely
used in NLP. In other words, the success of masked autoen-
coder in vision paves a path: SSL in vision“may now be em-
barking on a similar trajectory as in NLP” [He et al., 2022].

To this end, this work conducts a survey on masked au-
toencoders for visual SSL, with a longer version available
at [Zhang et al., 2022a] discussing beyond vision. With
masked autoencoder in vision as the focus, this survey struc-
ture is organized as follows. Sec. 2 introduces the background
featured by clear term definitions; Sec. 3 summarizes its his-
torical development and relation with masked language mod-
eling; Sec. 4 summarizes seminal works on masked autoen-
coders for visual SSL and design principles for improvement.
Sec. 5 presents various perspectives on understanding the suc-
cess of masked autoencoder. Sec. 6 discusses the relationship
with joint-embedding methods; Sec. 7 covers the applications
beyond pure images.

2 Background and Terminology

SSL: Generative v.s. discriminative. In self-supervised
learning, modelling methods can be roughly categorized into:
discriminative or generative. Generative SSL typically relies
on an autoeocnder that consists of encoding (i.e. mapping an
input to a latent representation with an encoder) and decod-
ing (i.e. generating the input from the latent representation
with an decoder). Discriminative SSL typically follows its
supervised counterpart to design a discriminative loss.

Denoising autoencoder v.s. masked autoencoder. As a
classical generative SSL method, denoising autoencoder is a
class of autoencoders that reconstruct the original clean input
from a corrupted input [Vincent ez al., 2008]. Note that de-
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noising in this context (and in this whole survey) refers to re-
construction from general corruption (including but not lim-
ited to noise). Since masked prediction refers to the practice
of predicting a property of masked input from unmasked in-
put, it can be seen as a form of denoising process [Yi et al.,
2022]. This predicted property can be the original input [Yi
et al., 2022], handcrafted feature [Wei et al., 2022a], or latent
representation [Baevski et al., 2022]. Since masked predic-
tion is a form of denoising process and thus masked autoen-
coder can be seen as a form of general denoising autoencoder.

Masked autoencoding v.s. masked modeling. Masked
prediction can be used for both generative and discriminative
modeling methods. The term masked X modeling, namely
masked modeling on X-type data, often refers to the gen-
erative case, such as masked language modeling, masked
image modeling. However, masked modeling is not nec-
essarily masked autoencoding. Take image data for exam-
ple, MSN [Assran et al., 2022] and data2vec [Baevski ef
al., 2022] can be categorized as masked image modeling but
not masked autoencoding since their model architectures are
decoder-free.

3 Masked Autoencoding: NLP to Vision

3.1 NLP and Vision Followed Different SSL Paths

ML-driven Al has two major research fields: NLP and com-
puter vision. Towards a unified understanding of language
and image, it is interesting to ask whether they can follow
a similar SSL path. For a long time they followed different
paths: generative SSL in NLP and discriminative SSL in vi-
sion.

Generative SSL in NLP. In NLP there exist two leading
language models: GPT and BERT. They are both based on the
transformer architecture but with notable differences: GPT
works by predicting the next word based on previous words
and thus is autoregressive in nature, while BERT uses the en-
tire surrounding context of words all at once. In essence, they
both remove a portion of the data and predict the removed
content, and therefore, they can be both perceived to rely on
masked prediction as the pretext task.

Discriminative SSL in Vision. Joint-embedding methods,
namely aligning the embedded representations of augmented
views of the same image, have demonstrated substantial per-
formance boost over prior generative methods. After the ad-
vent of MoCo [He et al., 2020], contrastive learning, which
makes the representations of positive samples close and those
of negative samples far from each other, has emerged as
a dominant visual SSL. method. Negative-free (i.e. non-
contrastive) joint-embedding methods have also been inves-
tigated [Chen and He, 2021], demonstrating comparable per-
formance of contrastive learning methods.

3.2 Is Generative SSL Suitable for Vision?

Very early attempts. Denoising autoencoder was proposed
in [Vincent er al., 2008] to perform masked autoencoding
by randomly masking some pixels. To make it a harder
task to avoid learning only low-level representation, [Pathak
et al., 2016] proposed feature learning by inpainting, i.e.
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denoising masked
Training dataset MNIST ImageNet
Model Architecture CNN ViT
Corruption size pixels patches
Corruption ratio maximum 50% 75%

Table 1: Comparison of denosing autoencoder [Vincent et al., 2008]
and masked autoencoder [He et al., 2022]

to fill in large missing areas of the image and thus pre-
vent hints from nearby pixels. Later, [Larsson et al., 2016;
Zhang et al., 2016] showed that masked channel prediction
yielded superior performance on downstream tasks, espe-
cially for dense semantic segmentation.

Inspiration from NLP. With GPT and BERT emerging in
2018/2019 to show the success of masked prediction in lan-
guage understanding, a natural question is: can we trans-
fer the success of masked modeling from language to im-
age? iGPT [Chen et al., 2020a] is the first successful at-
tempt in this direction; however, as highlighted in [Chen et
al., 2020b], their work is for proof-of-concept and cannot be
used in practice due to two reasons: (1) it takes two orders
higher pre-training compute than contrastive methods and (2)
it performs worse than contrastive methods based on CNN.
[Dosovitskiy er al., 2021] also investigated self-supervised
pre-training. Since the self-supervised pre-training practice
in [Dosovitskiy er al., 2021], we call it iBERT since it mim-
icked the masked language modeling task in BERT. iBERT
performs a masked patch prediction for visual SSL. However,
this preliminary investigation of ViT for SSL also shows in-
ferior performance compared with joint-embedding methods.
This challenge was finally broken by BEIiT [Bao et al., 2022]
as well as MAE [He et al., 2022] (see Sec.4 for their details).

3.3 Summary and Remark

Summary. Figure 1 shows the overall timeline for the de-
velopment of unsupervised visual pretraining (including GPT
and BERT for NLP). Interestingly, unsupervised visual pre-
training started with generative SSL in 2008. Its reviving at-
tempt in 2016 and 2017 was then outperformed by discrim-
inative SSL, especially after the advent of joint-embedding
methods. However, with the inspiration from NLP, genera-
tive SSL with masked prediction comes back again.

Remark. Early denoising autoencoder [Vincent et al.,
2008] and recent masked autoencoder [He et al., 2022] both
reconstruct a clean input from a corrupted one by predicting
masked input content from unmasked input content. Despite
high similarity regarding pretext task, the masked autoen-
coder introduced in [He et al., 2022] differs from early de-
noising autoencoder [Vincent et al., 2008] in numerous ways,
which are summarized in Table 1.

4 Masked Autoencoder for Image Modeling

As discussed in Sec.3, iGPT and iBERT have shown the
possibility of transferring the pretext task of masked predic-
tion from language to image data. However, their perfor-
mance is inferior to joint-embedding methods and thus has
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Figure 1: Timeline of Visual SSL

caught less attention. BEiT is the first to show the success of
autoencoder-based masked prediction outperforming DINO,
a SOTA joint-embedding method. Therefore, this section
starts with introducing BEiT with its improved variants and
then discusses the seminal work MAE [He et al., 2022] .

4.1 BEIT and Its Improved Variants

BEiT. In contrast to iBERT [Dosovitskiy er al., 2021]
that directly reconstructs the masked patches, BEiT mimicks
BERT to reconstruct visual tokens. Since Image patches do
not have off-the-shelf tokens as words in the language, BEiT
trains an image tokenizer via discrete variational autoen-
coder (dVAE) before the second-step masked image mod-
eling where the tokenizer is used to guide the learning of
BEIiT encoder (note that decoder is unused). Specifically,
the tokenizer takes the original image, and the BEiT encoder
takes a corrupted image, including unmasked patches and
masked patches. Then, it outputs the visual tokens of masked
patches to match the corresponding visual tokens from the
tokenizer (staying fixed in this process). BEIiT is the first
to show that masked image modeling has downstream task
performance superior to SOTA contrastive DINO [Caron et
al., 2021]. BEIT [Bao et al., 2022] consists of two stages:
token-based MIM as the main stage and tokenizer training
as the preparation stage. Multiple works [Dong et al., 2021;
Li et al., 2022c; Chen et al., 2022b] have followed this two-
stage approach by either improving the tokenizer-based MIM
process or seeking an alternative tokenizer.

Tokenizer-based MIM. mc-BEiT [Li et al., 2022c] at-
tempts to effectively utilize the visual tokenizer generated by
dVAE. Considering the continous image space and discrete
tokenizer, it is not desired that patches with similar seman-
tics can have different token IDs, and patches with differ-
ent semantics can have the same token ID. Therefore, mc-
BEiT recasts the MIM in BEiT from a single-choice classi-
fication problem to a multiple-choice one by softening the
training objective from a hard-label cross-entropy loss to a
soft-label one. BEiT performs the encoding and decoding
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role implicitly and simultaneously, while CAE [Chen et al.,
2022b] performs the two tasks explicitly and separately. A
key component realizes this termed latent contextual regres-
sor to introduce alignment between the representations of
masked patches and unmasked ones. The CAE encoder ex-
clusively focuses on feature extraction while the latent con-
textual regressor handles the prediction pretext task.

Better target tokenizer. PeCo [Dong et al., 2021] identi-
fies that the visual tokenizer generated by dVAE does not con-
sider semantic level. PeCo adds the distance between deep
visual features as an extra loss to enforce perceptual similar-
ity between the original image and the reconstructed image to
make the target visual tokens more semantically meaningful.
For studying masked prediction, [Wei et al., 2022a] follows
the two-stage approach as BEiT and investigates various tar-
get tokenizers. Interestingly, it is found that handcrafted HOG
features achieve a competitive performance, suggesting a tar-
get tokenizer generated by dVAE might be unnecessary.

4.2 End-to-End Masked Autoencoder

A drawback of the two-stage methods is that their approach
relies on a pretrained dVAE to generate originally continu-
ous but intentionally discretized target visual tokens [Yi et al.,
2022], and thus is not end-to-end. In essence, BEiT separates
masked prediction from autoendoer training, which leaves
room for improving effectiveness and efficiency. To this end,
MAE [He et al., 2022] experiments with end-to-end training
of masked autoencoder. We highlight that SImMIM [Xie et
al., 2022b] has conducted a very similar investigation. MAE
and SimMIM appear on arXiv concurrently and are both ac-
cepted at CVPR’2022. Here, we summarize these two semi-
nal works and compare their nuanced difference.

MAE. The overview of MAE [He et al., 2022] is shown
in Figure 2. MAE revisits the pretext task of predicting
masked patches. Specifically, their proposed MAE [He e al.,
2022] directly predicts masked patches from the unmasked
ones with a simple loss of mean squared error (MSE). More-
over, the masking ratio is set to 75%, which is significantly
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Figure 2: Overview of a masked autoencoder with the figure bor-
rowed from the original work MAE [He er al., 2022].

Model Finetuning  Segmentation
MoCO v3 [Chen et al., 2021] 83.2 47.3
DINO [Caron et al., 2021] 82.8 46.8
BEIT [Bao er al., 2022] 83.2 45.6
MAE [He et al., 2022] 83.6 48.1

Table 2: Performance comparison of SOTA methods: discriminative
methods (MoCo V3 and DINO) and generative methods (BEiT and
MAE). The backbone architecture is ViT-B. Finetuning classifica-
tion accuracy is measured on ImageNet-1K, downstream segmenta-
tion task is measured with mloU on ADE20K.

higher than that in BERT (typically 15%) or prior MIM
(20% to 50%) [Chen et al., 2020a; Dosovitskiy et al., 2021;
Bao et al., 2022]. The ablation findings support such a high
masking ratio is beneficial for fine-tuning and linear probing.
To save computation, the encoder of MAE only operates on
the unmasked patches. Moreover, the encoder-decoder archi-
tecture is designed in an asymmetric manner with the decoder
being lightweight. With the above technical tricks, their pro-
posed simple MAE is (3x or more) faster than BEiT while
achieving superior performance. A performance comparison
of the state-of-the-art methods is given in Table 2.

SimMIM. Concurrently, a similar architecture termed Sim-
ple Masked Image Modeling (SimMIM) is proposed in [Xie
et al., 2022b], where similar findings are reported. Specifi-
cally, SImMIM confirms that directly predicting the pixels as
in MAE performs no worse than other methods with complex
design, such as tokenization, clustering, or discretization. A
high masking ratio is also confirmed to be beneficial for per-
formance, especially for a relatively small patch size. More-
over, SimSIM investigates multiple masking strategies, such
as square, block-wise, and random. Their best performance
is achieved with the random masking strategy, which is the
same as that in MAE.

Difference between MAE and SimMIM. One of their
non-trivial differences lies in the position of masked patch
tokens. Specifically, masked patch tokens are adopted as
the input of decoder and decoder in MAE [He et al., 2022]
and SimMIM [Xie er al., 2022b], respectively. With the pre-
text task of masked prediction, the autoencoder in MAE and
SimMIM fulfills two roles: representation encoding (for un-
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masked patches) and pretext prediction (for masked patches).
With both masked and unmasked patches as the input, the
encoder of SImMIM [Xie er al., 2022b] simultaneously per-
forms representation encoding and pretext prediction, due to
which the decoder can be designed as simple as a single layer.
By contrast, the encoder in MAE [He er al., 2022] exclusively
realizes representation encoding, leaving the role of pretext
prediction to the decoder. As a result, MAE still relies on
a transformer decoder, as reported in [He et al., 2022], even
though it does not need to be as heavy as the encoder. Due
to this, MAE achieves significantly higher linear probing ac-
curacy than SimMIM; however, this superiority diminishes
with finetuning. For example, with ViT-B as the backbone
on ImageNet, SImMIM achieves a finetuning performance of
83.8%, slightly higher than the reported 83.6% for MAE. An-
other merit of MAE by feeding only the unmasked patches
into the encoder is its higher efficiency, especially when the
masking ratio is high. Unlike SimMIM with Swin-B as the
default backbone, MAE is not compatible with hierarchical
ViT (like Swin). The reason for its incompatibility and solu-
tions to address them are discussed in the following.

4.3 Towards Improving Efficiency

A significant bottleneck of masked autoencoder for visual
SSL is that it requires large computation. In this section,
we introduce multiple works that attempt to improve the ef-
ficiency of masked autoencoders from roughly two perspec-
tives: (1) hierarchical structure and (2) input manipulation.

Hierarchical structure. Since ViT [Dosovitskiy et al.,
2021] used in MAE has a crucial issue that decreasing the
patch size will quadratically increase computing resources,
hierarchical ViT (hViT) was introduced by using a shrink-
ing pyramid structure with additional tricks, e.g., Swin and
PVT. Specifically, Swin adopts shifted windows to learn lo-
cal feature correlations, and PVT applies spacial reduction
attention to reduce computation in the attention layer. Un-
fortunately, it is not intuitive to adapt hViT to enable MAE
pre-training since the local window attention used in hViT
is challenging to handle randomly masked patches as in
MAE. Multiple works [Huang et al., 2022; Li et al., 2022b;
Zhang et al., 2022b] attempt to improve MAE by boost-
ing hViT, achieving comparable performance to the baselines
(MAE, SimMIM) while requiring less training time as well
as less GPU memory. Based on Swin transformer, [Huang
et al., 2022] proposes a unique masking strategy called group
window attention, and combines the multi-scale feature learn-
ability of hViT and the efficiency of masked image model-
ing by making them compatible. Similarly, Uniform Mask-
ing MAE (UM-MAE) [Li et al., 2022b] introduced a two-
stage sampling and masking process. The proposed Uniform
Masking strategy first uniformly samples a quarter (25%) of
patches in each block, then further masks random patches on
top of the sampled patches. HiViT [Zhang et al., 2022b] pro-
poses a new hViT architecture to substitute window attention
layers in Swin with MLP layers.

Input manipulation. Several methods attempt to improve
the efficiency of MAE by changing the input. Specifically,
they aim to reduce the input size by attending to small win-
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dows [Chen et al., 2022a] or objects in the image [Wu and
Mo, 2022]. These methods reduce the required computation
while achieving comparable or better downstream task per-
formance. Local masked reconstruction (LoMaR) [Chen et
al., 2022a] is inspired from the fact that local information is
enough for reconstructing masked patches. Instead of rely-
ing on the entire image for mask reconstruction, a number of
small windows with 7x7 patches are sampled to restrict at-
tention to local regions. LoMaR achieves higher downstream
task performance faster compared with MAE. ObjMAE [Wu
and Mo, 2022] achieves input efficiency by dropping non-
object patches and learning object-wise representations. Ob-
JMAE reduces the pre-training compute cost by 72% while
achieving comparable performance to MAE. MixMIM [Liu
et al., 2022] takes a slightly different approach: to replace an
image’s masked tokens with tokens from another image. The
mixed image is then fed into a encoder then the decoder re-
constructs the two original images. Because of the absence
of uninformative masked tokens, MixMIM [Liu et al., 2022]
is not only able to be suitable for hierarchical ViTs such as
Swin but also achieves stronger results efficiently compared
to existing MIM works.

5 Various Perspectives on the Success of
Masked Autoencoder in Vision

To explain why BEIT [Bao er al., 2022] helps the finetuning
on downstream tasks, its authors analyze the self-attention
map and show that BEiT distinguishes semantic regions us-
ing self-attention heads without any task-specific supervision.
Moreover, [He et al., 2022] shows that an MAE, pretrained
with a masking ratio of 75%, infers complex and holistic re-
constructions even when 95% of pixels are masked, suggest-
ing it learns various concepts, i.e., semantics. The authors
of MAE [He er al., 2022] “hypothesize that this behavior oc-
curs through a rich hidden representation inside the MAE”.
Given that the masked and reconstructed visual patches are
not semantic entities as words in languages, this behavior is
somewhat unexpected and is hypothesized to occur “by way
of a rich hidden representation” [He ef al., 2022]. However,
which component in masked autoencoder makes the model
learn such a “rich hidden representation” remains unclear.
Numerous works have investigated from various perspectives
for a better understanding of its success.

Backbone perspective: Is masked autoencoder compat-
ible with CNN? With ViT [Dosovitskiy er al., 2021] as
the default backbone in MAE, a natural question is whether
masked autoencoder works only with a transformer backbone
instead of CNN. Since CNN cannot tackle the masked inputs
and positional embedding directly, multiple works [Fang et
al., 2022b; Li et al., 2022a; Fang et al., 2022a] have attempted
to unify ViT and CNN in a compatible masked autoencoder
framework. Inspired by the observation that early convolu-
tions help transformers see better [Xiao et al., 2021], Con-
VMAE utilizes hybrid convolution-transformer architectures:
convolution blocks at early stages and transformer blocks at
later stages are in charge of high-resolution token embedding
and low-resolution token embedding, respectively. Towards a
unified framework of MIM with both transformer and CNN
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architecture, [Fang et al., 2022a] proposes corrupted image
modeling (CIM), which replaces the input images artificially
masked in MIM with a corrupted image generated by a train-
able generator (BEiT). Therefore, the reconstruction task in
MIM can be extended to either generative or discriminative
objectives trained by a ViT or CNN enhancer. CIM is the
first to unify ViT and CNN in a non-Siamese framework and
yields compelling results in vision benchmarks. More re-
cently, it has been highlighted in [Li et al., 2022a] that the
success of masked image modeling can be agnostic to the ar-
chitecture. The proposed Architecture Agnostic Masked Im-
age Modeling framework (A?MIM) is compatible with ViT
and CNN in a unified way [Li et al., 2022a]. It is found in [Li
et al., 2022a] that the success of masked autoencoder lies in
learning middle-level patch interaction, which is agnostic to
architecture choices.

Data perspective: Does masked autoencoder require a
very large dataset? A popular belief regarding the benefit
of transfer learning comes from pretraining on a much larger
dataset than the target dataset. Challenging this belief, [El-
Nouby et al., 2021] investigates whether self-supervised pre-
training on a smaller dataset can yield the same benefit.
The fact that their investigation is performed with ViT-based
masked autoencoder makes it more interesting because, com-
pared with its CNN, ViT is found to require much more sam-
ples [Dosovitskiy ef al., 2021]. Interestingly, [Dosovitskiy et
al., 2021] shows that pretraining masked autoencoder (either
BEIT or SplitMask [El-Nouby et al., 2021] ) on 1% of Im-
ageNet dataset achieves comparable transfer performance to
the iNaturalist-2019 dataset as pretraining on full ImageNet
dataset. By contrast, prior DINO [Caron et al., 2021] is much
more sensitive to the data size (as well as the data type). More
recently, [Xie et al., 2022c] performed a comprehensive study
on data scaling (from 10% of ImageNet to full ImageNet-
22K) on masked autoencoder models of various sizes ranging
from 49 million to 1 billion parameters. It shows that MIM
is also demanding on larger data, especially for larger models
with longer training epochs [Xie et al., 2022c].

Denoising perspective: Does masked autoencoder benefit
from other corruptions? Given that masked autoencoder
is a class of denoising autoencoder, [Tian et al., 2022] in-
vestigates a general question: are there other effective im-
age degradation methods beyond masking for effective vi-
sual pretraining? Five methods, namely zoom-in, zoom-
out, distortion, blurring, and de-colorizing, have been investi-
gated, and they are found to perform better than None (i.e.,
no pretraining), suggesting a unified denoising perspective
on the success of masked autoencoder. Nonetheless, blur-
ring and de-colorizing perform worse than other degrada-
tion methods with spatial transformation because they cause
image style shift from the pretext task to the downstream
task. Among them, zoom-in performs the best and is comple-
mentary with masking to further boost the performance. In
contrast to existing spatial masking, [Xie et al., 2022a] also
investigates frequency masking by predicting masked high-
frequency from the unmasked low-frequency content, or vice
versa, demonstrating competitive performance. Moreover,
super-resolution, deblur, and denoise have also been inves-
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tigated but they yield inferior performance.

Theoretical perspective: Can masked autoencoder be ex-
plained with rigorous mathematics? Towards a mathe-
matical understanding, [Cao et al., 2022] was the first to
propose a unified theoretical framework for understanding
masked autoencoder in vision. Particularly, each image’s em-
bedding in MAE can be interpreted not as a 2D pixel grid but
as a learned basis function in certain Hilbert spaces. More-
over, under a non-overlapping domain decomposition setting,
the patch-based attention in ViT can be understood from the
operator theoretic perspective of an integral kernel. With at-
tention as the focus, [Cao ef al., 2022] further proves that
the stability of internal representations and that of masked la-
tent representations are interpolated globally with an inter-
patch topology. To understand why MAE helps in down-
stream tasks, based on an autoencoder of a two/one-layered
CNN, [Pan ef al., 2022] theoretically shows that it can cap-
ture all discriminative semantics in the pretraining dataset,
and therefore provably outperforms supervised pretraining on
downstream tasks.

6 Masked Autoencoder and Joint-Embedding

Before the success of masked autoencoder, visual self-
supervised pretraining had been dominated by joint-
embedding methods, either contrastive ones ( [Chen et al.,
20211]) or negative-free ones [Caron ef al., 2021]. Thus, it is
highly relevant to compare masked autoencoder with joint-
embedding for visual self-supervised pretraining.

6.1 Boosting Each Other

An intriguing observation regarding their difference is as fol-
lows: compared with joint-embedding methods [Chen et al.,
2021; Caron et al., 20211, masked autoencoders [He et al.,
2022; Xie et al., 2022b] have stronger finetuning performance
on the downstream tasks but weaker linear probing accuracy.
A popular understanding is that masked autoencoder lacks in
learning semantically-meaningful features because it focuses
on low-level patch match with a local loss [He er al., 2022;
Xie et al., 2022b]. On the other hand, high-level semantic
features have the property of being robust to spatial transfor-
mation (like random crop) and style change (like color jit-
tering) [Misra and Maaten, 2020], and thus joint embedding
approaches adopt a global loss on the features after global
average pooling to encourage the learned representation to be
augmentation-invariant.

Improving masked autoencoder with global loss. Split-
Mask [El-Nouby er al., 2021] consists of three steps: split,
inpaint, and match. The patches are divided into two dis-
joint subsets in the split step: A and . For inpainting, it
adopts a similar architecture as MAE in that a lightweight
(shallow) ViT decoder is used to recover the masked patches
from the representation of unmasked patches [El-Nouby et
al., 2021]. What differentiates SplitMask [El-Nouby et al.,
2021] from MAE [He et al., 2022] lies in the third match
step, which encourages the global prediction of A and B sub-
sets of patches to match each other. This global match aligns
with the augmentation-invariant goal in joint-embedding ap-
proaches, thus making the representation more semantically
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meaningful. [Tao et al., 2022] improves MAE by combining
it with joint-embedding approaches. Specifically, it predicts
the masked tokens to match those from another augmented
view to encourage semantic learning with an global loss.

Improving joint-embedding methods with local loss.
Multiple works in the above analysis show that the global loss
in joint-embedding methods can be utilized to improve the
semantic meaning of the learned representations. Intuitively,
it is possible to improve the joint-embedding techniques by
adding a local loss. For example, MST [Li et al., 2021] ex-
tends the DINO framework by combining it with a masked
prediction task. It is worth mentioning that MST [Li et al.,
2021] came out earlier than BEiT and MAE. More recently,
RePre [Wang et al., 2022a] improves MoCO v3 [Chen ef al.,
2021] with a reconstruction loss by using a decoder to recon-
struct the original image from the multi-hierarchy features in
the encoder. [Wei et al., 2022b] shows that their inferior fine-
tuning performance can be significantly improved by a simple
post-processing with feature distillation (FD). After FD, their
representations are more suitable for optimization and thus
finetuning friendly.

6.2 Bridging Their Gap

Masked autoencoder and joint-embedding perform masked
prediction (predicting a property of masked patches from un-
masked patches) and augmented alignment (aligning the em-
bedded representation of different augmentations), respec-
tively. From the perspective of the architecture component,
the encoder training in masked autoencoder relies on a de-
coder, while that in joint-embedding uses a Siamese encoder
for generating the self-supervision. Motivated by their suc-
cess, multiple works have attempted masked prediction with-
out a decoder, decoder-free MIM, which bridges the gap be-
tween joint-embedding and masked autoencoder for visual
pretraining.

Decoder-free MIM. Beyond masked autoencoder,
decoder-free MIM can be seen as another line of sim-
plifying BEiT from two stages to single stage. To keep
the patch-level visual context, ConMIM [Yi et al., 2022]
follows the principle of designing the training objec-
tive to be masked patch prediction as in [Bao er al.,
2022]. Specifically, resembling MoCo [He et al., 2020;
Chen et al., 2021], ConMIM adopts a Siamese encoder,
which is updated by the (student) encoder with EMA,
as a teacher model to guide the training of the encoder.
ConMIM [Yi er al., 2022] feeds an unmasked image and
a masked image of the same view into teacher and student
encoders, respectively. The teacher encoder can be seen
as a dynamic tokenizer as a static one in BEIT [Bao et al.,
2022]. Therefore, the embedded representations of masked
patches are predicted to match the dynamic tokenizer corre-
sponding to the same position [Yi et al., 2022]. A similar
teacher-student framework is adopted in MSN [Assran et
al., 2022] and data2vec [Baevski et al., 2022]. In contrast
to ConMIM [Yi et al., 2022], MSN [Assran et al., 2022]
adopts a global loss to encourage learning semantic-aware
representation. CNN-based MSN has also been investigated
in [Jing er al, 2022]. It has also been demonstrated in
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data2vec [Baevski et al., 2022] that this simple framework
works well in the vision field and can be generalized to other
data modalities, including speech and language. MSN [Ass-
ran et al., 2022] works well for linear probing and few-shot
learning but might be inferior to masked autoencoder for
the finetuning performance on downstream tasks since
patch-level visual context is discarded. To get the merits on
both sides, iBOT [Zhou et al., 2022] adopts two losses: a
local loss to distill in-view patch tokens and another global
loss to distill between cross-view [CLS] tokens, which makes
the target patch tokens more semantically-meaningful.

7 Applications Beyond Pure Images

Inspired by the success of masked autoencoder for visual
pretraining on images, numerous works have extended it to
other data modalities, such as graph, audio, time series data,
3D medical image, point clouds, reinforcement learning, etc.
However, due to space constraints, this work limits the scope
of application to the image-related domain. Since masked
autoencoder in pure image has been extensively covered in
Sec. 4 and Sec. 6, we focus on its two advanced applications
by combining image with extra information: video pretrain-
ing that combines temporal information and vision-language
pretraining that combines language.

7.1 Video

Numerous works have applied SSL frameworks built on im-
ages to videos since videos are essentially a clip of sequen-
tial images. This trend is also observed after the success of
masked autoencoders, with works in [Wang et al., 2022b;
Wei et al., 2022a] and [Tong et al., 2022; Girdhar et al.,
2022] applying videos to BEIiT [Bao er al, 2022] and
MAE [He et al., 2022] respectively.

BEiT-based development. To learn spatial and temporal
priors of videos in a decoupled way, BEVT [Wang er al.,
2022b] proposes a two-stage solution that learns spatial rep-
resentations with masked image modeling, then learns tem-
poral representations with jointly masked image modeling
and masked video modeling. VIMPAC proposes a different
single-stage method, which includes a block-wise masking
strategy for videos and augmentation-free contrastive learn-
ing loss to learn the global features. Both BEVT and VIM-
PAC rely on an external tokenizer which can be limited in
compute-intensive video understanding scenarios. To avoid
an external tokenizer, [Wei et al., 2022a] proposes to replace
the tokens with features and investigates five types of fea-
tures, among which hand-crafted HOG is found to work ef-
fectively and efficiently.

MAE-based development. Multiple works [Tong et al.,
2022; Girdhar et al., 2022] follow the architecture of MAE
for simplicity and efficiency. With a similar model archi-
tecture to MAE, VideoMAE [Tong er al., 2022] finds that
it learns useful spatio-temporal structures with a very high
masking ratio (90% to 95%) in tube masking strategy. Be-
yond video understanding for existing frames, [Gupta et al.,
2022] investigates masked visual modeling for future frame
prediction. The gap between masked prediction for partial
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existing frames and full future frames is addressed by a vari-
able masking ratio. OmniMAE [Girdhar et al., 2022] extends
MAE to a unified pre-training of image and video modalities
with a single model, achieving competitive performance on
both image and video recognition benchmarks.

7.2 Vision and Language

Prior to masked autoencoder, contrastive learning is a pop-
ular approach to learn language and vision representations
jointly. Contrastive Language-Image Pre-training (CLIP) is a
pioneering work that propose learning images with language
as supervision in a contrastive manner and achieves competi-
tive results compared to fully supervised baselines. To solve
the sampling bias and requirement of paired image-text sam-
ples by contrastive learning, [Geng et al., 2022] follows MAE
and proposes to encode a flexible mixture of inputs, including
image-text pairs and image-only inputs. Experimental results
show that M3AE learns generalizable vision representations
and unified information from images and languages. More-
over, [Lu et al., 2022] presents a unified task-agnostic model
that can perform various vision and language tasks without
task-specific branches.

8 Open Issues

* Training masked autoencoders can be computationally
expensive, which increases the demand on computation
resources and is not Eco-friendly.

* Beyond vision, the performance of masked autoencoders
needs to be more extensively investigated in diverse
fields (see [Zhang et al., 2022al).

9 Conclusion

This survey is the first to review the progress of masked au-
toencoder for visual SSL. We summarize the early attempts
of masked autoencoder in vision and its relation with masked
language modeling. With a focus on the reviving success
of masked autoencoder in unsupervised visual pretraining,
we summarize and compare the seminal methods as well
as those follow-up works to improve their efficiency. We
provide insight into the success of masked autoencoder in
vision from various perspectives, including backbone, data,
denosing and theoretical perspectives. Moreover, we dis-
cuss the relationship between masked autoencoders and joint-
embedding methods. Finally, we cover its two advanced ap-
plications: video pretraining and vision-language pretraining.
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