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Abstract
When solving a combinatorial problem, the formu-
lation or model of the problem is critical to the ef-
ficiency of the solver. Automating the modelling
process has long been of interest given the expertise
and time required to develop an effective model of
a particular problem. We describe a method to au-
tomatically produce constraint models from a prob-
lem specification written in the abstract constraint
specification language ESSENCE. Our approach is
to incrementally refine the specification into a con-
crete model by applying a chosen refinement rule
at each step. Any non-trivial specification may be
refined in multiple ways, creating a diverse space
of models to choose from.
The handling of symmetries is a particularly im-
portant aspect of automated modelling. We show
how modelling symmetries may be broken auto-
matically as they enter a model during refinement,
removing the need for an expensive symmetry de-
tection step following model formulation.
Our approach is implemented in a system called
CONJURE. We compare the models produced by
CONJURE to constraint models from the literature
that are known to be effective. Our empirical results
confirm that CONJURE can reproduce successfully
the kernels of the constraint models of 42 bench-
mark problems found in the literature.

1 Introduction
Efficient decision-making is of central importance to a mod-
ern society, and it is natural to represent and reason about
such decision-making problems in terms of constraints. Con-
straint programming [Rossi et al., 2006] offers a means by
which solutions to such problems can be found automatically.
Constraint solving of a given problem proceeds in two phases.
First, the problem is modelled as a set of decision variables,
and a set of constraints on those variables that a solution must
satisfy. A decision variable represents a choice that must be
made in order to solve the problem. The domain of potential

∗The full version of this paper was published in Artificial Intelli-
gence journal [Akgün et al., 2022].

language Essence 1.3
given w, g, s : int(1..)
letting Golfers be new type of size g * s
find sched : set (size w) of

partition (regular, numParts g, partSize s)
from Golfers

such that
forAll g1, g2 : Golfers, g1 != g2 .

(sum week in sched .
toInt(together({g1, g2}, week))) <= 1

Figure 1: An ESSENCE problem specification of the Social Golfers
Problem (Problem 10 on CSPLib). In a golf club there are a number
of golfers who wish to play together in g groups of size s. Find
a schedule of play for w weeks such that no pair of golfers play
together more than once.

values associated with each decision variable corresponds to
the options for that choice.

There are typically many possible models for a given prob-
lem, and the model chosen can dramatically affect the effi-
ciency of constraint solving. This presents a serious obsta-
cle for non-expert users, who have difficulty in formulating a
good (or even correct) model from among the many possible
alternatives. Modelling is therefore a critical bottleneck in the
process of constraint solving, considered to be one of the key
challenges facing the constraints field [Freuder, 2018].

This paper presents the automated constraint modelling
system CONJURE, which serves to demonstrate the efficacy
of the refinement-based approach. A problem is input to
CONJURE in ESSENCE, an abstract constraint specification
language. ESSENCE’s support for abstract decision variables
with types such as set, multiset, relation and function, as
well as nested types, such as set of sets and multiset of re-
lations allows a problem to be specified without committing
to constraint modelling decisions. To illustrate, consider the
fragment of the ESSENCE specification of the Social Golfers
Problem [Sellmann and Harvey, 2002] presented in Figure 1.
Given a number of weeks (w), a number of groups (g) and a
group size (s), the problem is to find a schedule of play over
the w weeks for the g×s golfers divided into g groups of size
s, subject to a socialisation constraint among the golfers that
stipulates that no pair of golfers play together more than once.
The Social Golfers Problem is naturally conceived as find-
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ing a set of partitions of golfers subject to some constraints,
which can be specified in ESSENCE via a single abstract de-
cision variable, as presented in the figure where the variable
is sched.

The work presented in [Akgün et al., 2022] summarises
and extends over fifteen years of our work on automated
constraint modelling. Our earliest work on refinement-based
automated constraint modelling appeared between 2002 and
2005 [Frisch et al., 2002; Frisch et al., 2003; Bakewell et al.,
2003; Frisch et al., 2005b; Frisch et al., 2005c]. We intro-
duced the ESSENCE language in 2005 [Frisch et al., 2005a;
Frisch et al., 2007], which is the subject of a separate journal
article [Frisch et al., 2008]. Following the presentation of ini-
tial prototypes [Frisch et al., 2005c; Akgun et al., 2010] the
first full version of CONJURE was presented in 2011 [Akgun
et al., 2011] then extended to handle automated symmetry
breaking [Akgun et al., 2013; Akgun et al., 2014], and pre-
sented in detail in Akgun’s thesis [Akgun, 2014]. [Akgün et
al., 2022] gives a complete overview of CONJURE, including
the most recent advances.

1.1 Contributions
CONJURE provides class-level refinement of specifications
containing arbitrarily nested types and expressions into effi-
cient constraint models. Achieving this goal required several
significant contributions and insights, which we summarise
here:

• CONJURE is unique in refining problem class specifica-
tions to class-level constraint models.

• Multiple models are generated from one ESSENCE spec-
ification by following different rule application path-
ways.

• CONJURE is able to refine nested abstract types (for ex-
ample, a set of sets of integers) without enumerating all
possible values of the inner type (in this example, set of
integers).

• Symmetry introduced during refinement is broken con-
sistently and completely.

• CONJURE is able to generate channelled models by rep-
resenting an abstract decision variable in more than one
way, with an elegant mechanism for producing chan-
nelling constraints from a simple equality constraint.

• Model selection is achieved via the simple and
lightweight COMPACTEP heuristic, which is shown to
select good models in many cases.

• The system is evaluated comprehensively on 42 problem
classes from CSPLib [Jefferson et al., 1999], demon-
strating that CONJURE is able to generate models similar
to models in the literature produced by experts.

2 Automated Modelling in Conjure
In this section we set the scene for automated modelling by
describing CONJURE itself, the pipeline of tools it sits within,
and the languages produced and consumed by CONJURE and
the other tools.

Conjure

Savile Row

Solver

SolutionParametersSpecification

Essence

Essence Prime

Solver Language

Figure 2: Automated Constraint Modelling Pipeline

2.1 The Pipeline

Our modelling and solving pipeline is illustrated in Figure 2.
An ESSENCE problem specification is given to CONJURE,
which refines the specification into a set of concrete mod-
els in ESSENCE PRIME. Both the specification and the model
typically relate to a problem class, i.e. they both have prob-
lem class parameters that need to be instantiated before in-
stances of the class can be solved. CONJURE separately trans-
lates problem class parameters expressed in ESSENCE into
ESSENCE PRIME using the representations selected when re-
fining the problem specification. This allows the user to solve
multiple instances of the same problem class while only per-
forming refinement once.

SAVILE ROW [Nightingale et al., 2017] is the second tool
in the pipeline. It takes as input the model and problem
class parameters in ESSENCE PRIME, and produces output
for a number of different solvers. SAVILE ROW instanti-
ates the model and performs optimisations before translating
the instance into the input language of a solver. Currently
SAVILE ROW translates to CP solvers MINION [Gent et al.,
2006] and Gecode [Schulte et al., 2023], the learning CP
solver Chuffed [Chu et al., 2018], SAT solvers such as Glu-
cose [Audemard and Simon, 2009], MaxSAT solvers such as
Open-WBO [Martins et al., 2014], and SMT solvers such as
Yices [Dutertre, 2014], Z3 [De Moura and Bjørner, 2008],
and Boolector [Niemetz et al., 2014 published 2015].

Once a solution has been found SAVILE ROW translates the
solution back into ESSENCE PRIME. CONJURE then trans-
lates the ESSENCE PRIME solution back into ESSENCE. Thus
the user of CONJURE can specify a problem in terms of ab-
stract types such as partition, and receive solutions in terms
of the same types.
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2.2 Summary of the ESSENCE Language

CONJURE takes as input an abstract problem specification
written in ESSENCE and automatically generates ESSENCE
PRIME models as output. ESSENCE is a high-level prob-
lem specification language providing a rich set of built-in
domains and domain constructors (parameterised domains),
such as multi-sets, functions, and partitions. Decision vari-
ables can have these domains so as to precisely encode what
they mean, and to avoid the need to model these complex
domains via multiple decision variables with simpler do-
mains. ESSENCE domains that are not directly represented
in ESSENCE PRIME are called abstract domains and domains
that are shared between the two languages are called concrete
domains (Boolean, int, and matrices of these). We also char-
acterise domains as compound when they contain multiple
elements (such as a tuple or matrix). Tuples and records con-
tain a fixed number of fields. Fields in a tuple domain are
identified by their position and fields in a record domain are
identified by the field name. Variants are tagged unions: they
contain a single value for one of the components, tagged by
the name of the component. Domains and domain construc-
tors may be nested arbitrarily, allowing for rich domains such
as a partition of sets of integers.

For further details the reader is referred to the original jour-
nal paper describing ESSENCE [Frisch et al., 2008] and the
frequently updated documentation accompanying the CON-
JURE release [Özgür Akgün et al., 2022].

3 Refinement Rules in CONJURE

CONJURE translates an abstract problem specification written
in ESSENCE into a concrete model in ESSENCE PRIME via a
series of transformations. These transformations are written
as rules in CONJURE. There are two main kinds of rules:
representation selection and expression refinement. Apply-
ing representation selection rules to each abstract variable in
a specification corresponds to choosing a viewpoint for the
problem. A viewpoint is a selection of variables with as-
sociated domains sufficient to characterise the solutions to
the problem. Different viewpoints give rise to fundamen-
tally different models of a problem [Law and Lee, 2002;
Smith, 2006]. Multiple representation selection rules may be
applied to the same abstract variable to create a channelled
model [Cheng et al., 1996], in which a single abstract de-
cision variable is refined in multiple ways. Expression re-
finement rules rewrite expressions to use one of the selected
representations of an abstract variable. Thus the two types
of rules correspond to modelling steps taken by human mod-
ellers: selection of a viewpoint or viewpoints, and formulat-
ing the constraints.

Refinement rules in CONJURE encode known modelling
transformations that are well established in the literature and
are known to be correct. We do not formally prove the cor-
rectness of the refinement rules; a full and formal exposition
of the rules together with proofs of correctness is out of the
scope of this paper.

3.1 Representation Selection Rules and Symmetry
Breaking

Representation selection rules operate on decision variables
or parameters with abstract domains. When a representation
selection rule is applied to a domain, it removes the outermost
abstract type and replaces it with a concrete type such as a
matrix. The output domain is not necessarily concrete, how-
ever a concrete domain can always be reached by repeated
application of representation selection rules.

In some cases the output domain of a representation se-
lection rule may have values in its domain that do not corre-
spond to values of the input domain. In this case, structural
constraints are needed to rule out these values.

3.2 Expression Refinement Rules
Expression refinement rules are the second kind of rules in
CONJURE. They are used to translate ESSENCE expressions
to equivalent ESSENCE PRIME expressions. They may or
may not depend on the representations of decision variables
and parameters. Rules that do not depend on representations
are called horizontal rules, and those that do are called verti-
cal rules. Horizontal rules do not change the representation
of decision variables, they merely translate ESSENCE expres-
sions to other ESSENCE expressions. Horizontal rules are
representation independent, and they reduce the need for a
very large number of representation-dependent vertical rules.

4 Model Selection with the COMPACTEP
Heuristic

CONJURE is able to produce multiple models by enumerating
all possible ways of selecting representations. If time is lim-
ited it is sensible to provide a rapid model selection method,
avoiding both generating all models and training using in-
stance data. In earlier work we proposed a method based on
racing [Akgun et al., 2013] to select a subset of the models
that perform well on a given set of training instances. Racing
methods allow comparing alternative algorithms without nec-
essarily having to run all algorithms on all instances. Racing
for model selection can be very computationally expensive.
The focus of this paper is on refinement within CONJURE so
we omit model selection methods that are essentially external
to CONJURE such as racing.

CONJURE contains greedy model selection heuristics that
are used for making local decisions during model genera-
tion. These can be employed during both representation se-
lection and expression refinement. The default heuristic is
called COMPACTEP, which stands for “compact except pa-
rameters”, and it is a combination of the COMPACT heuristic
and the SPARSE heuristic. We define these heuristics in the
following.

The COMPACT heuristic favours transformations that pro-
duce simpler types of variables and smaller expressions at
each point during refinement where multiple rules are ap-
plicable. We define the compact ordering on abstract types
as follows: concrete domains (such as bool, matrix)
are smaller than abstract domains; within concrete do-
mains, bool is smaller than int and int is smaller than
matrix. These rules are applied recursively, so that a
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one-dimensional matrix of int is smaller than any two-
dimensional matrix. Abstract type constructors have the
ordering set < mset < sequence < function <
relation < partition, which is also applied recur-
sively. At each stage of representation selection, the COM-
PACTEP heuristic will select the smallest domain according
to this order.

During expression refinement COMPACT chooses the rule
that produces the most shallow abstract syntax tree (AST) di-
rectly following its application.

The SPARSE heuristic is intended to enable small represen-
tations of parameter values. It employs a built-in ordering of
representations that gives priority to those that take advantage
of sparsity.

The default COMPACTEP heuristic is a combination of
these two heuristics: during representation selection, CON-
JURE uses the SPARSE heuristic when representing problem
class parameters and the COMPACT heuristic for everything
else.

5 Evaluation: CONJURE Produces Kernels of
Good Models

CONJURE provides full coverage of the ESSENCE language.
It has at least one variable representation rule (typically sev-
eral) for every abstract variable type, as well as horizontal
and vertical expression refinement rules for every operators
defined on them. In this section we test the hypothesis that
the kernels of constraint models written by experts can be au-
tomatically generated by refining a problem’s abstract spec-
ification. For two CP models to have the same model ker-
nel, they need to share the same viewpoint, the same rep-
resentation of decision variables and the same formulation
of the problem constraints, together with symmetry break-
ing. Expert models might have additional features such as
implied constraints or dominance breaking [Beck and Prest-
wich, 2004] constraints, these are not considered to be in the
kernel of the CP model for this evaluation. Some expert mod-
els contain global constraints that are not present in ESSENCE
PRIME. In these cases, if CONJURE generates an equivalent
decomposition then we consider the two models to have the
same kernel.

In order to test this hypothesis, we took a diverse set of 42
benchmark problems drawn from the literature and refined
them with CONJURE. Our main source for these problems is
CSPLib [Jefferson et al., 1999]. We cover the entire CSPLib
problem class collection (at the time of writing), except those
problems that are naturally represented using only matrices of
Booleans or integers, i.e. without the facilities that ESSENCE
provides in addition to those of lower level constraint mod-
elling languages.

In [Akgün et al., 2022], we present the set of problem
classes and the abstract types of their decision variables in
ESSENCE. Additionally, we cite the papers that contain a
kernel that CONJURE is able to generate. We begin by noting
the variety of decision variable types involved in the bench-
mark problems, representing further evidence that the current
collection of rules, the rewrite rule mechanism, and the CON-
JURE system as a whole is capable of refining a wide variety

of abstract problem specifications into concrete models. The
number of models generated for a problem specification de-
pends on the number of representation options for its decision
variables.

6 Conclusion
In this extended abstract and in the full version of this pa-
per [Akgün et al., 2022] we have presented the automated
constraint modelling system CONJURE. It employs a set of
refinement rules to transform the specification of a parame-
terised problem class in the abstract constraint specification
language ESSENCE into a concrete constraint model. By
varying the selection and application of these rules CONJURE
can produce a set of alternative models. We have demon-
strated on a large set of problem classes that, in the vast ma-
jority of cases, the set produced includes those formulated
by human experts in the literature. Furthermore, we have
presented a heuristic by which an effective model can be se-
lected.
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