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Abstract

Time-series data arises in many real-world appli-
cations (e.g., mobile health) and deep neural net-
works (DNNs) have shown great success in solving
them. Despite their success, little is known about
their robustness to adversarial attacks. In this pa-
per, we propose a novel adversarial framework re-
ferred to as Time-Series Attacks via STATistical
Features (TSA-STAT). To address the unique chal-
lenges of time-series domain, TSA-STAT employs
constraints on statistical features of the time-series
data to construct adversarial examples. Optimized
polynomial transformations are used to create at-
tacks that are more effective (in terms of success-
fully fooling DNNs) than those based on additive
perturbations. We also provide certified bounds on
the norm of the statistical features for constructing
adversarial examples. Our experiments on diverse
real-world benchmark datasets show the effective-
ness of TSA-STAT in fooling DNNs for time-series
domain and in improving their robustness.

1 Introduction
We are seeing a significant growth in the Internet of Things
(IoT) and mobile applications which are based on predictive
analytics over time-series data collected from various types
of sensors [Belkhouja and Doppa, 2020]. Some important ap-
plications include smart home automation [Aminikhanghahi
et al., 2018], mobile health [Ignatov, 2018], smart grid man-
agement [Zheng et al., 2017], and finance [Ozbayoglu et al.,
2020]. Deep neural networks (DNNs) have shown great suc-
cess in learning accurate predictive models from time-series
data [Wang et al., 2017; Luo et al., 2019; Luo et al., 2018].
In spite of their success, very little is known about the ad-
versarial robustness of DNNs for time-series domain. Most
of the prior work on adversarial robustness for DNNs is fo-
cused on image domain [Kolter and Madry, 2018; Carlini and
Wagner, 2017; Chen and Gu, 2020; Athalye et al., 2018; Hos-
seini et al., 2017; Xiao et al., 2018; Laidlaw and Feizi, 2019;
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Chen et al., 2020; Moosavi-Dezfooli et al., 2017] and nat-
ural language domain [Wang et al., 2019; Gao et al., 2018;
Samanta and Mehta, 2017]. Adversarial perturbations are
constructed by bounding an lp-norm and depend heavily on
the input data space: they can be a small noise to individual
pixels of an image or word substitutions in a sentence. Adver-
sarial examples expose the brittleness of DNNs and motivate
creation of training methods to improve model robustness.

Time-series domain poses unique challenges (e.g., sparse
peaks, fast oscillations) that are not encountered in both im-
age and natural language domains [Belkhouja et al., 2022;
Belkhouja et al., 2023]. The standard approach of impos-
ing an lp-norm bound is not applicable as it does not capture
the true similarity between time-series signals [Hussein et
al., 2022]. Consequently, lp-norm constrained perturbations
[Fawaz et al., 2019; Kurakin et al., 2016; Karim et al., 2020;
Siddiqui et al., 2019] can potentially create adversarial ex-
amples which correspond to a different class label. There is
no prior work on filtering methods in the signal processing
literature to automatically identify such invalid adversarial
candidates. Hence, adversarial examples from prior methods
based on lp-norm will confuse the learner when they are used
to improve the robustness of DNNs via adversarial training
[Tramer et al., 2020; Tramèr et al., 2018], i.e., augmenting
the original training data with adversarial examples. In other
words, the accuracy of DNNs can potentially degrade on real-
world time-series data after adversarial training.

In this paper, we propose a novel framework referred to
as Time-Series Attacks via STATistical Features (TSA-STAT)
and provide certified bounds on robustness. TSA-STAT relies
on three key ideas. First, we create adversarial examples by
imposing constraints on statistical features of the clean time-
series signal. This is inspired by the observation that time-
series data are comprehensible using multiple statistical tools
rather than the raw data [Ignatov, 2018; Christ et al., 2016;
Ge and Ge, 2016]. The statistical constraints allow us to cre-
ate valid adversarial examples that are more similar to the
original time-series signal when compared to lp-norm con-
strained perturbations. Second, we employ polynomial trans-
formations to create adversarial time-series examples. We
theoretically prove that polynomial transformations expand
the space of valid adversarial examples over traditional addi-
tive perturbations, i.e., identify blind spots of additive per-
turbations. Our experiments demonstrate that polynomial
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Figure 1: High-level overview of the TSA-STAT framework to create adversarial examples using optimized polynomial transformations.
Given an input time-series signal X , a target label ytarget, a DNN classifier Fθ , and a set of statistical features S, TSA-STAT solves an
optimization problem over two different losses to find the parameters of the polynomial transformation: 1) A statistical loss to ensure that
original time-series signal X and the generated adversarial example Xadv are highly similar; and 2) A classification loss to make sure that
the DNN classifier Fθ classifies Xadv with the target class label ytarget.

transformation based attacks are more effective (in terms
of successfully fooling time-series DNNs) than those based
on additive perturbations. Third, to create attacks of dif-
ferent types, we solve an appropriate optimization problem
to identify the parameters of the polynomial transformation
via gradient descent. Figure 1 provides a conceptual illus-
tration of the TSA-STAT algorithm. Certifiable robustness
[Raghunathan et al., 2018; Hein and Andriushchenko, 2017;
Cohen et al., 2019; Li et al., 2019; Huang et al., 2017] stud-
ies DNN classifiers whose prediction for any input X is ver-
ifiably constant within some neighborhood around X , e.g.,
lp ball. We derive a certified bound for robustness of adver-
sarial attacks using TSA-STAT. Our TSA-STAT framework
provides certification guarantees that are applicable to DNNs
for the time-series domain with different network structures.

The key contributions of this paper is the development,
theoretical analysis, and experimental evaluation of the TSA-
STAT framework [Belkhouja and Doppa, 2022]. Specific
contributions include:

• Development of a principled approach to create targeted
adversarial examples for the time-series domain using
statistical constraints and polynomial transformations
with theoretical analysis proving that polynomial trans-
formations expand the space of valid adversarial exam-
ples over additive perturbations.

• Derivation of a certified bound for adversarial robustness
of TSA-STAT that is applicable to any deep model for
time-series domain.

• Comprehensive experimental evaluation of TSA-STAT
on diverse real-world datasets and comparison with
state-of-the-art baselines that demonstrate the practical
benefits of extending the space of valid adversarial ex-
amples over those from prior lp-norm based methods.

2 The TSA-STAT Framework
2.1 Key Elements
1) Statistical constraints. Time-series data is often an-
alyzed using diverse statistical tools [Montgomery et al.,

2015]. Machine learning models have achieved good clas-
sification performance using statistical features of time-series
data [Fulcher and Jones, 2014]. These prior studies moti-
vate us to use statistical features of time-series data to de-
velop adversarial algorithms. We propose a new definition
to create adversarial examples for time-series signals. Let
Sm(X) = {S1(X), S2(X), · · · , Sm(X)} be the set of sta-
tistical features of a given time-series signal X (e.g., mean,
standard deviation, kurtosis). We define an adversarial exam-
ple Xadv derived from X as follows:{

∀ 1 ≤ i ≤ m, ∥Si(Xadv)− Si(X)∥∞ ≤ ϵi
and Fθ(X) ̸= Fθ(Xadv)

(1)

where ϵi is the bound for the ith statistical feature. Using
this definition, we call to change the conventional lp distance-
based neighborhood-similarity to one based on statistical fea-
tures for creating valid adversarial examples. We conjecture
that this definition is better suited for adversarial examples in
time-series domain and our experiments support this claim.

2) Polynomial transformation-based attacks. To explore
a larger space of valid adversarial examples when compared
to traditional additive perturbations, we propose polynomial
transformation based attacks. The aim of this approach is
to find a transformation over the input space that creates
effective adversarial attacks. Hence, we define polynomial
transformation PT : Rn×T → Rn×T as follows:Xadv =
PT (X) = PT (Xi,j) ∀(i, j) ∈ [n]× [T ] where X ∈ Rn×T

is the input time-series signal and Xadv is the corresponding
adversarial example. The key idea is to create a threat model
that does not require calling back the deep model for every
new adversarial attack. Our goal is to preserve dependencies
between features of the input space by having a transforma-
tion PT (·) that depends on the input time-series X , unlike
the standard additive perturbations. Inspired by power series
[Drensky and Holtkamp, 2006], we approximate this trans-
formation PT (·) using a polynomial representation with a
chosen degree d:

PT (X) =
∑d

k=0
ak Xk +O(Xd+1), (2)
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where ak ∈ Rn×T denote the polynomial coefficients and O
stands for Big O notation.
Theorem 1. For a given input space Rn×T and d ≥ 1, poly-
nomial transformations allow more candidate adversarial ex-
amples than additive perturbations in a constrained space. If
X ∈ Rn×T and PT : X →

∑d
k=0 ak Xk, then ∀Xadv s.t.

∥Si(Xadv)− Si(X)∥∞ ≤ ϵi:{
Xadv = PT (X), ∀ak

}
⊋

{
Xadv = X + δ, ∀δ

}
, Si ∈ Sm(X)

⋃
Identity.

The above theorem states that polynomial transformations
expand the space of valid adversarial examples and identify
blind spots of additive perturbations. In other words, the the-
orem explains that some of the adversarial examples created
using polynomial transformations are not possible using stan-
dard additive perturbations.

3) Optimization based adversarial attacks. To create
powerful adversarial examples to fool the deep model Fθ(X),
we need to find optimized coefficients ak, ∀ k=0 to d, of
the polynomial transformation PT (X). Our approach min-
imizes a loss function L using gradient descent that has two
elements:

• Classification loss. To enforce an input signal X to
be mis-classified to a target class yt (different from true
class label y ∈ Y ), we employ the formulation of [Car-
lini and Wagner, 2017] to define a loss function:

Llabel(PT , X)=max
[
max
y ̸=yt

(Zy(PT (X))-Zyt
(PT (X)), ρ

]
where ρ < 0. This loss function will ensure that the
adversarial example will be moving towards the space
where it will be classified by the DNN as class yt with a
confidence |ρ| using the output of the pre-softmax layer
{Zy}y∈Y .

• Statistical loss. To preserve the similarity between an
input and its adversarial example, we propose another
loss function that controls the close proximity of statis-
tical features in a given set Sm. This loss function over-
comes the impractical use of projection functions on the
statistical feature space.

Lstat(PT , X,Sm) ≜
∑

Si∈Sm

∥Si(PT (X))− Si(X)∥∞

The final combined loss function L that we want to mini-
mize to obtain coefficients ak of the polynomial transforma-
tion PT (·) is as follows:

L(PT , X,Sm)=βl · Llabel(PT , X)+βs · Lstat(PT , X,Sm) (3)

where βl and βs are hyper-parameters that can be used to
change the trade-off between Llabel and Lstat. We note that
experiments showed good results by simply using βl=βs=1.

2.2 Instantiations of TSA-STAT
Our goal is to create targeted adversarial attacks on a classifier
Fθ. An adversarial example Xadv for a single-instance input
X is defined as Xadv = PT yt

(X) =
∑d

k=0 ak Xk s.t.:{
∥Si(Xadv)− Si(X)∥∞ ≤ ϵi ∀Si ∈ Sm

Fθ(Xadv) = yt

where yt is the target class-label of the attack. This adversar-
ial example is constructed by employing a gradient descent
based optimizer to minimize the loss function in Equation 3
over {ak}0≤k≤d defining PT .

For black-box attacks where adversarial examples are cre-
ated with no knowledge about the target deep model param-
eters θ, the attacker queries the target model to get the pre-
dicted label for any input time-series X . This allows the cre-
ation of a proxy deep model to mimic the behavior of the tar-
get model [Tramer et al., 2020; Papernot et al., 2017] and to
be used to compute the adversarial examples. We can also
employ TSA-STAT to create universal perturbations. A
universal perturbation generates a single transformation that
is applicable for any input X ∈ Rn×T . We introduce a tar-
geted universal attack in this setting as:

Xadv = PT yt
(X) s.t. PT yt

(F (Xadv) = yt) > (1− et)
(4)

where et represents the error probability of creating an ad-
versarial example that Fθ would classify it with label y ̸= yt.
Our proposed algorithm analyzes a given set of input time-
series signals to find coefficients {ak}0≤k≤d that would push
the image of multiple inputs PT yt(X) to the decision bound-
ary of a target class-label yt defined by the classifier Fθ.

3 Certificates for Adversarial Robustness
We propose a novel certification approach for adversarial ro-
bustness of the TSA-STAT framework. Given a time-series
input X ∈ Rn×T and a classifier Fθ, our overall goal is to
provide a certification bound δ on the ∥ · ∥∞-norm over the
statistical features Sm(X) of the time-series signal X . This
bound will guarantee the robustness of classifier Fθ in pre-
dicting Fθ(Xadv) = Fθ(X) for any adversarial time-series
Xadv such that

∑
Si∈Sm ∥Si(Xadv)− Si(X)∥∞ ≤ δ.

To derive the certification bound that is suitable for a time-
series input X ∈ Rn×T and a classifier Fθ, we employ two
different noise distributions to generate two different noise
samples that we denote nP ∈ Rn×T and n0 ∈ Rn×T .
nP ∼ N (µP , ·) is generated to mimic the perturbation char-
acterizing the robustness of classifier Fθ for predicting the
same label for perturbed time-series. n0 ∼ N (0, ·) is gener-
ated as an arbitrary noise needed for the computation of the
certification bound. If both perturbations result in the same
classifier prediction, we compute the tolerable perturbation’s
upper bound δ = max ∥µP ∥∞ as shown in Theorem 2.

Theorem 2. Let X ∈ Rn×T be an input time-series signal.
Let nP ∼ N (µP ∈ Rn,

∑
) and n0 ∼ N (0,

∑
). Given

a classifier Fθ : Rn×T → Y that produces a probability
distribution (p1, · · · , pk) over k labels for Fθ(X + nP ) and
another probability distribution (p01, · · · , p0k) for Fθ(X+n0).
To guarantee that argmax

pi

pi = argmax
p0
i

p0i , the following

condition must be satisfied:

∥µP ∥2∞ ≤ max
α ̸=1

2

α ·
∑(S)

(5)

· (−ln(1− p(1) − p(2) + 2(
1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ))
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where
∑(S) is the sum of all elements of

∑
.

Lemma 1. If a certified bound δ is generated for the mean of
an input signal X and a classifier Fθ, then certified bounds
for other statistical features can be derived consequently.

4 Experiments and Results
We briefly summarize the main results from [Belkhouja and
Doppa, 2022].

4.1 Experimental Setup
To evaluate the proposed TSA-STAT framework, [Belkhouja
and Doppa, 2022] employed diverse uni-variate and multi-
variate time series benchmark datasets [Bagnall et al., 2020;
Dua and Graff, 2017; Kwapisz et al., 2011]. For this extended
abstract, we only show the performance over two datasets
(WD and SC) noting that similar patterns are found on other
datasets. Three different 1D-CNN architectures are used to
create three deep models as target DNN classifiers: WB for
white-box setting, and BB1 and BB2 for the black-box set-
ting respectively. We employ models that are trained with
clean data and others using augmented data from baselines at-
tacks: Fast Gradient Sign method (FGS) [Fawaz et al., 2019],
Carlini & Wagner (CW) [Carlini and Wagner, 2017], and Pro-
jected Gradient Descent (PGD) [Madry et al., 2017].

4.2 Results and Discussion
Spatial distribution of TSA-STAT outputs. We employ
a t-Distributed Stochastic Neighbor Embedding (t-SNE)
[Maaten and Hinton, 2008] technique to visualize the adver-
sarial examples generated by TSA-STAT and PGD, an lp-
norm based attack. Figure 2 illustrates a representative ex-
ample of the spatial distribution between same-class data of
HAPT dataset, and their respective adversarial examples us-
ing TSA-STAT and PGD. We can see that TSA-STAT suc-
ceeds in preserving the similarity between the original and ad-
versarial example pairs, and in most cases, better than PGD.

Effectiveness of adversarial examples from TSA-STAT.
We show the effectiveness of generated adversarial examples
to fool different deep models for time-series domain. We
evaluate TSA-STAT using αEff ∈ [0, 1] (higher means better
attacks) that measures the capability of targeted adversarial
examples to fool a given classifier. Figure 3 shows the results
for instance-specific and universal attacks under white-box
and black-box settings on different deep models. Figure 4
shows the results of different deep models after adversarial
training based on different methods including TSA-STAT.

Figure 2: tSNE visualization showing the distribution of natural and
adversarial examples from TSA-STAT and PGD on HAPT dataset.

(a) TSA-STAT instance-specific adversarial examples

(b) TSA-STAT universal adversarial examples

Figure 3: Results for TSA-STAT attack on different models.

Figure 4: Results for adversarial training using adversarial examples
from different methods for different deep models.

These experiments summarize the effectiveness of adver-
sarial examples from TSA-STAT and show that statistical fea-
tures are well-justified for time-series data. If the standard lp-
norm-based methods from the image domain were to be very
effective for the time-series domain, 1) TSA-STAT’s attacks
would not be able to fool the models using baselines as a de-
fense method, and 2) TSA-STAT’s adversarial training would
not outperform the baselines on clean accuracy.

4.3 Summary of Results
• The similarity measure based on statistical features is

more effective for time-series data when compared to
the standard lp-norm based algorithms.

• Adversarial attacks created by TSA-STAT are very ef-
fective in fooling DNNs for time-series classification
tasks and evading adversarial training based DNNs us-
ing adversarial examples created by prior methods.

• TSA-STAT provides better true-label guarantees (exam-
ples belonging to the semantic space of true label) than
prior methods and can compute certification guarantees
for robust classification as stated in Theorem 2.
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