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The formulation of knowledge typically involves the
use of by-default axioms that can be overridden in order to
accommodate specific exceptions. Biologists, in particular,
have commonly followed an incremental approach to intro-
duce exceptions to general properties. For instance, in hu-
mans, the heart is typically positioned on the left side of the
thorax. However, there are individuals born with a condition
called situs inversus, where the heart is located on the oppo-
site side of the body. Similarly, eukaryotic cells are generally
defined as having a nucleus, but mammalian red blood cells,
in their mature stage, do not possess a nucleus.

Similarly, privacy policies generally include default con-
ditions, such as open and closed policies, conflict resolution
methods such as denials take precedence, and authorization
inheritance with exceptions [Bonatti and Samarati, 2003].

Description logics (DLs), which underlie the Semantic
Web standard OWL2, do not allow to express defeasi-
ble knowledge and exceptions. Consequently, several au-
thors proposed different nonmonotonic extentions as a use-
ful means to address this limitation [Bonatti et al., 2011a;
Bonatti et al., 2010; Bonatti et al., 2011b; Donini et al., 2002;
Giordano et al., 2013; Giordano et al., 2009; Giordano et al.,
2015; Casini and Straccia, 2010; Bonatti, 2019].

In this context, DLN [Bonatti et al., 2015a; Bonatti and
Sauro, 2017; Bonatti et al., 2015b] is a recent family of non-
monotonic DL which derives from a utilitarian approach to
nonmonotonic logic. The primary objective of this approach
is to meet the practical requirements of ontology design-
ers, which are highlighted by a number of instances in the
literature on biomedical ontologies and semantic web poli-
cies. DLN features normality concepts NC to denote the
standard/prototypical instances of a concept C, and priori-
tized defeasible inclusions (DIs) C ⊑n D that mean (roughly
speaking): “by default, all prototypical instances that satisfy
C satisfy also D, unless stated otherwise”, that is, unless
some higher priority axioms contradict this implication; in
this case, C ⊑n D is overridden. The standard/prototypical
instances of C are required to satisfy all the DIs that are not
overridden in C.

DLN adopts the simplest possible criterion for overriding,
that is, inconsistency with higher priority axioms. Conflicts
between DIs that cannot be resolved with priorities are re-

* This is an extended abstract of [Bonatti et al., 2022].

garded as knowledge representation errors and are to be fixed
by the knowledge engineer (typically, by adding specific DIs).
As a consequence, all the normal instances of a concept C
conform to the same set of default properties, sometimes
called prototype. Here is a summary of the main strenghts
of DLN .

No inheritance blocking. Most of the logics grounded on
preferential semantics and rational closure block the inheri-
tance of all default properties towards exceptional subclasses
(as opposed to overriding only the properties that are modi-
fied in those subclasses). DLN ’s overriding mechanism does
not suffer from this drawback.

No undesired CWA effects. Many nonmonotonic DLs ex-
tend default properties to as many individuals as possible,
thereby introducing CWA (i.e. closed-world assumption) ef-
fects that clash with the intended behavior of ontologies.
DLN does not introduce any CWA effect because it does not
force individuals to be normal, unless explicitly stated other-
wise.

Control on priorities. Since priorities are not fixed a priori
in DLN , knowledge engineers can adapt them to their needs.
In principle, it is possible to override DIs based on tempo-
ral criteria (which may be useful in legal ontologies and on-
tology versioning), define default conflict resolution criteria,
and even use rational closure’s specificity-based axiom rank-
ing. The logics derived from inheritance networks, prefer-
ential semantics, and rational closure can only support their
fixed, specificity-based overriding criterion.

Default role fillers. DLN axioms can specify whether a
role should range only over normal individuals or not. Some
logics are completely unable to apply default properties to
role values.1 Some others cannot switch this inference off
when it is not desired. Only DLN and ALC +Tmin make it
possible to control this kind of inference.

Inconsistent prototype detection. DLN facilitates the iden-
tification of all conflicts that cannot be resolved with priorities
(via consistency checks over normality concepts), because
their correct resolution is application dependent and should
require human intervention.

1This is the case for rational closure. Recently, in [Pensel, 2019],
a solution has been proposed for EL with ⊥. It is unclear how to
extend it to more expressive DLs, and it is not possible to “turn off”
the application of default rules to role fillers.
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Unique deductive closure. As a result of automated con-
flict resolution, several nonmonotonic logics yield multiple
deductive closures, corresponding to all the alternative ways
of solving each conflict. DLN is one of the logics that has a
unique closure.

Generality. DLN can be uniformly applied to all de-
scription logics up to the standard OWL2-DL (i.e. the logic
SROIQ(D)). Typicality logics and rational closure, instead,
are limited to logics that satisfy the disjoint union model prop-
erty. Recently, it has been shown that for expressive DLs that
do not enjoy this property, syntactic inference does not match
semantics [Bonatti, 2019]. The same paper introduces stable
rational closure that solves the generality problem for ratio-
nal closure, but re-introduces the issue of multiple (or non
existent) deductive closures. It is currently not clear how to
design a logic that satisfies the KLM postulates, is fully gen-
eral, and yields a unique closure for all knowledge bases.

Low complexity. DLN preserves the tractability of sub-
sumption and instance checking for all low-complexity DLs,
including the rich tractable logics EL++ and DL-lite(HN )

Horn .
Currently, no other nonmonotonic DL enjoys this property
to the same extent. Rational closure has been proved to
be tractable for EL extended with ⊥ [Casini et al., 2019;
Pensel, 2019]. Some logics, such as [Casini and Strac-
cia, 2010; Casini et al., 2013; Casini and Straccia, 2013;
Giordano et al., 2009; Giordano et al., 2013], preserve the
asymptotic complexity of ExpTime-complete DLs like ALC.
More generally, DLN preserves the asymptotic complexity
of all the DLs that belong to a deterministic complexity class
that contains P. For nondeterministic complexity classes C, an
upper bound is P C .

In [Bonatti et al., 2015a; Bonatti and Sauro, 2017] the se-
mantic properties of DLN and the computational complexity
of the related reasoning tasks have been thoroughly studied.
As mentioned above DLN preserves the tractability of low-
complexity DLs, this opens the way to processing very large
nonmonotonic KBs within these fragments. For practical pur-
poses, however, asymptotic tractability alone is insufficient.
DLN reasoning is based on an iterative procedure that, given
the signature of the queries of interest, discards overridden
inclusions and transforms the other defeasible inclusions into
classical axioms. In the worst case the number of concept
consistency checks carried out by this reduction is quadratic
in both the knowledge base and of input signature size. These
consistency checks are conducted on different subsets of the
knowledge base, which are generally uncomparable. This is
why they cannot be computed by a single classification of the
knowledge base.

In [Bonatti et al., 2015a], a preliminary implementation
of a DLN reasoner has clearly demonstrated that such a
quadratic dependence can significantly slow down the execu-
tion of the computation, even when the engine takes advan-
tage of the incremental reasoning facilities native to state-of-
the-art reasoners like ELK. Consequently, practical reasoning
on large knowledge bases – such as biomedical ontologies –
requires ad hoc optimizations to detect and prune unneces-
sary computations during the reduction to classical DL. For
this purpose, we propose two optimization techniques that ef-

fectively speed up reasoning.
The first optimization focuses on discarding irrelevant ax-

ioms for a given query by adapting a classical module ex-
traction algorithm to DLN. This technique also reduces the
number of iterations required for the reduction to classical
DL. However, adapting classical module extractors to DLN
is a challenging task due to the nonmonotonic nature of its
inferences.

As mentioned earlier, the initial DLN reasoner utilized the
incremental reasoning mechanisms of the underlying classi-
cal reasoner. The second optimization, known as the opti-
mistic method, aims to minimize the number of retractions,
which are typically the most computationally expensive op-
erations in incremental reasoning.

The efficiency of each optimization and their combined ef-
fect is evaluated through experimental analysis. To ensure
realistic test cases, we conducted experiments on nonmono-
tonic versions of prominent biomedical ontologies, includ-
ing Gene Ontology, Fly Anatomy, and SNOMED. These on-
tologies not only find applications in specific scenarios but
are also widely adopted as benchmarks for assessing perfor-
mance. To the best of our knowledge, this study represents
the first exploration in the field of Description Logics to ap-
ply nonmonotonic reasoning techniques to knowledge bases
containing a significant number of axioms, ranging between
approximately ∼ 20, 000 and ∼ 30, 000.

First, we considered the nonmonotonic versions of Fly
Anatomy (>19K axioms) and Gene Ontology (>28K ax-
ioms) obtained by transforming classical inclusions into de-
feasible inclusions. In all of these experiments the average
query response time is below one second, and mostly be-
low 0.5 seconds. Similar experiments based on SNOMED
(>290K axioms) yield response times between 1.5 and 4.6
seconds, that are compatible with a wide range of use cases.
In another set of experiments, we have injected random DIs
in Fly Anatomy, Gene Ontology, and SNOMED, thereby in-
creasing their size up to 25%, and introducing random de-
pendencies between different parts of the knowledge base.
For the smaller ontologies Fly Anatomy and Gene Ontol-
ogy, response times are always below 1.5 minutes, and less
than 4 seconds in most test cases. For SNOMED, the hardest
test cases (∼ 72K additional axioms, 250 normality concepts
in the knowledge base) took approximately 1 hour and 45
minutes, while the simplest test cases (N-free) are completed
within approximately 1 minute.

In summary, the results obtained from DLN ontologies
containing up to 35K axioms demonstrate that the combina-
tion of both optimizations significantly reduces computation
time by up to four orders of magnitude. This improvement
allows for the processing of subsumption queries within re-
sponse times suitable for various practical applications, in-
cluding interactive query answering. For knowledge bases
derived from SNOMED, which are approximately ten times
larger, response times may vary depending on several cru-
cial performance factors. These factors include the number
of normality concepts present in the knowledge bases and the
extent of logical dependencies between different concepts. In
test cases where the size and structure of SNOMED are pre-
served, the response times remain compatible with interactive
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query answering. However, in fully random test cases, the re-
sponse times range from 11 seconds to nearly two hours.

The challenge of developing accurate module extraction
techniques for nonmonotonic logics remains an open prob-
lem in general. Even within the realm of DLN , our proofs
do not encompass module extraction methods based on prin-
ciples other than locality. Additionally, the potential applica-
tions of module extraction extend beyond optimization. Con-
ducting a comprehensive investigation into module extraction
for nonmonotonic reasoning represents an interesting subject
for future research.
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