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Abstract
We tackle the problem of secure cumulative reward
maximization in multi-armed bandits in a cross-silo
federated learning setting. Under the orchestration
of a central server, each data owner participating
at the cumulative reward computation has the guar-
antee that its raw data is not seen by some other
participant. We rely on cryptographic schemes and
propose SAMBA, a generic framework for Secure
federAted Multi-armed BAndits. We show that
SAMBA returns the same cumulative reward as the
non-secure versions of bandit algorithms, while sat-
isfying formally proven security properties. We
also show that the overhead due to cryptographic
primitives is linear in the size of the input, which is
confirmed by our implementation.

1 Introduction
Federated learning is a machine learning paradigm where
multiple data owners collaborate in solving a learning
problem, under the coordination of a central orchestration
server [Kairouz and et al., 2021]. Each data owner’s raw data
is stored locally and not exchanged or transferred. The devel-
opment of machine learning algorithms in federated learning
settings is a timely topic, which touches several communities:
“a longstanding goal pursued by many research communities
(including cryptography, databases, and machine learning) is
to analyze and learn from data distributed among many own-
ers without exposing that data” [Kairouz and et al., 2021].
We tackle this goal by relying on cryptographic techniques to
develop a secure framework for learning on distributed data.

In particular, we focus on multi-armed bandits, a reinforce-
ment learning model where a learning agent needs to sequen-
tially decide which “arm” to choose among several options
(with unknown reward distributions) available in the environ-
ment. After each arm selection, the environment responds
with a stochastic reward drawn from the reward distribution
associated to the chosen arm. To maximize the cumulative re-
ward, the learning agent has to continuously face the so-called
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Figure 1: Federated cumulative reward maximization in multi-
armed bandits.

exploration-exploitation dilemma and decide whether to ex-
plore by choosing arms with more uncertain associated val-
ues, or to exploit the information already acquired by choos-
ing the arm with the seemingly largest associated value. Ban-
dits have practical applications such as Web recommender
systems, where the arms are the recommended items and the
rewards are given by the user ratings. More specifically, we
tackle the problem of secure cumulative reward maximiza-
tion in federated multi-armed bandits, a problem that to the
best of our knowledge has not been previously studied in the
literature. Our goal is to propose a generic federated frame-
work that is guaranteed to return exactly the same cumula-
tive reward as standard bandit algorithms [Sutton and Barto,
2018, Chapter 2], while guaranteeing formally proven secu-
rity properties.

2 Related Work on Federated Secure Bandits
Federated multi-armed bandits is an emerging topic, with few
recent works that consider the federated learning paradigm
for sequential decision making problems, where data is ob-
served in response to interactions with an unknown environ-
ment. At each time step, the learner has only limited feedback
about the arm that is pulled and this makes the setting more
challenging compared to the typical supervised learning sce-
narios, where all training data is available from the beginning
of the learning process. The recent works tackling federated
bandits, consider different models: standard stochastic [Shi
and Shen, 2021; Li et al., 2020], bandits with graph struc-
ture [Zhu et al., 2021], and linear bandits [Dubey and Pent-
land, 2020; Huang et al., 2021]. For all these works, the main
focus is on adapting bandit algorithms to the federated set-
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ting, and some of them additionally rely on differential pri-
vacy [Dwork and Roth, 2014] to protect the data.

In particular, the first works on cumulative reward maxi-
mization in (private) federated multi-armed bandits [Shi and
Shen, 2021; Li et al., 2020; Zhu et al., 2021; Shi et al.,
2021] focus on the analysis of the gain in sharing data
coming from multiple DOs for obtaining better local (DO-
specific) and respectively global cumulative rewards (for all
participants in the federated learning process). The typical
assumption is that all DOs have access to the same sub-
set of arms, which corresponds to an horizontal data parti-
tion. Another typical assumption from all these works is that
the DOs exchange information about the rewards they ob-
serve and about the indices of their selected arms with their
neighbors [Li et al., 2020; Zhu et al., 2021], respectively
with the central orchestration server [Shi and Shen, 2021;
Zhu et al., 2021]. Before sharing these pieces of information,
DOs apply differential privacy mechanisms to inject noise in
their local data to keep it private from the other participants.
For the next time steps, the bandit algorithm will continue
to select arms based on the differentially-private information
that is transmitted between participants.

A differentially-private bandit algorithm takes roughly the
same computation time as the standard algorithm, but because
of the noise that is injected in the data to ensure differential
privacy, the arm selection strategy is altered. Thus, the mod-
ified selection strategy leads to a different output and a re-
duced performance (increased regret) compared to that of the
standard bandit algorithm. On the other hand, in a crypto-
graphic approach, the local data of each DO (concerning e.g.,
their observed rewards) is never exchanged in clear: encryp-
tion techniques are used to guarantee that local data main-
tained by each DO is hidden from the other participants. By
relying on a carefully chosen set of primitives (AES-GCM
and Paillier in the case of SAMBA), cryptographic approaches
do not change the arm selection and output the same result as
the standard algorithm, at the price of an increased computa-
tion time due to the use of cryptographic primitives. Although
we share the common goal of data protection in federated
bandits, the use of different techniques (differential privacy in
the related works vs cryptography in our work) leads to com-
plementary systems, whose different architecture and trade-
offs are not comparable. In addition, in contrast with previous
federated multi-armed bandit frameworks for cumulative re-
ward maximization, we focus on a vertical data partition and
our secure framework guarantees that local data maintained
by each DO is hidden from the other participants.

There exist only a few cryptography-based secure proto-
cols for bandits, in settings where all data is outsourced to the
honest-but-curious cloud [Ciucanu et al., 2019; Ciucanu et
al., 2020a; Ciucanu et al., 2020b] and no other work propos-
ing cryptography-based secure protocols for federated ban-
dits. The protocol that is the closest to SAMBA also considers
the problem of secure cumulative reward maximization for
standard stochastic bandits [Ciucanu et al., 2020b]. There are
two main differences between the protocol in [Ciucanu et al.,
2020b] and SAMBA. (i) The data distribution assumptions
are different: in [Ciucanu et al., 2020b] it is assumed that all
data is outsourced to the cloud, whereas SAMBA focuses on

a federated learning setting where data is stored locally by
each owner and never exchanged. Consequently, the respec-
tive distributed architectures are intrinsically different. (ii)
The protocol in [Ciucanu et al., 2020b] is catered for securing
the UCB algorithm, whereas SAMBA is a generic framework
where multiple bandit algorithms can be easily plugged in.
Among the algorithms supported in SAMBA, we have UCB
and similar argmax-based algorithms, as well as algorithms
where arms are pulled based on probability matching.

3 Problem Formulation
As depicted in Figure 1, we assume that the data i.e., the re-
ward functions associated to K bandit arms are stored locally
by K data owners (DO1, . . . ,DOK). The data is potentially
sensitive, hence it should remain stored locally and cannot
be seen in clear by any participant other than its owner (this
is why we depict locks near each DOi). As typically done
in federated learning, we assume that the learning algorithm
is done by some central orchestration server (referred to as
server in the sequel). The data customer (DC) sends a budget
N to the server and receives the cumulative reward. More-
over, we assume that the participants in Figure 1 (data own-
ers, server, and data customer) are honest-but-curious i.e.,
they correctly do the required computations, but try to gain
as much information as possible based on the data that they
see. In particular, we aim at minimizing the data leakage to
the server (this is why we also depict a lock near the server)
e.g., the server cannot see rewards produced by each data
owner. Additionally, an external observer that has access to
all messages exchanged between the aforementioned partici-
pants should not be able to learn any input, output, or inter-
mediate data.

Our aim is to build a generic federated learning frame-
work such that, given some standard bandit algorithm A,
we are able to plug A in our framework and obtain the
same cumulative reward as A, while guaranteeing data se-
curity. Our goal could be theoretically achieved by rely-
ing on a fully homomorphic encryption (FHE) scheme [Gen-
try, 2009], which allows to compute any function directly
in the encrypted domain. Indeed, in theory it would suffice
that each data owner encrypts its data with a FHE scheme;
then, the server would do the computations needed for cu-
mulative reward maximization directly in the encrypted do-
main. However, it remains an open question how to build
a practical FHE system. Although state-of-the-art FHE sys-
tems (SEAL1 and HElib2) have done remarkable progress,
computations with real numbers are still limited because of
the noise needed for FHE multiplications. Moreover, even
simple functions such as comparisons needed in all ban-
dit algorithms (e.g., compute an argmax or a probability
matching) require complex and time-consuming computa-
tions in FHE systems, even for approximate results and even
for recent state-of-the-art algorithms [Cheon et al., 2020;
Garcelon et al., 2022]. Since FHE systems cannot be cur-
rently used off-the-shelf to propose secure federated bandit

1https://github.com/Microsoft/SEAL
2http://homenc.github.io/HElib/
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Cumulative reward X E E
Sum of rewards and number of pulls for DOi X αt E E
Sum of rewards and number of pulls for DOj ̸=i αt E E
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Figure 2: Security properties of SAMBA. The X means that the participant can see in clear the concerned piece of data, with ⋆ = only if DOi

is pulled at time step t. Ext means an external network observer having access to all messages exchanged between participants. In the cells
without X or X⋆, we indicate the technique that we used to prevent the participant from seeing in clear the concerned data: Paillier encryption
(E), AES-GCM encryption (Enc), random masks (αt), and random permutations (σt). A grayed cell means that the concerned participant
does not see any message about the concerned piece of data.

algorithms, our approach is based on simpler cryptographic
schemes, in conjunction with secure multi-party computation.

4 SAMBA in a Nutshell
We now present SAMBA, a generic framework for secure cu-
mulative reward maximization for federated bandits. The key
ingredients of SAMBA are:

• We distribute the server computations between two
nodes: Controller (that sees only encrypted messages
and distributes computation tasks among participants)
and Comp (whose only goal is to compare numbers ob-
tained after permuting and masking bandit arm scores).
This distribution technique allows to perform compar-
isons, without revealing to the server neither the bandit
arm scores nor the arm pulled at some time step.

• We exchange only encrypted messages such that an ex-
ternal network observer cannot learn any input, output,
or intermediate data. Moreover, each data owner can
see in clear the raw data pertaining to its bandit arm and
nothing else. The data owners communicate only with
Controller, with messages encrypted with indistinguish-
able under chosen-plaintext attack (IND-CPA) crypto-
graphic schemes, namely symmetric AES-GCM [Na-
tional Institute of Standards and Technology, 2001;
National Institute of Standards and Technology, 2007]
and asymmetric [Paillier, 1999].

• At the end of SAMBA, we compute the cumulative re-
ward by summing up the rewards from each data owner
directly in the encrypted domain, by relying on the ad-
ditive homomorphic property of Paillier. Hence, neither
the data owners nor the server nodes can see in clear the
cumulative reward: only the data customer that invested
a budget for computing the cumulative reward is able to
decrypt it.

In the full paper [Ciucanu et al., 2022], we instantiate
SAMBA to secure five bandit algorithms: ε-greedy, UCB,
Thompson Sampling, Softmax, and Pursuit. We also provide
the theoretical analysis of SAMBA, as well as experiments3

that support our theoretical findings. In a nutshell, we show
that SAMBA enjoys the following features:

• Genericity: SAMBA can be instantiated with any bandit
algorithm that satisfies the properties (i) computing the

3https://github.com/gamarcad/paper-samba-code

score of an arm does not depend on the other arms, and
(ii) selecting the arm to be pulled at some round can be
done in the presence of some random masks and per-
mutations on which SAMBA relies to hide the real arm
scores. In particular, the five aforementioned bandit al-
gorithms satisfy these properties. We also include ex-
amples of bandit algorithms that cannot be instantiated
in SAMBA: an existing algorithm (Reinforcement Com-
parison) that cannot be instantiated because of (i), and
an hypothetical algorithm that cannot be instantiated be-
cause of (ii) as we are not aware of any off-the-shelf al-
gorithm that does not satisfy (ii).

• Correctness: SAMBA returns exactly the same cumu-
lative reward as the standard (non-secure and non-
federated) bandit algorithms because the cryptographic
primitives and distribution of tasks do not change the
arm selection strategy w.r.t. the standard algorithms.

• Security: we summarize the security properties in Fig-
ure 2. We give a brief intuition for each participant:

– DOi can see data concerning arm i and nothing else
about other arms, nor about the cumulative reward.

– Only DC can see the cumulative reward for which
she spends a budget. She can see only this piece of
information for which she pays, and nothing else.

– The server nodes (Controller and Comp) and exter-
nal observers cannot learn any input, output, and
intermediate data.

• Complexity: the number of cryptographic operations is
linear in the input: SAMBA uses O(NK) AES-GCM
operations and O(K) Paillier operations. It is a desirable
feature that the number of Paillier operations does not
depend on the budget N because N is typically larger
than the number of arms K, and AES-GCM is much
faster than Paillier.

In addition to the fundamental contributions presented in
the full paper [Ciucanu et al., 2022], we also implemented a
complementary SAMBA system demonstration [Marcadet et
al., 2022] that is based on a Web interface simulating the
SAMBA federated components. The user-friendly SAMBA
Web interface is open source4 and allows data scientists to
configure the end-to-end workflow of deploying a federated
bandit algorithm, by examining the interaction between three
key dimensions of federated bandits: cumulative reward,

4https://github.com/gamarcad/samba-demo

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6865

https://github.com/gamarcad/paper-samba-code
https://github.com/gamarcad/samba-demo


computation time, and security guarantees.

5 Conclusion and Future Work
We proposed SAMBA, a generic secure protocol that is able
to easily transform multi-armed bandit algorithms in their se-
cure federated version, while yielding the exact same cumula-
tive reward as their standard (non-secure non-federated) ver-
sion. To achieve SAMBA’s security properties, we rely on
secure multi-party computations and cryptographic schemes
under the honest-but-curious threat model. Through theoreti-
cal analysis and experiments, we show that the cryptographic
overhead implied by SAMBA is linear in the size of the input,
and thus remains reasonable in practice.

We plan to extend SAMBA such that it provides secu-
rity guarantees in more complex threat models and for more
complex federated multi-armed bandit and federated rein-
forcement learning frameworks (such as the one considered
in [Tzamaras et al., 2022]). More in general, using cryptog-
raphy to ensure data security for machine learning algorithms
is a promising, timely direction. We plan to pursue this direc-
tion and to design secure protocols useful for other machine
learning models and applications.
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