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Abstract
Machine learning models are incorporated in dif-
ferent fields and disciplines, some of which require
high accountability and transparency, for example,
the healthcare sector. A widely used category of
explanation techniques attempts to explain models’
predictions by quantifying the importance score of
each input feature. However, summarizing such
scores to provide human-interpretable explanations
is challenging. Another category of explanation
techniques focuses on learning a domain represen-
tation in terms of high-level human-understandable
concepts and then utilizing them to explain predic-
tions. These explanations are hampered by how
concepts are constructed, which is not intrinsically
interpretable. To this end, we propose Concept-
based Local Explanations with Feedback (CLEF), a
novel local model agnostic explanation framework
for learning a set of high-level transparent concept
definitions in high-dimensional tabular data that
uses clinician-labeled concepts rather than raw fea-
tures.

1 Introduction
Machine learning (ML) models have proven to be success-
ful in many application domains, including financial sys-
tems, healthcare, agriculture, and criminal justice, espe-
cially with the advent of deep learning [Wang et al., 2020;
Komisarenko et al., 2022; Shawi et al., 2022]. The study
of personalized agents, recommendation systems, and criti-
cal decision-making tasks (e.g., medical analysis) has added
to the importance of machine learning interpretability and
artificial intelligence transparency for end-users. Recently,
interpretability has received considerable attention [Gilpin
et al., 2018], especially since the European Parliament im-
posed the general data protection regulation (GDPR) in May
2018, which requires industries to “explain” any decision
made when automated decision-making occurs: “a right of
explanation for all individuals to obtain meaningful explana-
tions of the logic involved.” The current state of regulations

∗This paper was originally published in Journal of Artificial In-
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mainly focuses on user data protection and privacy; it is ex-
pected to cover more algorithmic transparency and explana-
tions requirements from artificial intelligence systems [Good-
man and Flaxman, 2017].

In this work, we focus on techniques for extracting con-
cepts from high-dimensional medical records of cardiores-
piratory fitness. In these settings, the tabular raw data con-
sists of numerous raw features. The clinician’s mental model
needs to comprehend these features and respond at a higher
level of the patient condition (e.g. patient has an increased
risk of obesity). Converting such low-level features into
meaningful concepts that clinicians can readily reason about
and then utilizing such concepts in explaining the prediction
of an instance makes it easier to understand than providing
an explanation in terms of low-level features. The current
concept-based explanation techniques suffer from the follow-
ing limitations that prevent their usage in the clinical setting:
1) the concepts are defined as a black-box model that may
fail to capture the clinician’s mental model, 2) these tech-
niques assume the availability of ground-truth concept labels
that may not be realistic in many application domains [Kim
et al., 2018].

We summarize our contributions as follows:

• A novel local model-agnostic interpretability framework
that provides a concept-based explanation in the form
of intuitive concepts deemed important to predicting the
instance being explained.

• A counterfactual explanation, suggesting the minimum
changes in the important concepts for predicting the in-
stance being explained, led to a different outcome.

2 Framework for Local Model Agnostic
Concept-based Interpretability

The process of explaining individual predictions is illustrated
in Figure 1.

2.1 Fidelity-Interpretability Trade-off
We denote x′ ∈ Rd be the original representation of an in-
stance being explained. Formally, we define an explanation
as a model f ∈ F built on the top of high-level intuitive con-
cepts, where F is a class of potentially transparent models,
such as linear models and decision trees. Let the model being
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Figure 1: Explaining individual predictions. The patient being ex-
plained is represented in low-level features, including vital signs,
diagnosis and clinical laboratory measurements. A black-box model
predicts this patient as a high risk of mortality. On similar instances
to the one being explained, CLEF maps the input representation (pa-
tient’s history data) to an intermediate concept-based representation
that uses high-level intuitive concepts. Next, CLEF learns a model
on such concepts to decompose the evidence of the prediction of
the instance being explained into high-level intuitive concepts. Con-
cepts hypertension, obesity, and fitness are portrayed as contributing
to the “high risk of mortality” prediction.

explained be denoted z. In classification, z(x′) is the proba-
bility (or a binary indicator) that x′ belongs to a certain class.
We further use πx′(t) as a proximity measure between an in-
stance t to x′, so as to define locality around x′. Finally, let
L(z, f, πx′) be a measure of how unfaithful f is in approxi-
mating the behaviour of z in the locality defined by πx′ . Let
Ω be a measure for how complex the explanation model f .
For example, for a linear model, Ω(f) may be the number
of non-zero weights. To satisfy both interpretability and lo-
cal fidelity properties, we must minimize L(z, f, πx′) while
having Ω(f) low enough to be interpretable by humans. The
explanation produced by CLEF is obtained by the following:

ζ(x′) =f∈F L(z, f, πx′) + Ω(f) (1)

Given a training dataset {xn, yn}N , we aim to learn a 2-
stage prediction function f that approximates the behaviour
of z in the vicinity of x′, where x is the input feature vector
and y ∈ {0, 1} is the prediction of z. The first function, de-
noted concept definition g, maps the low level features x to
concepts c ∈ {0, 1}C . The second function, f , maps con-
cepts c to y. Our goal is to learn f that is interpretable and
locally faithful to z, while learning g that is intuitive in a way
that models clinician knowledge.

2.2 Sampling for Local Exploration
Our goal is to minimize the locality-aware loss L(z, f, πx′)
as in equation 1 without making any assumption about z,
since we want CLEF to be model-agnostic. To capture the be-
haviour of z in the vicinity of x′, we approximate L(z, f, πx′)
by drawing samples weighted by πx′ . More specifically, we
randomly sample a set of instances Sx′ from {xn, yn}N and
weight sample instances by their proximity from x′ such that
sample instances in the vicinity of x′ are assigned a high
weight, and far away instances from x′ are assigned low

weight. In this work, the size of a sample Sx′ is chosen to
be 1000, leaving the exploration of dynamic sample size for
future work. Given the dataset Sx′ , we optimize equation 1
to get explanation ζ(x′). CLEF presents an explanation that
is locally faithful, where the locality is captured by πx′ .

2.3 Learning Interpretable Concepts with Human
Feedback

In the following, we show how to learn functions g and
f such that g is intuitive and closely align with clinician
knowledge about concept definition, while f is faithful in ap-
proximating the behaviour of z. We define a binary matrix
A ∈ {0, 1}D×C , where D is the number of features of the
dataset Sx′ , Ai,j = 1 represents the association of feature xi

to concept j and Ai,j = 0 represents the dissociation of fea-
ture xi from concept cj . A concept c exists in a particular
instance x if at least one of the features associated with c ex-
ists in x. The main goal of this approach is to learn the set of
features associated with each concept. To ensure the mean-
ingfulness of the explanations provided by CLEF, we learn
intuitive concepts that align with clinician knowledge while
incorporating clinicians’ feedback into the learning process.
More specifically, the clinician is expressly asked if a feature
xi should be connected with a concept cj . For example, an
association between the feature ‘insulin’ and the concept ‘dia-
betes’ might make sense, whereas an association between ‘in-
sulin’ and ‘hypertension’ does not make sense, even though
it might make the concept more predictive. Our definition
of intuitiveness is inspired by [Lage and Doshi-Velez, 2020],
where the intuitiveness of function g is satisfied if the user ac-
cepts the suggested association between a particular feature
xi and a concept cj for every (i, j) feature-concept associa-
tion in g.

To learn g that satisfies intuitiveness, we do the follow-
ing. First, initialize matrix, A, by asking clinicians to spec-
ify one feature they wish to associate to each concept. We
summarize the process of associating features to concepts in
Algorithm 1. The algorithm builds up g on Sx′ iteratively by
making a number of feature-concept (i∗, j∗) proposals that
clinician either accept or reject. Such proposals are made
from pairs of (i, j) that the algorithm has not yet explored.
For each concept, we make a fixed number of proposals be-
fore moving to the next concept. In this work, we use a fixed
number of proposals per concept numproposals = 7. More
specifically, each concept cj is associated with two list of fea-
tures; the explored list lj consists of features that have been
proposed to a clinician to be associated with concept cj and
the other list uj consists of the set of features that have not
been proposed yet for concept cj . If the clinician accepts
the proposed feature-concept association, then the proposed
feature is added to the concept definition and thus feature-
concept matrix Ai,j = 1; otherwise, the feature-concept ma-
trix remains unchanged. List lj is first initialized with a sin-
gle feature i, such that Ai,j = 1 for each concept j and uj

is initialized with the rest of features that are not included in
lj . Algorithm 1 models the human feedback while proposing
feature-concept associations by incorporating the clinician’s
prior acceptance of feature-concept associations to improve
future proposals made by the algorithm and refit model f
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Algorithm 1 Algorithm for interactively proposing intuitive
and interpretable concepts with human feedback
Input: Sx′ , A, numproposals
Initialize: l, u, intuit

1: J∗ ← 1
2: while J∗ ≤ numconcepts do
3: k ← 1
4: while k ≤ numproposals do
5: Calculate SFidi∗,j∗ for all instances in uj∗

6: Calculate SIntuiti∗,j∗ for all instances in uj∗

7: Select the best feature i∗, by constructing a pareto-
front based on the trade-off between SFid and
SIntuit

8: if (i∗, j∗) is accepted then
9: intuiti∗,j∗ = 1

10: Ai∗,j∗ = 1
11: Retrain f
12: else
13: intuiti∗,j∗ = 0
14: end if
15: lj∗ = lj∗ ∪ {i∗}
16: uj∗ = uj∗\{i∗}
17: k ← k + 1
18: end while
19: J∗ ← J∗ + 1
20: end while

each time g is updated. To do so, we store a set of labels
of the proposals that the user has previously accepted or re-
jected in matrix intuit. This matrix is first initialized so that
intuiti,j = 1 and intuiti,j′ ̸=j = 0 if Ai,j = 1 in the con-
cept definitions initialized by the user. The matrix is then
updated such that intuiti∗,j∗ = 1 if the user accepts the pro-
posed feature-concept association; otherwise, it remains un-
changed. We assume that a single feature can be associated
with different concepts.

The key challenge is to propose feature-concept associa-
tions that are intuitive for the clinician and equally highly
faithful to the model being explained. The goal is to make
a reasonable number of proposals that are both intuitive and
highly faithful. To achieve this target, we compute two scores
for fidelity SFid and intuitiveness SIntuit for each pro-
posal. The goal of SFidi,j is to measure how well our model
f is capturing the behaviour of z in the vicinity of x′ when
associating feature i to concept j. For each concept cj , we
calculate SFidi,j by updating f if the proposal (i, j) is ac-
cepted by the clinician. The goal of SIntuiti,j is to assess
the likelihood of the acceptance of the association of feature i
to concept j by the clinician. For each concept cj , we calcu-
late SIntuiti,j . We assume that a clinician will likely accept
a proposal that associates a feature i to a concept j if a fea-
ture i′ similar to i has been associated before to concept j.
The notion of similarity between two features is defined by
the Jaccard similarity (denoted J) computed over the number
of times each feature is recorded for each instance (xT ). The
probability that a clinician will accept associating feature i to
concept j is calculated through similarity graph as follows:

Figure 2: Shallow concept-based explanation decision tree of depth
4 explaining the prediction of a patient with a high risk of mortality

SIntuiti,j = exp(
1

2
Σi′∈ljJ(x

T
i , x

T
i′)(Intuiti,j − Intuiti′,j)

2)

(2)
To make feature-concept proposals that are highly faithful

and intuitive, we rank proposals based on the Pareto front of
the trade-off between intuitiveness and fidelity. The proposal
with the highest rank from the Pareto front is selected.

2.4 Constructing Local Explanation
The CLEF framework considers two different explanation
models to provide counterfactual explanations. The first ex-
planation model is a decision tree classifier. It is used due to
its interpretable nature that allows concept rules to be derived
from a root-leaf path in the decision tree and counterfactuals
that can be extracted by symbolic reasoning over a decision
tree. To guarantee a fast and easy search for counterfactuals,
we consider all possible paths in the decision tree leading to a
decision that is not equal to the decision of the instance being
explained x′. Among all these paths, we only consider the
one with the minimum number of spilt conditions that are not
satisfied by instance x′. For the sake of interpretability, we
used a shallow decision tree of depth 4 to be comprehensi-
ble by humans, leaving the exploration of dynamic depth to
future work. Figure 2 shows a decision tree explanation of
a patient of a high risk of mortality. It is clear from the ex-
planation tree that the patient has been predicted at high risk
of mortality because of the existence of concepts ‘hyperten-
sion’, ‘obesity’, and ‘dyslipidemia’. CLEF computes a coun-
terfactual explanation which is the path in the decision tree
corresponding to the existence of concepts ‘hypertension’,
‘obesity’, and the absence of concept ‘dyslipidemia’that leads
to the prediction of the instance being explained as low risk
of mortality. The second explanation model is logistic re-
gression due to its interpretable nature that allows concepts
to be explained through their weights. We do the following
to generate a counterfactual explanation from the logistic re-
gression model. Let x′′ be the concept representation of the
instance being explained x′ in terms of high-level concepts.
Let minc(x

′′) denote a vector resulting from changing the
value of one concept c in x′′ such that f(minc(x

′′)) = y′ and
f(x′) = y, where y ̸= y′. A perturbation of x′ is defined as
the change in the value of concept c to flip the prediction of
x′. We compute all the perturbations of x′ for all concepts and
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finally returns the perturbation with the highest probability of
class y′.

3 Results
3.1 Concepts Definition
The dataset used in this work was collected from patients who
underwent treadmill stress testing at Henry Ford Affiliated
Hospitals, FIT Project [Al-Mallah and others, 2014]. The
dataset is split 60% for training, 20% for validation and 20%
for testing. To quantitatively evaluate the proposed approach
and compare it to multiple baselines, we ran experiments with
known handcrafted concepts defined by a clinician to be dis-
covered from real data. We seeded each experiment with fea-
tures from known concepts and assumed that the user would
accept the proposal of features belonging to these concepts.
We relied on clinicians to define a set of handcrafted con-
cepts and associate the ground truth features to each concept.
The list of features associated with each concept was com-
piled by the second author. The concepts are defined as fol-
lows ‘Fitness’, ‘Hypertension’, ‘Obesity/diabetes’, ‘Dyslipi-
demia’, and ‘Cardiometabolic’. The associated features for
each concept are defined as follows

• ‘Fitness’: mets achieved > 10, peak systolic blood pres-
sure > 200

• ‘Hypertension’: hypertension = yes, hypertension med-
ication = yes, calcium channel blockers = yes, di-
uretics = yes, angiotens in receptor blocker = yes,
angiotensin–converting enzyme inhibitor = yes, beta
blockers = yes

• ‘Obesity/diabetes’: body mass index > 30, diabetes =
yes, diabetes medication = yes, insulin = yes, glycated
hemoglobin > 7

• ‘Dyslipidemia’: body mass index > 30, statin use = yes,
hyperlipidemia = yes, hyperlipid = yes, hyperlipidemia
= yes, low-density lipoprotein > 160, high-density
lipoprotein < 40, chol > 200, triglyceride > 200

• ‘Cardiometabolic’: body mass index > 30, concept
3 (‘Obesity/Diabetes’) features, concept 4 ‘Dyslipi-
demia’features.

3.2 Baselines
To explain individual prediction, we compare CLEF to two
baselines. The first is an interactive concept-based baseline,
and the other is non-interactive. The interactive baseline is
compared to our g (concept definitions) and has the same
explanation function f trained on the top of concepts. For
the interactive baseline, we need to simulate the clinician
interaction of the baseline, equivalent to user feedback on
feature-concept association in our approach. Specifically, the
interactive baseline, denoted AL, fits five concept-classifier
models (regularized logistic regression models), one for each
concept. Specifically, for each instance x′ in the testing
dataset, we train a concept classifier for each concept c on
a subset Dc of Sx′ . Such subset is a mix of instances bal-
ancing the presence and absence of concept c. We define
Dc = D+

c ∪D−
c , where D+

c = {(x1, y
1
c ), ...., (xq, y

q
c )|yc=1}

Variant Downstream accu-
racy

Concept accu-
racy

CLIF when f is lo-
gistic regression

87% ±0.001 98% ±0.002

CLIF when f is de-
cision tree

88% ±0.001 98% ±0.002

AL 77% ±0.001 85% ±0.003
LR 67% ±0.00 -

Table 1: Downstream and concept accuracies on the testing dataset
± standard deviation for our proposed technique and baselines.

and D−
c = {(x1, y

1
c ), ...., (xq, y

q
c )|yc=0}, where yc ∈ {0, 1}

indicates the absence or the presence of concept c in an in-
stance x, and q is the number of examples in each of D+

c
and D−

c . Negative examples D−
c for each concept c are se-

lected randomly from other instances that do not have con-
cept c such that the number of examples in D+

c and D−
c

are equal. We use these concept classifiers for each instance
x ∈ S(x′) to create a vector xAL = (r1, r2, ..., r5) repre-
senting the probability of each concept c in x. Next, we use
concept vectors for instances in S(x′) directly in training un-
regularized logistic regression and shallow decision tree. The
user’s feedback is represented in labelling instances with con-
cept labels. The non-interactive baseline do not employ con-
cepts. We compare to regularized logistic regression (LR).
We train all approaches using the scikit-learn implementa-
tions [Pedregosa et al., 2011].

3.3 Comparison to Baselines
As a black-box model to be explained, we train a random for-
est model on the training dataset. For each instance x′ in the
testing dataset, we report the performance of CLEF and all
baselines on Sx′ sampled from the training dataset with class
labels from the random forest model. For more details about
the random forest model for predicting the risk of mortality,
we refer the readers to [Sakr et al., 2017]. The mean accuracy
of predicting the risk of mortality (downstream accuracy) and
the accuracy of mapping low-level features to concepts (con-
cept accuracy) on the testing dataset for our approach and
the baselines are reported in Table 1. The results show that
our proposed approach, when f is either a decision tree or
logistic regression, outperforms the AL baseline on concept
accuracy and downstream accuracy. Our final concept accu-
racy, when f is logistic regression, is 98% ± 0.002, which
is 13% greater than the AL baseline. This substantial differ-
ence suggests that our proposed approach aligns much better
with clinician’s intuitive representation than the baseline. Our
approach with the two variants of f (logistic regression and
decision tree) outperforms the LR baseline by around 21%.
Such baseline is equivalent to training f on original raw fea-
tures of instances in Sx′ for each instance x′ in the testing
dataset. Such results suggest that training a decision tree or a
logistic regression on top of the high-level concepts improves
the predictive performance over training LR on the original
raw features. In addition, our approach has an advantage over
the LR baseline, which is the predictors used in our approach
are specified by the clinicians, whereas the inputs to LR do
not have any constraint on their intuitiveness and collinearity.
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