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Abstract
In the last decade, there have been significant
advances in multi-agent reinforcement learning
(MARL) but there are still numerous challenges,
such as high sample complexity and slow con-
vergence to stable policies, that need to be over-
come before wide-spread deployment is possible.
However, many real-world environments already,
in practice, deploy sub-optimal or heuristic ap-
proaches for generating policies. An interesting
question that arises is how to best use such ap-
proaches as advisors to help improve reinforcement
learning in multi-agent domains. We provide a
principled framework for incorporating action rec-
ommendations from online sub-optimal advisors
in multi-agent settings. We describe the prob-
lem of ADvising Multiple Intelligent Reinforcement
Agents (ADMIRAL) in nonrestrictive general-
sum stochastic game environments and present
two novel Q-learning-based algorithms: ADMI-
RAL - Decision Making (ADMIRAL-DM) and
ADMIRAL - Advisor Evaluation (ADMIRAL-
AE), which allow us to improve learning by ap-
propriately incorporating advice from an advisor
(ADMIRAL-DM), and evaluate the effectiveness
of an advisor (ADMIRAL-AE). We analyze the
algorithms theoretically and provide fixed point
guarantees regarding their learning in general-sum
stochastic games. Furthermore, extensive experi-
ments illustrate that these algorithms: can be used
in a variety of environments, have performances
that compare favourably to other related baselines,
can scale to large state-action spaces, and are robust
to poor advice from advisors.

1 Introduction
Reinforcement learning (RL) research is growing and ex-
panding rapidly; however, this approach still finds only
limited applications in practical real-world settings [Dulac-
Arnold et al., 2021]. One major reason for this is that RL

∗This is an extended abstract of our JAIR article [Subramanian
et al., 2022]

algorithms typically have high sample complexity and can
learn effective policies only after experiencing millions of
data samples in simulation [Kakade, 2003]. Multi-agent re-
inforcement learning (MARL) extends RL to domains where
more than one agent learns simultaneously in the environment
[Shoham and Leyton-Brown, 2008]. Moving from single-
agent to multi-agent settings introduces new challenges, in-
cluding nonstationary environments and the curse of dimen-
sionality [Hernandez-Leal et al., 2019], while concerns from
single-agent RL such as exploration-exploitation trade-offs
and sample efficiency remain [Yogeswaran and Ponnam-
balam, 2012]. In MARL environments, it has been reported
that learning complex tasks from scratch is even impractical
due to its poor sample complexity [Silva and Costa, 2019]. In
this regard, it becomes necessary for agents to obtain guid-
ance from an external source to have any possibility of scal-
ing up to real-world domains. Furthermore, during the early
stages of learning, agents’ policies may be quite random and
dangerous, which makes it almost impossible to use them in
real-world environments. Thus, it is hard to improve upon
these policies by only using direct interactions with the envi-
ronment. In this paper, we tackle the problem of improving
sample efficiency in MARL through the use of other sources
of knowledge, particularly during the early stages of training.

In single agent RL, the use of external knowledge sources
such as advisors to drive exploration has been successful in a
variety of domains. The advisors provide actions to the agent
at different states to bootstrap learning by targeted explo-
ration [Nair et al., 2018]. However, the biases of sub-optimal
advisors pose a challenge to successful learning [Gao et al.,
2018]. Further, many of these approaches do not directly ex-
tend to MARL due to the additional complications present in
the multi-agent environments. Although learning from ex-
ternal sources of knowledge has been explored in MARL,
many previous works assume the presence of fully optimal
experts [Natarajan et al., 2010; Hadfield-Menell et al., 2016;
Yu et al., 2019]. Generally, they entail additional assump-
tions such as having simplified environments with only two
agents [Lin et al., 2019] and consider restrictive environ-
ments such as competitive zero-sum [Wang and Klabjan,
2018] or fully cooperative settings where all agents share
a common goal [Natarajan et al., 2010; Le et al., 2017;
Peng et al., 2020]. Additionally, some approaches, such as
[Lin et al., 2019] restrict themselves to simple multi-agent

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6884



environments with discrete state and action spaces. The use
of sub-optimal advisors in multi-agent general-sum settings
with an arbitrary number of agents has been less explored,
and to the best of our knowledge, there has been no compre-
hensive analysis of this approach, especially from a theoreti-
cal perspective.

We introduce a principled framework for studying the
problem of ADvising Multiple Intelligent Reinforcement
Agents (ADMIRAL). We propose two Q-learning-based al-
gorithms [Watkins and Dayan, 1992]. The first algorithm,
ADvising Multiple Intelligent Reinforcement Agents - De-
cision Making (ADMIRAL-DM), learns to act in the envi-
ronment using advisor-guidance, while the second, ADvis-
ing Multiple Intelligent Reinforcement Agents - Advisor
Evaluation (ADMIRAL-AE), provides a principled method
to evaluate the usefulness of the advisor in the current MARL
context. To the best of our knowledge, we are the first to pro-
pose a method to evaluate a knowledge source before using
it for learning in MARL. We empirically study the perfor-
mance of our algorithms in suitable test-beds, along with a
comparison to related baselines. Theoretically, we establish
conditions under which we can provide fixed point guaran-
tees regarding the learning of our ADMIRAL algorithms in
general-sum stochastic game environments [Shapley, 1953].

2 Advisor Q-Learning
First, we introduce the problem of ADvising Multiple Intel-
ligent Reinforcement Agents (ADMIRAL). We have a set of
agents that can either take an action using their own policy
or consult an advisor that provides action recommendations,
given the current state, at each time step. Each agent has ac-
cess to at most one advisor. An advisor can be any external
source of knowledge, such as a rule-based agent, a pre-trained
policy, or any other system that continues to learn during
gameplay. The advisor is assumed to be available online with
the possibility of providing instantaneous action recommen-
dations to an agent. Furthermore, we consider a centralized
training setting where agents can observe the state, the local
actions, and the rewards of all other agents. We also assume
that the advisor and agent communication is free, while the
agents cannot communicate among themselves. There is no
communication amongst the agents themselves, since estab-
lishing reliable communication protocols amongst every sin-
gle agent may be prohibitively expensive in large multi-agent
environments. Having specified this setting, we subsequently
show that many of these restrictions can be relaxed.

We study two challenges that arise when learning from
advisors in MARL and provide algorithms for each prob-
lem. The first challenge is learning a policy with the help
of an advisor. We introduce an algorithm for this challenge,
which we call ADvising Multiple Intelligent Reinforcement
Agents - Decision Making (ADMIRAL-DM). In this setting,
each agent aims to learn a suitable policy that provides the
best responses to the opponent(s) and performs effectively in
the given multi-agent environment. An agent has access to
a (possibly sub-optimal) advisor that could be leveraged to
improve the speed of learning. A schematic of this setting
is provided in Figure 1. The second challenge is the eval-

Figure 1: Architecture of the ADMIRAL-DM algorithm.

Figure 2: Architecture of the ADMIRAL-AE algorithm.

uation of the advisor itself. Before using an advisor, it is
beneficial to evaluate it to determine whether the advisor will
provide effective advice. Hence, we propose a ‘pre-learning’
phase (i.e., a distinct phase before the beginning of training of
ADMIRAL-DM) and provide an algorithm called ADvising
Multiple Intelligent Reinforcement Agents - Advisor Evalu-
ation (ADMIRAL-AE) which has the goal of getting a good
understanding of the capabilities of the advisor in the current
environment. We assume that a single advisor exists in the
system, and this advisor could be evaluated by one or more
agents. A schematic of this setting is provided in Figure 2.

First we describe ADMIRAL-DM. As in [Hu and Well-
man, 2003], ADMIRAL-DM allows all agents maintain a
copy of the Q-updates of the other agents. This is possible
since, during training, agents are in a centralized setting and
can observe the local actions and rewards of all other agents
at each time step. This helps in predicting the actions of op-
ponents needed for providing the best responses. A learning
agent (represented by j) starts with an arbitrary initialization
of its Q-value Qj

0(s,a). Here a = (a1, . . . , an) represents
the joint action of all agents. Recall, in this setting, each
agent has access to an online advisor that it could query dur-
ing learning. Whenever the agent needs to choose an action,
it does so based on its current Q-value, the advisor’s recom-
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mendation, or simply a random action, as the case may be.
The dependence on the advisor’s recommendation and ran-
dom exploration is captured by two hyperparameters, ϵ′t and
ϵt, respectively. This action is subsequently executed and the
actions and rewards of the other agents are observed, includ-
ing the next state s′. During training, at each time step, the
agent picks the possible next actions of other agents using its
copy of the other agents’ Q values. Then, the agent j picks
its next action based on ADMIRAL-DM algorithm’s policy
which chooses a random action and an advisor action with di-
minishing probabilities, and a greedy action with increasing
probabilities, such that it becomes greedy in the limit with
infinite exploration (GLIE). Thus, the agent is guaranteed to
train without any further advisor influence after some finite
time t in the training process. Accordingly, the dependence
on the advisor’s recommendation is decayed linearly. In this
process, the dependence of an agent is more on the advisor
during the earlier stages of learning, when its own policy is
quite bad. This dependence gradually reduces as its own pol-
icy improves. The Q-values are updated as,

Qj
t+1(s,a)

= (1− αt)Q
j
t (s,a) + αt[r

j
t + βQj

t (s
′,a′)]

(1)

where a = (a1, . . . , an) denotes the actions for all agents
at state s and a′ = (a1

′
, . . . , an

′
) denotes the actions for

all the agents at state s′. β denotes the discount factor, and
αt ∈ (0, 1) is the learning rate. The algorithm’s steps are re-
peated continuously until either the Q-values fully converge
or come within a small threshold of convergence, as is com-
monly done in practice [Sutton and Barto, 1998].

We extend the ADMIRAL-DM it to an actor-critic method
— ADvising Multiple Intelligent Reinforcement Agents -
Decision Making (Actor-Critic) abbreviated as ADMIRAL-
DM(AC). This algorithm uses the Q-function as the critic and
the policy derived from Q as the actor. The algorithm follows
a Centralized Training and Decentralized Execution (CTDE)
scheme [Lowe et al., 2017], where the critic uses the infor-
mation associated with other agents during the training time
and the actors can act independently without access to other
agent information during execution. This allows our methods
to be applicable in environments where global information
(i.e., information associated with other agents) is available
during training but not during execution, such as autonomous
driving [Zhou et al., 2020]. The CTDE scheme extends our
algorithm to partially observable environments, where the ac-
tor can just use the local observations of the agent for action
selection (during both training and execution), while the critic
can use the joint observation of all agents during training.

Thus, ADMIRAL-DM uses an advisor if one exists. Fur-
thermore, our second algorithm ADMIRAL-AE (which is re-
lated to our second challenge, i.e., the evaluation of the ad-
visor) evaluates a potential advisor and helps guide the con-
figuration of ADMIRAL-DM by setting the initial value of
ϵ′. The objective is to make an agent following ADMIRAL-
DM listen more to good advisors and listen less (or not at
all) to bad advisors. In ADMIRAL-AE, at each time t, the
agent j observes the current state s, and takes a local action
aj and observes the action of all agents (including itself), the

reward it obtains and the new state s′. The agent then ob-
tains a recommendation from the advisor for the next state s′.
Subsequently, each agent j updates its Q-value as follows:

Qj
t+1(s,a)

= (1− αt)Q
j
t (s,a) + αt[r

j
t + βAdvisorQj

t (s
′)].

(2)

The term AdvisorQj
t (s

′), is the total value (payoff) that
the agent j will obtain at the state s′ when all agents (in-
cluding itself) play the advisor solution. This is calcu-
lated as AdvisorQj

t (s
′) = σ1

t (s
′) · · ·σn

t (s
′) · Qj

t (s
′), where

(σ1
t (s

′), . . . , σn
t (s

′)) denotes the advisor recommendations at
state s′ and time t. This can be seen as a solution to the stage
game (Q1

t (s
′), . . . , Qn

t (s
′)). Subsequently, these Q values

are used to choose the initial value of ϵ′ in ADMIRAL-DM
(more details in [Subramanian et al., 2022]). All our algo-
rithms can be extended to large state-action environments us-
ing function approximations [Mnih et al., 2015].

3 Theoretical Results
We have two important theoretical guarantees for our al-
gorithms. First, we show that the Q-updates following
ADMIRAL-AE converge to an ϵ-equilibrium in the stochas-
tic game. Second, we prove that the Q-updates following
ADMIRAL-DM converges to the Nash Q-value, thus finding
the Nash equilibrium of the stochastic game.

The primary convergence result for algorithms based on Q
learning in a general sum stochastic game was provided by
[Hu and Wellman, 2003]. However, this result relies on a
very restrictive assumption that states that every stage game
of the stochastic game contains a Nash equilibrium that is
either a global optimum or a saddle point. Additionally, an
agent must use the payoff at this equilibrium to update its Q
value in every stage game of the stochastic game. As shown
by [Bowling, 2000], this assumption implies that every stage
game should use the same kind of equilibrium, it cannot oscil-
late between being a global optimum or saddle point between
stage games. There is almost no game that satisfies this con-
dition in practice [Hu and Wellman, 2003]. The convergence
results in our setting can be provided under a set of assump-
tions weaker than that used by [Hu and Wellman, 2003].
Theorem 1. (Informal) Under a set of assumptions, the Q-
functions updated by ADMIRAL-AE converge to a bounded
distance from the Nash Q-function Q∗ = (Q1

∗, . . . , Q
n
∗ ), in

the time limit (t −→ ∞).
Theorem 2. (Informal) Under a set of assumptions, the Q-
functions updated by ADMIRAL-DM converge to the Nash
Q-function, in the limit (t −→ ∞).

4 Experimental Results
We experimentally validate our algorithms, showing their ef-
fectiveness in a variety of situations using different testbeds.
We also demonstrate superior performance to common base-
lines. The results from one setting is presented here, while
more elaborate experimental results and associated discus-
sions are in [Subramanian et al., 2022].

The setting we consider is Domain OneVsOne of Pom-
merman introduced in [Resnick et al., 2018]. Our baselines
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are DQfD [Hester et al., 2018], CHAT [Wang and Taylor,
2017], and DQN [Mnih et al., 2015]. We perform 50,000
episodes of training, where the algorithms train against spe-
cific opponents. Each episode is a full Pommerman game
(lasting a maximum of 800 steps). All the algorithms re-
lying on demonstrations (DQfD, CHAT, ADMIRAL-DM,
and ADMIRAL-DM(AC)) use rule-based agents as advisors.
These rule-based agents have been provided by [Resnick et
al., 2018], and are known to have a high standard of perfor-
mance [Perez-Liebana et al., 2019]. The probability of using
the advisor action (ϵ′t in ADMIRAL-DM) starts from a high
value (determined using the ADMIRAL-AE method, more
details in [Subramanian et al., 2022]) and linearly decays to
be close to zero at the end of training for both ADMIRAL-
DM and ADMIRAL-DM(AC) (using the PPR technique). To
provide data for offline pretraining in the case of DQfD, two
instances of the rule-based agents are used to play many Pom-
merman games that generate the required data. The DQfD is
pretrained with all of this data, before entering the training
phase of our experiments.

(a) ADMIRAL-DM vs. DQN (b) ADMIRAL-DM vs. DQfD

(c) ADMIRAL-DM vs. CHAT (d) ADMIRAL-DM vs.
ADMIRAL-DM(AC)

(e) Faceoff against ADMIRAL-DM

Figure 3: Pommerman competition against ADMIRAL-DM.

After the training phase, the trained algorithms enter a
face-off competition of 10,000 games where there is no more
training, no further exploration and additionally ADMIRAL-
DM and ADMIRAL-DM(AC) play without any advisor influ-

ence. ADMIRAL-DM(AC) is a CTDE technique, which only
performs decentralized execution in face-off using the trained
actor-network. We plot the cumulative rewards in the training
phase (Figure 3 (a), (b), (c), (d)), from which it can be seen
that ADMIRAL-DM’s performance is better than the base-
lines (DQN, DQfD, and CHAT). The face-off plots in Fig-
ure 3(e) show that ADMIRAL-DM wins more games on av-
erage against all the other baselines, showing its dominance.
DQfD relies on pretraining, which is harder in MARL, as the
nature of opponents that an agent will face during competi-
tion is impossible to determine upfront. The algorithms that
use online advisors to give real-time feedback (capturing the
changing nature of the opponent) tend to do better. DQfD
has also been previously reported to have over-fitting issues
[Gao et al., 2018], which is likely to hurt its performance
more in multi-agent environments compared to single-agent
environments. In multi-agent environments, it is more im-
portant to be able to generalize to unseen dynamic opponent
behaviour, which is different from that seen in pre-collected
demonstration data. CHAT maintains a confidence measure
on the advisor, which depends on the advisor’s consistency in
action recommendations at different states. In MARL, this
measure is not completely reliable, since even good advi-
sors may need to formulate stochastic action recommenda-
tions as responses to the opponent. DQN, on the other hand,
learns directly from interaction experiences and cannot learn
from advisor inputs. This is a disadvantage in environments
where external sources of knowledge, such as advisors, are
available to be leveraged. Furthermore, since our baselines
are independent algorithms (that consider opponents to be
part of the state), they lose out to ADMIRAL-DM, which
explicitly tracks opponent action. ADMIRAL-DM loses to
ADMIRAL-DM(AC) during training (Figure 3 (d)). Though
ADMIRAL-DM(AC) shows slower learning overall (as it is
training both actor and critic), it ultimately learns a higher
performing policy. One important reason is that the actor-
critic method trains a stochastic policy that can explore natu-
rally, whereas the Q-learning method needs a hyperparame-
ter to conduct forced exploration (ϵ-greedy). Another reason
could be that ADMIRAL-DM(AC) learns from each recent
experience, while ADMIRAL-DM has delayed learning us-
ing the replay buffer. However, in the face-off, ADMIRAL-
DM has an edge over ADMIRAL-DM(AC) (Figure 3(e)),
probably due to being centralized. Further, we perform a Fis-
cher’s exact test to check statistical significance (p < 0.03).

5 Conclusion
In this paper, we provide a principled framework for MARL
algorithms to accelerate training using external advisors. Us-
ing Q-learning-based methods, we proposed two MARL al-
gorithms for this problem. We conducted theoretical analy-
ses of these algorithms, establishing conditions under which
fixed point guarantees can be provided regarding their learn-
ing in general-sum stochastic games. Empirically, we showed
that our algorithms can be scaled to domains with large state-
action spaces using traditional function approximators like
neural networks. Our empirical results further established the
superiority of our algorithms compared to standard baselines.
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