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Abstract

In fair division of indivisible goods, `-out-of-d
maximin share (MMS) is the value that an agent
can guarantee by partitioning the goods into d bun-
dles and choosing the ` least preferred bundles.
Most existing works aim to guarantee to all agents
a constant fraction of their 1-out-of-n MMS. But
this guarantee is sensitive to small perturbation in
agents’ cardinal valuations. We consider a more ro-
bust approximation notion, which depends only on
the agents’ ordinal rankings of bundles. We prove
the existence of `-out-of-b(` + 1

2 )nc MMS alloca-
tions of goods for any integer ` ≥ 1, and present
a polynomial-time algorithm that finds a 1-out-of-
d 3n2 e MMS allocation when ` = 1. We further de-
velop an algorithm that provides a weaker ordinal
approximation to MMS for any ` > 1.

1 Introduction
Fair division is the study of how to distribute a set of items
among a set of agents in a fair manner. Achieving fair-
ness is particularly challenging when items are indivisible.
Computational and conceptual challenges have motivated re-
searchers and practitioners to develop a variety of fairness
concepts that are applicable to a large number of allocation
problems. One of the most common fairness concepts, pro-
posed by Budish [2011], is Maximin Share (MMS), that aims
to give each agent a bundle that is valued at a certain thresh-
old. The MMS threshold, also known as 1-out-of-d MMS,
generalizes the guarantee of the cut-and-choose protocol. It
is the value that an agent can secure by partitioning the items
into d bundles, assuming it will receive the least preferred
bundle. The MMS value depends on the number of partitions,
d. When all items are goods (i.e., have non-negative values),
the 1-out-of-d MMS threshold is (weakly) monotonically de-
creasing as the number of partitions (d) increases.

When allocating goods among n agents, a natural desirable
threshold is satisfying 1-out-of-n MMS for all agents. Unfor-
tunately, while this value can be guaranteed for n = 2 agents

∗Full paper appeared in the Journal of Artificial Intelligence Re-
search [Hosseini et al., 2022b].

through the cut-and-choose protocol, a 1-out-of-n MMS al-
location of goods may not exist in general for n ≥ 3 [Pro-
caccia and Wang, 2014; Kurokawa et al., 2018]. These nega-
tive results have given rise to multiplicative approximations,
wherein each agent is guaranteed at least a constant fraction
of its 1-out-of-n MMS. The best currently known fraction is
3
4 + 1

12n
[Garg and Taki, 2020].

Despite numerous studies devoted to their existence and
computation, there is a conceptual and practical problem with
the multiplicative approximations of MMS: they are sensi-
tive to agents’ precise cardinal valuations. Suppose n = 3
and there are four goods g1, g2, g3, g4 that Alice values at
30, 39, 40, 41 respectively. Her 1-out-of-3 MMS is 40, and
thus a 3

4 guarantee can be satisfied by giving her the bundle
{g1} or a bundle with a higher value. But if her valuation of
good g3 changes slightly to 40 + ε (for any ε > 0), then 3

4
of her 1-out-of-3 MMS is larger than 30, the bundle {g1} is
no longer acceptable for her. Thus, the acceptability of a bun-
dle (in this example {g1}) might be affected by an arbitrarily
small perturbation in the value of an irrelevant good (i.e. g3).

Budish [2011] suggested the 1-out-of-(n+1) MMS as a re-
laxation of the 1-out-of-nMMS. In the above example, 1-out-
of-4 MMS fairness can be satisfied by giving Alice {g1} or a
better bundle; small inaccuracies or noise in the valuations do
not change the set of acceptable bundles. Hence, this notion
provides a more robust approach in evaluating fairness of al-
locations. To date, it is not known if 1-out-of-(n + 1) MMS
allocations are guaranteed to exist. We aim to find allocations
that guarantee 1-out-of-d MMS for some integer d > n.

The aforementioned guarantee can be naturally generalized
to `-out-of-d MMS [Babaioff et al., 2021], that guarantees to
each agent the value obtained by partitioning the goods into
d bundles and selecting the ` least-valuable ones. Therefore,
we further investigate the `-out-of-dMMS generalization that
allows us to improve the fairness thresholds. The notion of
`-out-of-d MMS fairness is robust in the sense that, a fair al-
location remains fair even when each agent’s utility function
goes through an arbitrary monotonically-increasing transfor-
mation. Given these notions, we ask the following questions:

In the allocation of indivisible goods, (a) For what
combinations of integers ` and d, can `-out-of-d
MMS allocations be guaranteed? and (b) For what
integers ` and d can `-out-of-d MMS allocations be
computed in polynomial time?
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1.1 Our Contributions
We investigate the existence and computation of ordinal
MMS approximations and make several contributions.

In Section 3, we prove the existence of `-out-of-d MMS
allocation of goods when d ≥ b(` + 1

2 )nc (Theorem 1). In
particular, 1-out-of-b3n/2cMMS, 2-out-of-b5n/2cMMS, 3-
out-of-b7n/2c MMS, and so on, are all guaranteed to exist.
This finding generalizes the previously known existence re-
sult of 1-out-of-d3n/2eMMS [Hosseini and Searns, 2021].

The proof uses an algorithm which, given lower bounds
on the `-out-of-d MMS values of the agents, returns an `-
out-of-d MMS allocation. The algorithm runs in polynomial
time given the agents’ lower bounds. However, computing
the exact `-out-of-dMMS values is NP-hard. In the following
sections we propose two solutions to this issue.

In Section 4, we present polynomial-time algorithms that
find an `-out-of-(d + o(n)) MMS-fair allocation, where d =
(`+ 1

2 )n. For ` = 1, we present a polynomial-time algorithm
for finding a 1-out-of-d3n/2e MMS allocation (Theorem 2);
this matches the existence result for 1-out-of-b3n/2c MMS
up to an additive gap of at most 1. For ` > 1, we present a
different polynomial-time algorithm for finding an `-out-of-
d(`+ 1

2 )n+O(n2/3)eMMS allocation (Theorem 3).
In the full version of the paper [Hosseini et al., 2022b],

we conduct simulations with valuations generated randomly
from various distributions. For several values of `, we com-
pute a lower bound on the `-out-of-b(`+ 1

2 )ncMMS guaran-
tee using a simple greedy algorithm. We compare this lower
bound to an upper bound on the ( 3

4 + 1
12n )-fraction MMS

guarantee, which is currently the best known worst-case mul-
tiplicative MMS approximation.1 We find that, for any ` ≥ 2,
when the number of goods is at least ≈ 20n, the lower bound
on the ordinal approximation is better than the upper bound
on the multiplicative approximation. This implies that, in
practice, the algorithm of Section 3 can be used with these
lower bounds to attain an allocation in which each agent re-
ceives a value that is significantly better than the theoretical
guarantees.

1.2 Techniques
At first glance, it would seem that the techniques used to at-
tain 2/3 approximation of MMS should also work for achiev-
ing 1-out-of-b3n/2cMMS allocations, since both guarantees
approximate the same value, namely, the 2

3 approximation of
the “proportional share” ( 1

n of the total value of all goods).
In the full version ([Hosseini et al., 2022b]), we present an
example showing that this is not the case, and thus, achiev-
ing ordinal MMS approximations requires new techniques. In
this section, we briefly describe the techniques that we utilize
to achieve ordinal approximations of MMS.

Lone Divider. To achieve the existence result for any ` ≥ 1,
we use a variant of the Lone Divider algorithm, which was
first presented by Kuhn [1967] for finding a proportional allo-
cation of a divisible good (also known as a “cake”). Recently,

1In general, ordinal and multiplicative approximations are in-
comparable from the theoretical standpoint—each of them may be
larger than the other in some instances (see [Hosseini et al., 2022b]).

it was shown that the same algorithm can be used for allo-
cating indivisible goods too. When applied directly, the Lone
Divider algorithm finds only an `-out-of-((`+1)n−2) MMS
allocation [Aigner-Horev and Segal-Halevi, 2022], which for
small ` is substantially worse than our target approximation
of `-out-of-b(`+ 1

2 )nc. We overcome this difficulty by adding
constraints on the ways in which the ‘lone divider’ is allowed
to partition the goods, as well as arguing on which goods are
selected to be included in each partition (see Section 3).
Bin Covering. To develop a polynomial-time algorithm
when ` = 1, we extend an algorithm of Csirik et al. [1999]
for the bin covering problem—a dual of the more famous bin
packing problem [Johnson, 1973]. In this problem, the goal
is to fill as many bins as possible with items of given sizes,
where the total size in each bin must be above a given thresh-
old. This problem is NP-hard, but Csirik et al. [1999] presents
a polynomial-time 2/3 approximation. This algorithm cannot
be immediately applied to the fair division problem since the
valuations of goods are subjective, meaning that agents may
have different valuations of each good. We adapt this tech-
nique to handle subjective valuations.

1.3 Related Work
In the more standard fair division setting, in which adding
goods is impossible, the first non-trivial ordinal approxima-
tion was 1-out-of-(2n − 2) MMS [Aigner-Horev and Segal-
Halevi, 2022]. Hosseini and Searns [2021] studied the con-
nection between guaranteeing 1-out-of-nMMS for 2/3 of the
agents and the ordinal approximations for all agents. The im-
plication of their results is the existence of 1-out-of-d3n/2e
MMS allocations and a polynomial-time algorithm for n < 6.
Whether or not 1-out-of-(n + 1) MMS can be guaranteed
without adding excess goods remains an open problem to
date.

The generalization of the maximin share to arbitrary ` ≥ 1
was first introduced by Babaioff et al.; Babaioff et al. [2019;
2021], and further studied by Segal-Halevi [2020].

The multiplicative approximation to MMS originated in
the computer science literature [Procaccia and Wang, 2014].
The non-existence of MMS allocations [Kurokawa et al.,
2018] and its intractability [Bouveret and Lemaı̂tre, 2016;
Woeginger, 1997] have given rise to a number of approxima-
tion techniques. The currently known algorithms guarantee
β ≥ 2/3 [Kurokawa et al., 2018; Amanatidis et al., 2017;
Garg et al., 2018] and β ≥ 3/4 [Ghodsi et al., 2018;
Garg and Taki, 2020] in general, and β ≥ 7/8 [Amanatidis et
al., 2017] as well as β ≥ 8/9 [Gourvès and Monnot, 2019]
when there are only three agents. Amanatidis et al.; Halpern
and Shah [2016; 2021] show that the highest attainable multi-
plicative approximation of MMS is Θ(1/ log n) when agents
report only a ranking over the goods.

Recently, Nguyen et al. [2017] gave a Polynomial Time
Approximation Scheme (PTAS) for a notion defined as
optimal-MMS, that is, the largest value, β, for which each
agent receives at least a fraction β of its MMS. However,
Searns and Hosseini [2020] show that for every n, there is
an instance with n agents in which under any optimal-MMS
allocation only a constant number of agents (≤ 4) receive
their MMS value.
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2 Preliminaries
2.1 Agents and Goods
Let N = [n] := {1, . . . , n} be a set of agents and M denote
a set of m indivisible goods. We denote the value of agent
i ∈ N for good g ∈ M by vi(g). We assume that the valu-
ation functions are additive, that is, for each subset G ⊆ M ,
vi(G) =

∑
g∈G vi(g), and vi(∅) = 0.2

An instance of the problem is denoted by I = 〈N,M, V 〉,
where V = (v1, . . . , vn) is the valuation profile of agents. We
assume all agents have a non-negative valuation for each good
g ∈ M , that is, vi(g) ≥ 0. An allocation A = (A1, . . . , An)
is an n-partition of M that allocates the bundle of goods in
Ai to each agent i ∈ N .

It is convenient to assume that the number of goods is suffi-
ciently large. Particularly, some algorithms implicitly assume
that m ≥ n, while some algorithms implicitly assume that
m ≥ ` · n. These assumptions are without loss of generality,
since if m in the original instance is smaller, we can just add
dummy goods with a value of 0 to all agents.

2.2 The Maximin Share
For every agent i ∈ N and integers 1 ≤ ` < d, the `-out-of-d
maximin share of i from M , denoted MMS`-out-of-d

i (M), is
defined as

MMS`-out-of-d
i (M) := max

P∈PARTITIONS(M,d)
min

Z∈UNION(P,`)
vi(Z)

where the maximum is over all partitions ofM into d subsets,
and the minimum is over all unions of ` subsets from the par-
tition. We say that an allocation A is an `-out-of-d-MMS al-
location if for all agents i ∈ N , vi(Ai) ≥ MMS`-out-of-d

i (M).
Obviously MMS`-out-of-d

i (M) ≤ `
dvi(M), and the equality

holds if and only if M can be partitioned into d subsets with
the same value.

The value MMS`-out-of-d
i (M) is at least as large, and some-

times larger than, ` · MMS1-out-of-d
i (M). For example, sup-

pose ` = 2, there are d− 1 goods with value 1 and one good
with value ε < 1. Then MMS2-out-of-d

i (M) = 1 + ε but
2 ·MMS1-out-of-d

i (M) = 2ε.
The maximin-share notion is scale-invariant in the follow-

ing sense: if the values of each good for an agent, say i, are
multiplied by a constant c, then agent i’s MMS value is also
multiplied by the same c, so the set of bundles that are worth
for i at least MMS`-out-of-d

i (M) does not change.

2.3 The Lone Divider Algorithm
The Lone Divider algorithm [Kuhn, 1967], as described in
Aigner-Horev and Segal-Halevi [2022], accepts as input a set
M of items and a threshold value ti for each agent i. The
threshold value ti should satisfy the condition that, if some
k bundles with values below the threshold are removed from
M , then there exists a partition of the remaining items into
n − k bundles with value at least ti. This guarantees that, in
any iteration, any agent either receives a bundle with value at

2In the full version of the paper [Hosseini et al., 2022b] we com-
plement our results with a non-existence result for the more general
class of responsive preferences.

Algorithm 1 Finding an `-out-of-b(` + 1
2 )nc MMS alloca-

tion.
Require: An instance 〈N,M, V 〉 and an integer ` ≥ 1.
Ensure: An `-out-of-b(`+ 1

2 )ncMMS allocation.
1: Scale the valuations of all agents such that the `-out-of-
b(` + 1

2 )nc MMS equals ` (see full version for details).

2: Order the instance as in [Bouveret et al., 2016; Barman
and Krishna Murthy, 2017].

3: Run the Lone Divider algorithm with threshold values
ti = ` for all i ∈ N , with the restriction that, in each
partition made by the lone divider, all bundles must be
`-balanced.

least ti, or become a divider in a later iteration and guarantee
a bundle with value at least ti.

3 Ordinal Approximation of MMS for Goods
In this section we prove the following theorem.
Theorem 1. Given an additive goods instance, an `-out-of-d
MMS allocation always exists when d = b(`+ 1

2 )nc.
The proof is constructive: we present an algorithm (Algo-

rithm 1) for achieving the above MMS bound. Algorithm 1
starts with two normalization steps, some of which appeared
in previous works and some are specific to our algorithm. The
algorithm applies to the normalized instance an adaptation of
the Lone Divider algorithm, in which the divider in each step
must construct an `-balanced partition.

An `-balanced partition is a partition in which each part
contains exactly one good from among the n most-valuable
goods; exactly one good from among the n second-most-
valuable goods; and so on up to exactly one good from the
n `th-most-valuable goods (yielding exactly ` goods from the
`nmost valuable goods). We prove that, when the partition in
each iteration is an `-balanced partition, the threshold of ` sat-
isfies the condition required for the Lone Divider algorithm to
succeed.

4 Ordinal Approximation for Goods in
Polynomial Time

Algorithm 1 guarantees that each agent receives an `-out-of-
d MMS allocation for d ≥ b(` + 1

2 )nc. However, the al-
gorithm requires exact MMS values to determine whether a
given bundle is acceptable to each agent. Since computing
an exact MMS value for each agent is NP-hard, Algorithm 1
does not run in polynomial-time even for the case of ` = 1.
The objective of this section is to develop polynomial-time
approximation algorithms for computing `-out-of-d MMS al-
locations.

We utilize optimization techniques used in the bin cover-
ing problem. This problem was presented by Assmann et
al. [1984] as a dual of the more famous bin packing prob-
lem. In the bin covering problem, the goal is to fill bins with
items of different sizes, such that the sum of sizes in each bin
is at least 1, and subject to this, the number of bins is maxi-
mized. This problem is NP-hard, but several approximation
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Algorithm 2 Bidirectional bag-filling

Require: An instance 〈N,M, V 〉 and threshold values
(ti)

n
i=1.

Ensure: At most n subsets Ai satisfying vi(Ai) ≥ ti.
1: Order the instance in descending order of value, so that

for each agent i, vi(g1) ≥ · · · ≥ vi(gm).
2: for k = 1, 2, . . .: do
3: Initialize a bag with the good gk.
4: Add to the bag zero or more remaining goods in as-

cending order of value, until at least one agent i val-
ues the bag at least ti.

5: Give the goods in the bag to an arbitrary agent i who
values it at least ti.

6: If every remaining agent i values the remaining goods
at less than ti, stop.

7: end for

algorithms are known. These approximation algorithms typ-
ically accept a bin-covering instance I as an input and fill at
least a · (OPT (I) − b) bins, where a < 1 and b ≥ 0 are
constants, and OPT (I) is the maximum possible number of
bins in I . Such an algorithm can be used directly to find an
ordinal approximation of an MMS allocation when all agents
have identical valuations. Our challenge is to adapt them to
agents with different valuations.
The case when ` = 1. For the case when ` = 1, we adapt
the algorithm of Csirik et al. [1999], which finds a covering
with at least 2

3 · (OPT (I) − 1) bins (an approximation with
a = 2

3 and b = 1). Algorithm 2 generalizes the aforemen-
tioned algorithm to MMS allocation of goods. Thus, the al-
gorithm of Csirik et al. [1999] corresponds to a special case
of Algorithm 2 wherein (i) All agents have the same vi (de-
scribing the item sizes); and (ii) All agents have the same ti
(describing the bin size).

To compute a threshold for agent i, we simulate Algorithm
2 using n clones of i, that is, n agents with valuation vi. We
look for the largest threshold for which this simulation allo-
cates at least n bundles.
Definition 1. The 1-out-of-n bidirectional-bag-filling-share
of agent i, denoted BBFSn

i , is the largest value ti for which
Algorithm 2 allocates at least n bundles when executed with
n agents with identical valuation vi and identical threshold ti.

The BBFS of agent i can be computed using binary search
up to ε, where ε is the smallest difference between values that
is allowed by their binary representation.

We define an allocation as BBFS-fair if it allocates to each
agent i ∈ [n] a bundle with a value of at least BBFSn

i .
We show that a BBFS-fair allocation always exists, and can

be found in time polynomial in the length of the binary rep-
resentation of the problem. Moreover, a BBFS-fair allocation
is also 1-out-of-d3n/2e MMS-fair, although the BBFS may
be larger than 1-out-of-d3n/2eMMS.
Theorem 2. There is an algorithm that computes a 1-out-of-
d3n/2e MMS allocation in time polynomial in the length of
the binary representation of the problem.

Example 1 (Computing thresholds). Consider a setting

with m = 6 goods and n = 3 agents with the following valu-
ations:

g1 g2 g3 g4 g5 g6 ti

v1 10 8 6 3 2 1 9

v2 12 7 6 5 4 2 11
v3 9 8 7 4 3 1 10

Each player computes a threshold via binary search on
[0, vi(M)] for the maximum value ti such that the simulation
of Algorithm 2 yields three bundles. For agent 1, the simu-
lation with t1 = 9 yields bundles {g1}, {g2, g6}, {g3, g4, g5}.
The corresponding simulation with t1 = 10 yields bundles
{g1}, {g2, g5, g6} with {g3, g4} insufficient to fill a third bun-
dle.

After all thresholds have been determined from simula-
tions, Algorithm 2 computes the circled allocation. Theorem
2 guarantees that this allocation is at least 1-out-of-5 MMS.
Here the circled allocation satisfies 1-out-of-3 MMS. �

Remark 1. When n is odd, there is a gap of 1 between the ex-
istence result for 1-out-of-b3n/2cMMS, and the polynomial-
time computation result for 1-out-of-d3n/2eMMS.

In experiments on instances generated uniformly at ran-
dom, Algorithm 2 significantly outperforms the theoreti-
cal guarantee of 1-out-of-d3n/2e MMS ([Hosseini et al.,
2022b]).
The case when ` > 1. So far, we could not adapt Algorithm
2 to finding an `-out-of-b(` + 1/2)nc MMS allocation for
` ≥ 2. Using a weaker approximation to MMS, along with
other approximations of bin-covering, we prove the following
theorem.
Theorem 3. Let ` ≥ 2 an integer, and d := b(` + 1

2 )nc.
It is possible to compute an allocation in which the value of

each agent i is at least MMS`-out-of-dd+15d2/3+`e
i (M) , in time

Õ
(
n ·m4

)
.

5 Future Directions
The existence of tighter ordinal approximations that improve
`-out-of-b(`+ 1/2)ncMMS allocations is a compelling open
problem. Specifically, one can generalize the open problem
raised by Budish [2011] and ask, for any ` ≥ 1 and n ≥ 2:
does there exist an `-out-of-(`n+ 1) MMS allocation?

For the polynomial-time algorithm when ` = 1, we extend
the bin covering algorithm of Csirik et al. [1999]. We believe
that the interaction between this problem and fair allocation
of goods may be of independent interest, as it may open new
ways for developing improved algorithms.

Finally, it is interesting to study ordinal maximin approx-
imation for items with non-positive valuations (i.e. chores),
as well as for mixtures of goods and chores. Techniques for
allocation of goods do not immediately translate to achiev-
ing approximations of MMS when allocating chores, so new
techniques are needed [Hosseini et al., 2022a].
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