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Abstract
Claims about the interpretability of decision trees
can be traced back to the origins of machine learn-
ing (ML). Indeed, given some input consistent with
a decision tree’s path, the explanation for the re-
sulting prediction consists of the features in that
path. Moreover, a growing number of works pro-
pose the use of decision trees, and of other so-
called interpretable models, as a possible solution
for deploying ML models in high-risk applications.
This paper overviews recent theoretical and prac-
tical results which demonstrate that for most de-
cision trees, tree paths exhibit so-called explana-
tion redundancy, in that logically sound explana-
tions can often be significantly more succinct than
what the features in the path dictates. More impor-
tantly, such decision tree explanations can be com-
puted in polynomial-time, and so can be produced
with essentially no effort other than traversing the
decision tree. The experimental results, obtained
on a large range of publicly available decision trees,
support the paper’s claims.

1 Introduction
Since the inception of the first decision tree (DT) construc-
tion algorithms [Breiman et al., 1984; Quinlan, 1986], inter-
pretability of DTs has been taken for granted. For example, a
well-known researcher in ML, L. Breiman, once remarked
that: “On interpretability, trees rate an A+” [Breiman,
2001] (page 206). More importantly, a number of recent
works propose the use of interpretable models as an alter-
native to blackbox inscrutable ML models [Rudin, 2019;
Molnar, 2020]. In addition, the small size/depth of DTs
is often one of the main arguments supporting the learn-
ing of optimal decision trees [Bertsimas and Dunn, 2017;
Hu et al., 2019; Verwer and Zhang, 2019; Lin et al., 2020]. It
is usually implicit that the explanation in the case of a deci-
sion tree is the path consistent with the target instance.

However, the belief about the interpretability of decision
trees is in fact a misconception. First, there are many exam-

∗The full version is published in J. Artif. Intell. Res.,
75:261–321, 2022.

ples of deployed decision trees that are both large and deep
(e.g. [Ghiasi et al., 2020]). Second, and far more important,
paths in decision trees can include nodes (and therefore lit-
erals) that are irrelevant for the prediction [Izza et al., 2022;
Huang et al., 2021; Izza et al., 2020]. This last result was
complemented by a number of additional theoretical and
practical results. First, we proved that the number of redun-
dant features can grow with the number of features, and that
this is true even for size-optimal DTs. Second, we proved that
DTs that do not have paths with explanation-redundant liter-
als represent a very restricted class of DTs. Third, we showed
experimentally that a large number of example DTs, used in
publications since the inception of DT learning algorithms,
exhibit explanation redundancy. Such publications include
seminal papers on the induction of DTs, but also some of
the best-known textbooks in AI/ML. Fourth, and finally, we
showed experimentally that, without exception, DTs learned
by well-known tree-learning tools will exhibit explanation re-
dundancy, and that such explanation redundancy can be non-
negligible.

This paper offers a brief overview of the results in [Izza et
al., 2022]. Section 2 introduces the definitions and notation
used throughout the paper. Section 3 summarizes the main
contributions in [Izza et al., 2022]. Section 4 offers a brief
perspective on the experimental results in [Izza et al., 2022].
Finally, Section 5 concludes the paper.

2 Preliminaries
Classification in ML. Classification problems are defined
on a set of features F = {1, . . . ,m} and a set of classes
K = {c1, . . . , cK}. Each feature i ∈ F takes values from
a domain Di, where domains can be categorical or ordinal.
Feature space is the cartesian product of the domains of the
features, F = D1×D2×· · ·×Dm. A classifierM realizes a
non-constant classification function κ : F → K. An instance
is a pair (v, c), such that v ∈ F, c ∈ K, and c = κ(v).
Finally, we associate a tuple (F ,F,K, κ) with each classifier.

Decision trees (DTs). A DT T is a directed acyclic graph
G = (V,E). V is partitioned into a set N of non-terminal
nodes, and a set T of terminal nodes. With the exception of
the root of T , all nodes have one incoming edge. The terminal
nodes have no outgoing edges, and each is associated with a
class from K. The non-terminal nodes are associated with a
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(a) Decision tree

# Name Definition
1 A Age > 5?

2 P Petechiae?

3 N Stiff Neck?

4 V Vomiting?

5 Z Zone=0, 1, 2?

6 S Seizures?

7 G Gender?

8 H Headache?

9 C Coma?

(b) Features’ meaning

Figure 1. A DT running example

single feature i ∈ F (i.e. univariate DTs), and the outgoing
edges are associated with sets that partition the domain of
i. Although in this paper we partition the domain of each
feature by using literals of the form xi = di, in [Izza et al.,
2022] we consider the more general setting where literals are
of the form xi ∈ Ei, with Ei ⊆ Di. Moreover, each node
of V is assigned a number (usually 1 is assigned to the root).
Paths in the DT are represented as a sequence of numbers, e.g.
P = 〈i1, i2, . . . , ir〉, such that each pair (ij , ij+1) denotes
an edge of T . Furthermore, since each node partitions the
domain of the feature, then no two paths can be consistent for
the same point in feature space. In addition, for any path, it is
assumed that there exists at least one point v in feature space
for which the path’s literals are consistent with v.

Running example. Throughout the paper, we will use the
decision tree in Figure 1 [Lelis et al., 2020] as the running
example. The DT serves to diagnose the most severe case of
meningitis, Meningococcal Disease (MD), without invasive
tests. Clearly, F = {1, . . . , 9}, K = {Y,N}, Di = {0, 1}
for i = {1, 2, 3, 4, 6, 7, 8, 9}, and D5 = {0, 1, 2}. (Observe
that Age is ordinal (integer or real), but we only test whether
the value is greater than 5.) Moreover, we will consider the
instance ((A = 1, P = 0, N = 0, V = 0, Z = 0, S =
0, H = 0, C = 0, G = 1),Y).

Logic-Based Explainability. We adopt a formal definition
of explanation, as studied in recent works [Shih et al., 2018;

Ignatiev et al., 2019; Marques-Silva and Ignatiev, 2022;
Marques-Silva, 2022].

Given an instance (v, c), an explanation problem E is a
tuple (M, (v, c)). Moreover, a weak abductive explanation
(WAXp) is a set of features X ⊆ F which, if assigned the
values dictated by v, then the prediction is c. Formally,
WeakAXp(X ;M, (v, c)) :=

∀(x ∈ F). (∧i∈Xxi = vi)→(κ(x) = c) (1)
(where the parametrization onM and (v, c) is shown.) More-
over, an abductive explanation (AXp) is a subset-minimal
weak AXp:

AXp(X ) :=
WeakAXp(X ) ∧ ∀(X ′ ( X ).¬WeakAXp(X ′) (2)

(where the parametrization on M and (v, c) is not shown,
and it is left implicit; we will do this henceforth.)

A weak contrastive explanation (WCXp) is a set of features
Y ⊆ F which, if allowed to take any one of the values in their
domain, then the prediction changes to a class other than c.
Formally,
WeakCXp(Y ;M, (v, c)) :=

∃(x ∈ F).
(
∧i∈F\Yxi = vi

)
∧ (κ(x) 6= c) (3)

Moreover, a contrastive explanation (CXp) is a subset-
minimal weak CXp:

CXp(Y) :=
WeakCXp(Y) ∧ ∀(Y ′ ( Y).¬WeakCXp(Y ′) (4)

Because the definitions of WAXp and WCXp are mono-
tonic [Ignatiev et al., 2019; Marques-Silva and Ignatiev,
2022; Marques-Silva, 2022], then AXp’s and CXp’s can be
computed more efficiently:
AXp(X ) :=

WeakAXp(X ) ∧ ∀(i ∈ X ).¬WeakAXp(X \ {i}) (5)
CXp(Y) :=

WeakCXp(Y) ∧ ∀(i ∈ Y).¬WeakCXp(Y \ {i}) (6)
These latter definitions are at the core of algorithms for com-
puting AXp’s and CXp’s. Finally, it is well-known that each
AXp is a minimal hitting set (MHS) of the set of CXp’s, and
vice-versa [Ignatiev et al., 2020]. This MHS duality of AXp’s
and CXp’s is at the core of algorithms for enumerating expla-
nations.
Example 1. For the running example (see Figure 1), and the
instance ((A = 1, P = 0, N = 0, V = 1, Z = 0, S =
0, H = 0, C = 0, G = 1),Y), we can show that one AXp
is (A,Z) (technically, we should write (1, 5)). Thus, we can
confidently state the following rule, representing a sufficient
condition for predicting Y,

IF (Age > 5) ∧ (Zone = 0) THEN κ(·) = Y

This conclusion is somewhat surprising, since we decide for
the most severe case of meningitis, without actually requiring
any symptoms to be observed. This example illustrates what
seems to be an issue with the DT proposed in [Lelis et al.,
2020]. In this case, the use of abductive explanations for DTs
would allow uncovering the issue.

There has been rapid progress in logic-based explainabil-
ity in recent years [Shih et al., 2018; Ignatiev et al., 2019;
Darwiche and Hirth, 2020; Audemard et al., 2020; Barceló
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et al., 2020; Huang et al., 2021; Audemard et al., 2021; Izza
and Marques-Silva, 2021; Ignatiev and Marques-Silva, 2021;
Amgoud, 2021; Liu and Lorini, 2021; Huang et al., 2022;
Ignatiev et al., 2022; Gorji and Rubin, 2022; Arenas et al.,
2022]. Recent overviews include [Marques-Silva and Ig-
natiev, 2022; Marques-Silva, 2022].

3 Path Explanation Redundancy
For DTs, AXp’s can either be restricted to a target path, i.e.
the path consistent with the instance, or may include features
from different paths. AXp’s of the former kind are referred
to as path-restricted, whereas AXp’s of the latter kind are
referred to as path-unrestricted. Path explanations are path-
restricted AXp’s, with the additional property that no instance
is specified; the path explanation applies to any instance con-
sistent with the path. The identification of path-restricted
AXp’s reveals features which, if assigned one of its domain
values tested in the path, is sufficient for the prediction. The
remaining features are then deemed explanation redundant.

Path explanation redundancy in theory. The first main
result is that the number of redundant features in a path can
grow with the total number of features [Izza et al., 2022],
which can be summarized as follows:
Proposition 1. There are DT classifiers, defined on m fea-
tures, for which an instance has an AXp of size 1, and the
consistent path has length m, and so it can be made larger by
a factor of m than the size of an AXp.

The proof idea is to propose a classifier, and an opti-
mal decision tree, such that there exists at least one path
for which all literals but one are redundant. It turns out
that this is fairly easy to do. Indeed, a boolean classifier
that is the disjunction of the features will exhibit this ex-
treme case of path explanation redundancy. Clearly, a pos-
sible criticism with respect Proposition 1 is that the pro-
posed example classifier might be unique, or representative
of a fairly restricted family of classifiers. In fact, the sit-
uation is exactly the opposite, and a DT will exhibit no
path explanation redundancy only when the classifier be-
ing represented corresponds to the very restricted class of
generalized decision functions (GDF) [Huang et al., 2022;
Izza et al., 2022], concretely those that are binding, non-
overlapping and minimal (or irreducible). Thus, from [Izza
et al., 2022, Proposition 11], we have:
Proposition 2. A DT T does not exhibit path explanation re-
dundancy iff there exists a minimal DNF GDF g that is equiv-
alent to T .

Overview of algorithms. We have devised different algo-
rithms for computing AXp’s, CXp’s, and for their enumera-
tion. This section briefly overviews these algorithms.

It is simple to find an AXp by iterated tree traversals. We
pick an order of the features associated with the target path P
with prediction c. This is the initial overapproximation of the
AXp (and so a weak AXp); the remaining features not asso-
ciated with the path are allowed to take any value from their
domains, and so are excluded from the AXp. The features are
analyzed in order. For each feature i, we allow i to take any
value from its domain. We then traverse the tree, and if there

is an assignment of values to the non-fixed features such that
a path yielding a different prediction can be made consistent,
then the feature cannot be allowed to take any value from its
domain, and so it is fixed. Otherwise, if no path with a pre-
diction other than c can be made consistent, then the feature
is dropped from the set of features in the explanation. (A cru-
cial observation is that the assumptions about decision trees
guarantee that for any path, some point v in feature space is
consistent with the path; hence checking consistency runs in
polynomial time on the size of the path.)

In practice, an approach that is more efficient than iterated
tree traversals is to encode the problem as a propositional
Horn formula, containing both hard and soft clauses, such
that the soft clauses capture a preference not to pick features,
i.e. a partial (Horn) MaxSAT (i.e. a smallest maximal satis-
fiable subset (MSS)) encoding. Finding an optimal solution
for partial (Horn) MaxSAT is NP-hard. However, finding an
MSS (and so indirectly an AXp) is polynomial-time solvable
in the size of the DT [Izza et al., 2022].

To change the prediction, we can pick any path Q with
a prediction other than c, traverse the path Q and, for the
features in Q that are fixed (given P) and are inconsistent
with the value(s) dictated by P , then we add them to the set
features in the CXp. (A technical detail is that we need to
check that no other path with prediction other that cwill allow
for a strictly smaller subset of features. Since the number of
paths is polynomial on the tree size, then the algorithm runs
in polynomial time.

The same algorithm that is used for computing one CXp
can be modified for enumerating all the CXp’s. Clearly, each
path Q with a prediction other than c can represent at most
one CXp (and there can exist paths that do not contribute any
CXp B because some other path contributes a CXp A that
is a proper subset of B). Hence, enumeration of CXp’s is
polynomial-time solvable in the case of DTs [Huang et al.,
2021; Izza et al., 2022].

The next examples illustrate the (simpler) algorithms de-
veloped for explaining DTs.
Example 2 (Computation of one AXp). For the running ex-
ample of Figure 1, consider the path P = 〈1, 3, 6, 8, 10, 14〉,
with prediction Y. The set of features of interest is
{A,P,N, V, Z}; the remaining features we will discard for
path-restricted AXp’s. It is immediate to conclude that, by
allowing P,N, V to take any value from their domain, the
prediction remains at Y. By inspection, allowing any of the
remaining features to take any value from its domain will al-
low the prediction to change. Hence, the AXp is {A,Z} (or
using feature numbers, {1, 5}.) As can be readily concluded,
the AXp contains 2 (out of 9) features; hence the fraction of
redundant features is 77.8%.
Example 3 (Computation of one CXp). For the same path
P above, we consider the path Q = 〈1, 2, 5〉. Clearly, P
takes the same value in the two paths, and so it is discarded.
Finally, we can make the pathQ consistent by setting A = 0.
Hence, one CXp is {A} (or {1}). To find the second CXp, we
can consider the path R = {1, 3, 6, 8, 10, 12}. In this case,
the only feature that takes a value different from the values
of the literals in P is Z. Hence, by changing the value of
Z from 0 to 1, we force the prediction to change. Hence, the
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Figure 2. Explanation redundancy for DTs trained with ITI and IAI.

other CXp is {Z} (or {5}). (This is to be expected by minimal
hitting set duality [Ignatiev et al., 2020].)

3.1 Path Explanation Redundancy in Practice
In practice, the experiments in [Izza et al., 2022] confirm the
theoretical results. First, the vast majority of DTs, generated
with a wide range of decision tree learning algorithms (in-
cluding algorithms that learn optimal decision trees), exhibit
path explanation redundancy. As shown in Section 4, path ex-
planation redundancy is significant, both in terms of the num-
ber of paths that are explanation redundant, but also in terms
of the number of literals that are redundant in any given path.
Moreover, [Izza et al., 2022] also shows that path explana-
tion redundancy is ubiquitous in example DT used in papers
and books since the early 80s. The next section overviews the
experimental results from [Izza et al., 2022].

4 Experimental Evidence
[Izza et al., 2022] presents a wide range of results, cov-
ering example DTs found in many publications since the
early 80s, to DTs learned with different tree-learning algo-
rithms, some of which learn optimal DTs. This section sum-
marizes the experimental results in [Izza et al., 2022], but
also includes more recent data points. Figure 2 aggre-
gates the redundancy results obtained with well-known (op-
timal) tree-learning algorithms, namely the tool from Inter-
pretable AI [Bertsimas and Dunn, 2017] and ITI [Utgoff et
al., 1997]. As can be observed, for most DTs, path expla-
nation redundancy can be observed, and the fraction of re-
dundant paths can reach close to 100%. Table 1 sumarize
path-explanation redundancy for four well-known datasets,
using two optimal tree-learning tools, namely BinOCT [Ver-
wer and Zhang, 2019] and OSDT/GOST [Hu et al., 2019;
Lin et al., 2020]. The results for CART [Breiman et al., 1984]
are included for completeness. As claimed earlier, optimal
DTs can exhibit path explanation redundancy.

The experiments reported in this work consider fairly shal-
low DTs (i.e. with depths not exceeding most often 6 or 8).
The sole reason for using shallow trees is that these suffice
in terms of target accuracy, i.e. deeper trees do not yield im-
provements in accuracy. However, the methods proposed in

Dataset Tool D #N %A #P %R %C %m %M %avg

monk1 BinOCT 3 13 91 7 28 11 66 66 66
OSDT 5 13 100 7 57 41 33 33 33

tic-tac-toe BinOCT 4 15 77 8 75 75 33 33 33
OSDT 5 15 83 8 75 37 25 60 43

compas OSDT 4 9 67 5 60 37 33 33 33

monk2 CART 6 31 69 16 62 22 20 66 33
GOSDT 6 17 73 9 55 48 16 40 31

Table 1: Results on path explanation redundancy in (optimal) DTs,
trained with different training tools: BinOCT, CART, OSDT, and
GOSDT. (The results for CART are solely included for complete-
ness.) Columns D, #N, %A and #P report, resp., tree depth, num-
ber of nodes, test accuracy and number of paths in the tree. The
explanation-redundant paths is given (in %) as %R and the cov-
ered % of data instances (measured for the entire F) is %C. Column
%avg (%m and %M, resp.) reports the average (min. or max.,
resp.) % of explanation-redundant features per path.

this work can be shown to apply to much larger (and deeper)
DTs. For example, recent work [Ghiasi et al., 2020] proposes
the use of DTs for diagnosis of coronary artery disease. For
one of the DTs proposed in [Ghiasi et al., 2020] (see [Ghiasi
et al., 2020, Fig. 2]) the longest paths have 19 non-terminal
nodes. Among these, for the path with prediction CAD, man-
ual inspection1 reveals that at least 10 literals out of 19 (i.e.
more than 50%) are redundant. Evidently, for a human deci-
sion maker, an explanation with 9 literals (or less) is far easier
to understand than one with 19 literals. Manual inspection of
the additional DTs reported in [Ghiasi et al., 2020] confirm
that these exhibit a similar degree of redundancy.

5 Conclusions
One established misconception in explainability/inter-
pretability is that decision trees (and other so-called inter-
pretable models) are intrinsically interpretable, i.e. the ML
model yields itself explanations for predictions [Rudin, 2019;
Molnar, 2020]. Our work [Izza et al., 2022] disproves this
misconception. We have shown that DTs can exhibit path
explanation redundancy, i.e. features in paths that are un-
necessary for the prediction, and that such redundancy can
be arbitrarily large on the number of features. We have also
proved that the subclass of DTs that do not exhibit explana-
tion redundancy is fairly restricted. Besides the theoretical
results, we have demonstrated that a vast number of DTs,
which have been used in publications since the early 80s
(i.e. since the inception of DT learning algorithms), exhibit
explanation redundancy, and that such explanation redun-
dancy can be significant. Finally, we have also shown that
algorithms for learning DTs, either optimal or non-optimal,
exhibit explanation redundancy.

The results of our work are clear, and decision trees (and
other interpretable models) should be explained in practice.
Moreover, it would be important to learn decision trees rep-
resenting functions that offer simple explanations instead of
learning decision trees that target some other metric, e.g. tree
depth or tree size. This is the subject of future research.

1Unfortunately, we have been unable to obtain from the authors
this concrete DT in a format suitable for automated analysis.
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