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Abstract
Dealing with planning problems with both logical
relations and numeric changes in real-world dy-
namic environments is challenging. Existing nu-
meric planning systems for the problem often dis-
cretize numeric variables or impose convex con-
straints on numeric variables, which harms the per-
formance when solving problems, especially when
the problems contain obstacles and non-linear nu-
meric effects. In this work, we propose a novel
algorithm framework to solve numeric planning
problems mixed with logical relations and numeric
changes based on gradient descent. We cast the
numeric planning with logical relations and nu-
meric changes as an optimization problem. Specif-
ically, we extend the syntax to allow parameters of
action models to be either objects or real-valued
numbers, which enhances the ability to model real-
world numeric effects. Based on the extended mod-
eling language, we propose a gradient-based frame-
work to simultaneously optimize numeric parame-
ters and compute appropriate actions to form candi-
date plans. The gradient-based framework is com-
posed of an algorithmic heuristic module based on
propositional operations to select actions and gen-
erate constraints for gradient descent, an algorith-
mic transition module to update states to the next
ones, and a loss module to compute loss. We re-
peatedly minimize loss by updating numeric pa-
rameters and compute candidate plans until it con-
verges into a valid plan for the planning problem.

1 Introduction
Autonomous robots have become commonplace in commer-
cial and industrial settings. For example, hospitals use au-
tonomous mobile robots to move materials. Warehouses
exploit mobile robotic systems to efficiently move materi-
als from stocking shelves to order fulfillment zones. In
scientific missions, Woods Hole Oceanographic Institution
∗This paper is an extended abstract of the paper published in Ar-

tificial Intelligence, Volume 313, 2022.

(WHOI) uses autonomous underwater vehicles (AUVs) to
collect data of scientific interest. In those real-world applica-
tions, it is desirable to have autonomous robots be capable of
autonomously planning with optimization of numeric objec-
tives, such as minimizing resources, during planning towards
desirable goals (e.g., in the form of propositions).

To handle numeric planning problems, there have been ap-
proaches [Eyerich et al., 2009; Gerevini and Serina, 2002;
Helmert, 2006; Hoffmann, 2001] proposed to discretize nu-
meric space and then use heuristic searching. They, however,
do not address planning missions over long-term reasoning
for autonomous robots since the size of discretization needs
to be fixed in advance manually. It is hard to determine a
proper size of discretization beforehand for various planning
problems with respect to different environments.For exam-
ple, in the ocean mission scenario as shown in Figure 1, a
ship is equipped with an AUV (Autonomous Underwater Ve-
hicle), i.e., the submarine in the figure, and an ROV (Remotely
Operated Vehicle), i.e., the robot. The AUV aims to take im-
ages in Region A, and the ROV aims to take samples in Re-
gions B and C. The planning mission is to make the three
vehicles reach the destination region (the blue area denoted
by “destination region”), with avoiding obstacles (the black
areas). Each action has multiple parameters, where a move-
ment is determined by three numeric ones, i.e., x-velocity vx,
y-velocity vy , and duration d. In particular, if the ship de-
ploys the ROV, which moves within a circle centered over the
ship with a radius R, the ship needs to stay at the deploy-
ment location until the ROV comes back again. We use red
arrows to indicate the trajectory of the ship, green arrows to
indicate the trajectory of the ROV, and blue arrows to indi-
cate the trajectory of the AUV. An example plan generated by
Metric-FF can be found in Figure 1(a) (the corresponding ac-
tion sequence is shown on the right). All the movements are
fixed, owing to the requirements of fixed numeric effects. The
transition of locations is done by dividing space beforehand
and using propositions to indicate them.As shown in Figure
1(a), each movement computed by Metric-FF is fixed, which
indicates they cannot make up a flexible plan. The desired
solution is to dynamically adapt step lengths according to the
positions and shapes of obstacles when generating the plan,
as the one shown in Figure 1(b).

There are also approaches that introduce numeric vari-
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(a) Metric-FF

(b) mxPlanner

Figure 1: Valid plans based on Metric-FF and mxPlanner in ocean
mission scenario.

ables [Coles et al., 2008; Keyder et al., 2014; Ivankovic et
al., 2014] and control parameters [Li and Williams, 2008;
Pantke et al., 2014] into action models. POPCORN [Savas
et al., 2016] was built, using real number control parameters
to allow action models with infinite domain parameters. It
can, however, only be used in discrete numeric effects with
constant rates of change, and only supports linear constraints.
To relax the limitations of linear constraints, ScottyActivity
[Fernández-González et al., 2018] was developed to effec-
tively generate plans for autonomous robots over long-term
reasoning. ScottyActivity utilizes convex optimization to
choose continuous states, control parameters, and times. De-
spite the success of ScottyActivity, it still requires the contin-
uous search space to be convex, which in consequence does
not allow “obstacles” in a navigation domain, making the
search space non-convex. In many real-world applications,
however, the continuous search space is often non-convex. It
is undoubtedly challenging to solve planning missions that
require both discrete action planning and non-convex contin-
uous state searching.

In this paper, we extend the scope of the previous nu-
meric planning problem by simultaneously allowing three
properties: non-convex continuous numeric space, proposi-
tional and numeric action preconditions and effects, and more
complicated action effects. We propose a novel approach,
mxPlanner [Jin et al., 2022], which stands for gradient-
based mixed Planner, to deal with problems with logical re-
lations and numeric changes in non-convex numeric space,
determined by multiple symbolic and numeric action param-
eters. We build a gradient-based framework, composed of an
algorithmic heuristic module, an algorithmic transition mod-
ule, and loss functions. The effectiveness of using gradient-
based planning has been proved in [Cui and Khardon, 2016;
Bajpai and Garg, 2018; Garg et al., 2019; Hafner et al., 2020].

Specifically, the heuristic module estimates appropriate ac-
tions to form a plan σ to transit initial state s0 to the goal. The
transition module updates states according to plan σ. After
that, we explore gradient descent to optimize numeric param-
eters to minimize accumulated loss computed by loss func-
tions. We repeat the above-mentioned procedures of com-
puting plans and optimizing numeric parameters until our ap-
proach converges to valid plans. Note that we do not only up-
date the continuous numeric parameters of actions, but also
modify the actions in σ simultaneously. Our mxPlanner is
capable of handling flexible numeric changes determined by
multiple numeric parameters of actions, instead of fixing nu-
meric effects as done by Metric-FF. For example, in the AUV
domain shown in Figure 1, another plan calculated by our
mxPlanner can be found from Figure 1(b). The navigation
distance computed by mxPlanner is much shorter than the
other one, since mxPlanner is more flexible than Metric-FF
with fixed step length.

The remainder of this paper is a high-level summary of [Jin
et al., 2022]. We summarize the contributions as follows:

• We extend numeric planning problems to simultane-
ously allow continuous numeric space to be non-convex,
preconditions and effects to be both propositional and
numerical, and numerical effects to be non-linear.

• To handle mixed planning problems, we propose a novel
approach, mxPlanner, which borrows the framework
of recurrent neural networks with the integration of al-
gorithmic heuristic searching in the framework.

• We empirically show that our mxPlanner outperforms
existing planners in solving mixed planning problems
with non-convex numeric space (i.e., including obsta-
cles) and complex preconditions and effects (involv-
ing propositions and numeric expressions determined by
multiple action parameters). Besides, the experimental
results show mxPlanner is also competitive when han-
dling mixed planning problems with convex continuous
numeric space.

2 Problem Definition
In this paper, we aim to solve sequential planning problems
with both discrete logical relations and continuous numeric
changes. Specifically, we aim to consider the planning prob-
lem that has the following features:

• The continuous numeric space (which is composed of a
set of numeric variables in each state) is allowed to be
non-convex; note that the objective based on the non-
convex space is also non-convex.

• The effects of actions are allowed to be discrete (propo-
sitional operations), continuous (numeric changes) or
both.

• The numeric effects are allowed to be non-linear, linear,
or both.

• The numeric variables are allowed in preconditions of
actions.
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Figure 2: The Gradient-based framework of mxPlanner, which follows the RNN framework to perform forward simulation.

We call the above-mentioned planning problem as a mixed
planning problem. Formally, we represent our mixed plan-
ning problem as a tupleM = 〈S, s0, g,A,B〉, where S is a
set of states, each of which is composed of a set of propo-
sitions and assignments of numeric variables in the prefix
form. We define a continuous numeric space by the set of
numeric variables. A is a set of action models. An ac-
tion is a grounding of an action model, i.e., every parameter
in the action model is an object or a real number. Specifi-
cally, we use a vector Θ = 〈Θ0,Θ1, . . . ,ΘN−1〉 to denote
all numeric parameters occurring in a plan σ with N steps,
where N is the maximal length of the potential solution plan.
Θi = 〈θ1i , θ2i , . . . , θTi 〉 is all of the numeric parameters of
actions in step i. T is the number of different numeric param-
eters of all actions in A. Note that the parameters of actions
are different from the set of variables in states. An action
model or action is called numeric if it has numeric updating
effects; otherwise, it is called logical, indicating that the ac-
tion only includes logical operations. An action is applicable
in a state if its precondition is satisfied by the state. B is an
interval to constrain numeric parameters, which is defined by
B = [B,B]. Besides, we use ψ(a) to denote the cost of action
a. In this paper, we define the cost of action as the distance
yielded by it. We define the cost of a plan σ as the sum of the
cost of all actions in σ, i.e., C(σ) =

∑
ai∈σ ψ(ai).

Given a mixed planning problemM, we aim at computing
a plan σ = 〈a1, a2, . . . , an〉 to achieve g from s0 with the
minimal cost. Different from classical planning problems, in
this paper, we require to not only find appropriate actions but
also determine their continuous numeric parameters. We give
a formal form of expression of mixed planning problems in
[Jin et al., 2022] and compare it with PDDL 2.1 [Fox and
Long, 2003] and PDDL+ [Fox and Long, 2006].

3 An Overview of mxPlanner
A framework of mxPlanner is shown in Figure 2 in the
form of unfolded RNN Cells. Each RNN Cell represents a
step in a plan, which is composed of a heuristic module, a
transition module, and a loss module. The heuristic module
is an algorithm to output an action, the transition module is
used to update a state according to action models, and the

loss module is composed of functions to calculate losses. It
is notable that we just “borrow” the framework of RNN and
take advantage of its features about sharing the same RNN
Cell across all steps. The heuristic module and the transition
module are implemented as algorithmic procedures or func-
tions instead of neural networks. Using the RNN framework
offers an efficient way to build sequential plans via gradient
descent. Note that, different from RNNs, we optimize the
input numeric parameters with gradient descent, rather than
weights of neural networks in RNN Cells, as done by [Wu et
al., 2017], which have been replaced by three modules in this
paper. We assume the number of RNN cells,N , is sufficiently
large to compute a plan. The overall procedure of computing
a plan is as shown below:

1. We first randomly initialize numeric parameters Θ of ac-
tions which will be optimized by the subsequent steps.

2. The heuristic module, which is based on the relaxed
planning graph [Blum and Furst, 1997] and the interval-
based relaxation [Scala et al., 2016], takes a state si,
numeric parameters Θi, and the goal g as inputs, and
outputs an action ai, upper bound vector Ui and lower
bound vector Li of numeric variable values. The up-
per bound vector and lower bound vector are two real
number vectors with the size of the number of numeric
variables. These two bound vectors designate the value
ranges of all numeric variables in the next state.

3. The transition module, which essentially is a transition
function γ, takes a state si, action ai, and numeric pa-
rameters of actions Θi in ai as inputs, and outputs the
next state si+1.

4. The loss module, which is composed of loss functions,
takes an action ai, upper bound vector Ui, lower bound
Li and state si+1 as inputs, and outputs the loss of the
step Li. Li includes three parts: Lbi for guiding states
to fall within the required bounds, Loi for guiding agents
avoiding obstacles, and ψ(ai) for minimizing costs. We
calculate the total loss Lall by accumulating losses from
all of the RNN Cells.

5. We inversely optimise numeric parameters in each step
Θ0,Θ1, . . . ,ΘN−1 by minimizing Lall. It is noted that,
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after updating numeric parameters, the transferred states
at each step are also updated in the next iteration, along
with the numeric parameters updated. Hence, the ac-
tions computed by the heuristic module may be different
in the following iterations. With the values of numeric
parameters updated, the heuristic module repeatedly es-
timates actions based on current updated states until a
plan with minimal cost is achieved.

6. We repeat the second to the fifth steps until we find a
valid plan σ. Note that actions in σ are not fixed and
they can be changed during iterations. That is, we do not
only update numeric parameters but also update actions
at the same time.

4 Results
We briefly introduce the experiments in [Jin et al., 2022],
which are based on three domains, i.e., AUV, Taxi, and
Rover. We compare with mxPlanner with three state-of-
the-art planners with modifications, Metric-FF [Hoffmann,
2003], POPCORN [Savas et al., 2016], and ScottyActivity
[Fernández-González et al., 2018] with different settings. We
first evaluate mxPlanner with respect to four aspects in
convex and non-convex problems with different parameter
bounds settings. Then we test the performance, i.e., costs
and iterations, of mxPlanner with different hyperparame-
ters. At last, we evaluate the running time of mxPlanner,
Metric-FF, ScottyActivity, and the adapted POPCORN with
respect to different parameter bounds, and analyze the mer-
its and demerits of mxPlanner with comparison to other
approaches based on four cases. Here, we describe two ex-
perimental results where the remaining details are in [Jin et
al., 2022].

Figure 3 shows the results of average costs with different
parameter bounds in convex problems, i.e. including no ob-
stacles. As shown in the Figure, mxPlanner is competitive.
The performance of mxPlanner is similar to ScottyActiv-
ity, which utilizes convex optimization and has the ability to
compute plans of high quality for some simple instances. The
average plan costs of Metric-FF+ are the largest in most cases
of the three domains. Because the discretization of Metric-
FF+ lets agents move more compared with the planners using
an optimization algorithm.

Another experiment is shown in Figure 4, which shows two
example plans in the AUV domain with obstacles computed
by Metric-FF and mxPlanner. mxPlanner dynamically

Figure 3: Average cost of obstacle-free instances in the three do-
mains with different parameter bounds.

(a) MFF10 (b) mxR

Figure 4: Two example plans in the AUV domain computed by
Metric-FF and mxPlanner, respectively. The bold red dot is the
stop position of each movement. Blue areas are target regions and
black areas are obstacles.

adjusts the step lengths and searching angles in each step to
generate flexible plans, instead of fixing step lengths deter-
mined by prior knowledge, as done by Metric-FF.

5 Conclusion
In this paper, we introduce mixed planning problems, which
are extended from numeric planning problems with control
parameters. We present mxPlanner, a gradient-based ap-
proach that borrows the framework of RNNs by replacing
the neural cells with heuristic search and transition modules.
We evaluate mxPlanner in three domains and the experi-
mental results show the superiority of mxPlanner on plan
quality, especially in obstacle avoidance problems compared
against state-of-the-art approaches. Also, we evaluate the in-
fluence of the hyperparameters on mxPlanner. The com-
bination of heuristic searching and gradient-based framework
gives mxPlanner the ability to handle mixed planning prob-
lems without discretization. Especially, mxPlanner per-
forms well when handling mixed planning problems with
non-convex continuous numeric space, i.e., containing obsta-
cles. In this paper we assume the logical relations in action
models are given beforehand. In the future it would be in-
teresting to investigate embedding action model learning ap-
proaches [Zhuo and Kambhampati, 2017; Zhuo and Yang,
2014; Zhuo et al., 2014; Zhuo et al., 2010]
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