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Abstract
Multiagent decision-making in partially observ-
able environments is usually modelled as either an
extensive-form game (EFG) in game theory or a par-
tially observable stochastic game (POSG) in multi-
agent reinforcement learning (MARL). One issue
with the current situation is that while most practical
problems can be modelled in both formalisms, the
relationship of the two models is unclear, which hin-
ders the transfer of ideas between the two communi-
ties. A second issue is that while EFGs have recently
seen significant algorithmic progress, their classical
formalization is unsuitable for efficient presentation
of the underlying ideas, such as those around de-
composition.
To solve the first issue, we introduce factored-
observation stochastic games (FOSGs), a minor
modification of the POSG formalism which distin-
guishes between private and public observation and
thereby greatly simplifies decomposition. To rem-
edy the second issue, we show that FOSGs and
POSGs are naturally connected to EFGs: by “un-
rolling” a FOSG into its tree form, we obtain an
EFG. Conversely, any perfect-recall timeable EFG
corresponds to some underlying FOSG in this man-
ner. Moreover, this relationship justifies several
minor modifications to the classical EFG formaliza-
tion that recently appeared as an implicit response
to the model’s issues with decomposition. Finally,
we illustrate the transfer of ideas by presenting three
key EFG techniques – counterfactual regret mini-
mization, sequence form, and decomposition – in
the FOSG framework.

1 Introduction
Sequential decision-making is one of the core topics of ar-
tificial intelligence research. The ability of an AI agent to
perform actions, observe their consequences, and perform fur-
ther actions towards a goal is instrumental in domains from

∗ This is an extended abstract for [Kovařík et al., 2022].

robotics and autonomous driving to medical decision diagno-
sis and automated personal assistants. Recent progress has
led to unprecedented results in many large-scale problems
of this type. While conceptually simpler problems can be
modelled with perfect information or by regarding the other
agents as stationary parts of the environment, realistic models
of real-world situations require rigorous treatment of imper-
fect information and multiple independent decision-makers
operating in a shared environment. The most popular game-
theoretical model in these setting – extensive form games
(EFG) – dates back to 1953 [von Neumann and Morgen-
stern, 1953]. EFGs have served the community well, and
many impressive results build on top of this particular frame-
work [Moravčík et al., 2017; Brown and Sandholm, 2017b;
Brown and Sandholm, 2019].

However, EFGs lose crucial information inherently present
in many environments: the observations received by the agents.
Observations are essential not only for specifying what infor-
mation was received, but also to know who received it and
when. Since EFGs simply group states indistinguishable to
the acting player, the notion of information being public or
private is forever lost, and so are the data about the timing.
However, these concepts are essential for recent search algo-
rithms [Moravčík et al., 2017; Brown and Sandholm, 2017a;
Brown et al., 2020], where decomposition and reasoning about
subgames crucially rely on the notion of public information.
While it is common to try to recover the necessary information
from the EFG model [Burch et al., 2014; Johanson et al., 2011;
Šustr et al., 2019], we show that this is impossible to do in
general. Practical implementations thus bypass the model by
using algorithms that are built with game-specific concepts
(e.g., dealing cards in poker), rather than developing algo-
rithms running purely on top of the information provided by
the formal model.

On the high-level, the key contributions of this paper are
as follows: First, we argue that to get the most value out of
game-theoretical models, we should no longer discard infor-
mation about whether observations in an environment are
observed jointly or privately. We propose that this can be done
by using factored-observation stochastic games (FOSGs), a
minor extension to the existing partially-observable stochastic
game model. Additionally, we show EFGs and POSGs/FOSGs
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Figure 1: The relationship between Factored-Observation Stochastic
Games, Partially-Observable Stochastic Games, and Extensive-Form
Games. All (timeable perfect-recall) EFGs can be obtained by starting
with some FOSG (Thm. 3.10). Going from augmented to “classical”
EFGs is a lossy process that cannot, in general, be reversed (Sec. 3.3)

should not be viewed as two unrelated models. Instead, EFGs
are derived objects that can be obtained by “unrolling” some
underlying FOSG. This both highlights a new application for
standalone EFG research and suggests that explicitly reason-
ing about the underlying FOSG can have significant bene-
fits. (Indeed, FOSGs have the potential to enable new tech-
niques and insights, make results accessible to a broader au-
dience, and align our formal language with recent domain-
implementations which often already resemble FOSGs.) More
specifically, the full paper shows:

1. There is an an equivalence between POSGs and FOSGs.
Any POSG result directly applies to FOSGs as well, since
it suffices to merely forget the factorization of observa-
tions (Proposition 2.3).

2. We provide a mapping between EFGs and FOSGs. Every
FOSG has a canonical extensive-form representation, and
every “well-behaved” (perfect recall and timeable) EFG
corresponds to some FOSG (Theorems 3.6 and 3.10).

3. Moreover, this relationship between FOSGs and EFGs
suggests that our extended definition (Def. 3.5) is a natu-
ral way of formalizing EFGs. As a combination of several
recent extensions of the EFG model [Burch et al., 2014;
Johanson et al., 2011; Brown et al., 2018; Seitz et al.,
2019], our formalization removes the need for implement-
ing modern search algorithms in a domain-specific man-
ner. In particular, it preempts various problems with de-
composition that are difficult or even impossible to solve
in the historical formalization of EFGs (Section 3.3).

4. Finally, we demonstrate that translating EFG results to
FOSGs is straightforward: Decomposition in FOSGs
has intuitive properties (Section 4.3) and two key EFG
techniques – counterfactual regret minimization and se-
quence form – are easy to formulate in this framework
(Sections 4.2 and 4.4).

In the remainder of this extended abstract, we give a formal
definition of the proposed model. For a demonstration of the
formalism on the example of Kuhn poker, and further details
and results, we invite the reader to read [Kovařík et al., 2022].

2 Factored-Observation Stochastic Games
In this section, we describe the factored-observation stochastic
game model as a variation on partially-observable stochastic
games. Since a key feature of the model is its ability to talk
about public information, let us first explain what this concept
refers to, why is it important, and why incorporating it into
our models is natural, useful, and inexpensive.

2.1 Public Information and Decomposition
A piece of information is said to be common knowledge
among a group of agents if all the agents know it, they all
know that they know it, they all know that they all know that
they know it, and so on [Fagin et al., 2003]. Figuring out
which information is common knowledge is often difficult,
as it requires putting oneself in shoes of the other agents and
accurately reasoning about their thought processes. In contrast,
a piece of information is public among a group of agents if
each agent received it in a way that trivially reveals that the
information is common knowledge. Some actions that create
public knowledge are (a) speaking out loud in a group (b)
placing a card face-up, or (c) moving a piece on a game board.

To see why public information is important, first note that
the essence of game theory is that playing well requires know-
ing which actions the other players might take, which tends to
involve reasoning about the information they have. Knowing
that some information I is common knowledge is therefore
immensely useful for decomposition. Indeed, each player
will only reason about situations compatible with I (and
about others’ reasoning about situations compatible with I ,
others’ reasoning about reasoning about situations compat-
ible with I , etc.). Situations compatible with I can, there-
fore, be considered mostly independently of those incom-
patible with it (the limited dependence is explained in, e.g.,
[Moravčík et al., 2017]). However, finding out which in-
formation is common knowledge can be costly, so the best
approach will often be to decompose games based on the
subset of common knowledge that is public. Once we can
decompose problems into smaller pieces, we become able
to solve large problems that would otherwise be intractable.
Indeed, we have recently seen breakthroughs in a number
of problems that were made computationally feasible by de-
composition based on public knowledge — examples include
poker [Moravčík et al., 2017; Brown and Sandholm, 2017b;
Brown and Sandholm, 2019], Hanabi [Foerster et al., 2019;
Lerer et al., 2020], general EFGs [Šustr et al., 2019; Li et al.,
2020; Davis et al., 2019], Dec-POMDPs [Spaan et al., 2008;
de Witt et al., 2019], and one-sided POSGs [Horák and Bošan-
ský, 2019].

However, the existing game-theoretic and MARL models
do not have a built-in way of describing public knowledge.
This is a serious problem because figuring out whether a piece
of information is public or not might be difficult (or impossi-
ble) unless one remembers how the information was obtained.
(Indeed, suppose I know that a friend would be happy to pick
me up from an airport, and they know I would be glad if
they did. This alone says nothing about whether the infor-
mation is public among us — therefore, unless we explicitly
talked about this, I should probably take a taxi. For more
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Figure 2: The different points of view enabled by the proposed FOSG model. Bottom (only shown in the full version of the paper): the full
extensive form representation of Kuhn poker (where the only cards are J, Q, and K). While the tree structure is similar to a classical EFG
representation, we retain the factorization of information and the information of the non-acting player. (Top) right: the Player 1 point of view,
obtained by grouping histories based on which action-observation sequence they correspond to. (Top) left: the public tree, obtained by grouping
action-observation sequences based on which public states they correspond to.

technical examples, see Section 3.3.) Making use of decom-
position thus typically required adding some component on
top of the employed formal model. In addition to requiring
a non-trivial conceptual and technical effort, this was often
done in a domain-specific manner [Moravčík et al., 2017;
Brown and Sandholm, 2019], which made the devised meth-
ods difficult to generalize. If the generalization were straight-
forward, the situation in imperfect-information games would
by now likely be closer to that in perfect-information games or
single-agent RL, where many of the state-of-the-art algorithms
are very general [Silver et al., 2017; Schrittwieser et al., 2019;
Badia et al., 2020]. This suggests that using a model which
keeps track of public information by default would have sig-
nificant benefits.

Fortunately, as witnessed by the examples (a), (b), and (c),
the information about which knowledge is public is inherently
a part of the description of many games and real-world situa-
tions. In other words, public knowledge is typically already a
part of a problem’s natural definition; the model we propose
merely preserves this information while models used in the
past discard it.

2.2 Description of the Basic Model
Informally, the model we are about to describe captures a
situation where multiple actors take actions – possibly simul-
taneously – which influence how the world’s state changes.
The new world-state might be more or less desirable for in-
dividual actors, which is captured by corresponding reward
functions. Rather than having full knowledge of the world
state, the agents perceive it through observations. These are
further “factored”, such that if some information is public,
each agent will know that everybody else also has access to

it. In the following paragraph, ↪→ indicates a partial function,
defined on a subset of the stated domain.

A factored-observation stochastic game (FOSG) is a tuple
G =

〈
N ,W, p, winit,A, T ,R,O

〉
, where N is the player set,

W is the set of world states, winit is a designated initial state,
p : W → 2N is a player function, A is the space of joint
actions, T : W ×A ↪→ ∆W is the transition function, R :
W×A ↪→ RN is the reward function, O : W×A×W ↪→ O
is the observation function, and we have:

• N = {1, . . . , N} for some N ∈ N.
• W is compact. For formal convenience, we assume that
p(winit) = ∅.

• A =
∏

i∈N Ai, where each Ai is an arbitrary set of i’s
actions.

– For each i ∈ p(w), Ai(w) ⊂ Ai denotes a non-
empty compact set of i’s (legal) actions at w. We
denote A(w) :=

∏
i∈p(w) Ai(w).

– We denote Ai(w) := {noop} for i /∈ p(w), which
allows us to identify each a ∈ A(w) with an element
of

∏
i∈N Ai(w) by appending to it the appropriate

number of noop actions.
• The transition probabilities T (w, a) ∈ ∆W , a ∈ A(w),

are defined for all w ∈ W with non-empty p(w) and for
some w with no active players.

– A world state with p(w) = ∅ and undefined T (w, a)
is called terminal.

• R(w, a) = (Ri(w, a))i∈N for each non-terminal state
w and a ∈ A(w).

• O is factored into private observations and public ob-
servations as O = (Opriv(1), . . . ,Opriv(N),Opub).

– O =
∏

i∈N Opriv(i)×Opub, where O(·) are arbitrary
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sets (of possible observations).
– We assume that O(·)(w, a,w

′) ∈ O(·) is defined for
every non-terminal w, a ∈ A(w), and w′ from the
support of T (w, a).

The game proceeds as follows: It starts in the initial state
winit. In each state, each active player i ∈ p(w) learns which
actions are legal for them (either by deduction or by being
explicitly told) and selects ai ∈ Ai(w). (While the player
obviously knows which action they took, they often will not
know the actions of the other players, or possibly not even
which of them were active at w.) The game then transitions
to a new state w′, drawn from the distribution T (w, a) that
corresponds to the joint action a = (ai)i∈p(w). This generates
the observation O(w, a,w′), from which each player receives
Oi(w, a,w

′) :=
(
Opriv(i)(w, a,w

′),Opub(w, a,w
′)
)

∈ Oi

(i.e., the public observation together with their private ob-
servation, in manner which allows distinguishing between the
two). Finally, each player is assigned the reward Ri(w, a).
However, a player might not know how much reward they
received, unless this is – explicitly or implicitly – a part of Oi.
This process repeats until a terminal state is reached. The goal
of each player is to maximize the sum of rewards Ri(w, a,w

′)
obtained during the game.
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