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Abstract
Keeping risk under control is often more cru-
cial than maximizing expected rewards in real-
world decision-making situations, such as finance,
robotics, autonomous driving, etc. The most nat-
ural choice of risk measures is variance, while
it penalizes the upside volatility as much as the
downside part. Instead, the (downside) semivari-
ance, which captures negative deviation of a ran-
dom variable under its mean, is more suitable for
risk-averse proposes. This paper aims at optimiz-
ing the mean-semivariance (MSV) criterion in re-
inforcement learning w.r.t. steady reward distribu-
tion. Since semivariance is time-inconsistent and
does not satisfy the standard Bellman equation, the
traditional dynamic programming methods are inap-
plicable to MSV problems directly. To tackle this
challenge, we resort to Perturbation Analysis (PA)
theory and establish the performance difference for-
mula for MSV. We reveal that the MSV problem can
be solved by iteratively solving a sequence of RL
problems with a policy-dependent reward function.
Further, we propose two on-policy algorithms based
on the policy gradient theory and the trust region
method. Finally, we conduct diverse experiments
from simple bandit problems to continuous control
tasks in MuJoCo, which demonstrate the effective-
ness of our proposed methods.

1 Introduction
Reinforcement learning (RL) has shown great promise in solv-
ing complex decision problems, such as Go [Silver et al.,
2017], video games [Berner et al., 2019; Vinyals et al., 2019]
and dexterous robotic control [Nagabandi et al., 2020]. Learn-
ing by trial and error, RL enables an agent to maximize its
accumulated expected rewards through interaction with a sim-
ulator. However, RL deployment in real-world scenarios is
still challenging and unreliable [Garcıa and Fernández, 2015;
Dulac-Arnold et al., 2019]. One of the reasons is that real
decision-makers need to consider multi-objective functions.

*Here is the original journal paper [Ma et al., 2022c].

The desired policy should perform well for broader metrics,
not just for expectation. That raises the demand of risk-
sensitive learning, which aims at balancing the return and
risk in the face of uncertainty.

The risk-sensitive decision-making has been widely stud-
ied beyond the scope of RL, which can be traced back to
the mean-variance (MV) optimization theory established by
Markowitz [Markowitz, 1952]. Variance, which captures the
fluctuation and concentration of random variables, is a natural
choice of the risk measure. As Markowitz only considers the
single-period problem, many studies focus on extending the
results to multi-period scenarios, from stochastic control [Li
and Ng, 2000] to Markov decision process [Sobel, 1982;
Filar et al., 1989]. However, the variance of a multi-period
problem depends on the average value of the whole process. It
breaks the essential property of dynamic programming— time
consistency, and makes it hard to design model-free learning
algorithms under the standard RL framework. Developing an
efficient algorithm to optimize MV is still an ongoing topic
in the RL community [Xie et al., 2018; Bisi et al., 2020;
Xia, 2020; Zhang et al., 2021; Ma et al., 2022b; Ma et al.,
2022a].

While MV analysis is the most widely applied risk-return
analysis in practice, variance metric is questionable as a risk
measure. As a measure of volatility, variance penalizes up-
side deviations from the mean as much as downside devia-
tions. It could be problematic as the upside deviation comes
from the higher return which is desirable. In general, the
outcome distributions in the real world are often asymmet-
rical, such as the ones in the stock market [Estrada, 2007;
Bollerslev et al., 2020], suggesting that we should control the
“good” and “bad” volatility separately. Hence, Markowitz 1959
presents the mean-semivariance (MSV) as an alternative mea-
sure, which only penalizes the “bad” volatility, performing
as a downside risk indicator. Even if the distribution is sym-
metrical, optimizing MSV is at least effective as optimizing
MV. To better illustrate the difference between variance and
semivariance, we construct a simple MDP example shown
in Figure 1. The two policies result in two reward distribu-
tions symmetrically, for which variances are indistinguishable.
However, the policy going right is preferred since it results in
a lower semivariance.

Though MSV is a more plausible measure of risk, opti-
mizing MSV is even more complicated than MV. It inherits
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Figure 1: A toy example illustrates the effect of MSV. We refer the
policy going left as l and the other as r. Two policies have the same
average return ηl = ηr = 0 and the same variance ζl = ζr = 2.
However, since the semivariance ζl− = 4/3 > ζr− = 2/3, the policy
going right has a smaller (downside) semivariance. It shows that
MSV enables to avoid extreme costs compared with MV.

time inconsistency from variance and introduces a truncation
function of mean, making the analysis non-trivial. Due to the
complexity of this objective, existing works consider a subset
of problems restricted with a fixed mean [Wei, 2019] or heuris-
tic algorithms for MSV [Yan et al., 2007; Zhang et al., 2012;
Liu and Zhang, 2015; Chen et al., 2019]. To the best of our
knowledge, there are currently no relevant studies on MSV in
the RL literature.

In this paper, we aim to fill the gap of the previous study on
the single-period MSV problem and extend the static methods
to online RL algorithms. To achieve that, we resort to Per-
turbation Analysis (PA) theory [Cao, 2007] (also called the
sensitivity-based optimization theory or the relative optimiza-
tion theory) for Markov systems, which lays the basis of many
efficient RL methods, such as TRPO [Schulman et al., 2015],
CPO [Achiam et al., 2017] and MBPO [Janner et al., 2019].
The contributions of our work are threefold. Firstly, instead of
constructing a Bellman operator, we establish the MSV per-
formance difference formula of two policies (see Section 3 for
details). The result indicates that the performance difference
can be decomposed into two parts: the improvement corre-
sponding to a reward function depending on the current policy
and the average performance change from the current to the
updated one. Second, we iteratively optimize MSV by con-
sidering the shift in mean locally and constructing a surrogate
reward function. We develop two algorithms based on the pol-
icy gradient theory and the trust region method, respectively.
We show that optimizing the surrogate reward function in the
trust region has a similar performance lower bound with the
standard TRPO, which guarantees monotonic improvement if
the trust region is tight. Finally, we conduct diverse experi-
ments to examine the effectiveness of our proposed methods,
including a bandit problem, a tabular portfolio management
problem, and robotic control tasks based on MuJoCo. The
results demonstrate that the proposed algorithms successfully
improve the performance under the criterion of MSV, which
is better than standard RL from a risk-averse perspective.

2 Preliminaries
In this paper, we focus on the infinite-horizon discrete-
time MDP as M = ⟨S,A, r, P, π0⟩, where S denotes the

state space, A denotes the action space, r : S × A 7→
[−Rmax, Rmax] denotes a bounded reward function and P :
S × A 7→ ∆(S) is the transition matrix and π0 ∈ ∆(S) de-
notes the initial state distribution. We assume that all the
involved MDPs are ergodic. Let µ : S 7→ ∆(A) denote a
Markovian randomized policy and Π denote the randomized
policy space.

We are interested in the long-run average reward

ηµ := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

rt

]
, (1)

where Eπ0,µ stands for the expectation with s0 ∼ π0, at ∼
µ(· | st), st+1 ∼ P (· | st, at). Note that ηµ is independent of
π0 when T → ∞. The variance and semivariance w.r.t. µ are
defined by

ζµ := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

(rt − ηµ)
2

]
, (2)

ζµ− := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

(rt − ηµ)
2
−

]
, (3)

where (·)− := min{0, ·}. In this paper, we focus on the
mean-semivariance criterion,

ξµ− := ηµ − βζµ−,

where β ≥ 0 is the parameter for the trade-off between mean
and semivariance. Analogously, when mean-variance criterion
is mentioned, we mean ξµ := ηµ − βζµ.

We further respectively define the state-value function,
action-value function, and advantage function for average
reward as

V µ
η (s) := Eµ

[ ∞∑
t=0

(rt − ηµ) | s0 = s

]
,

Qµ
η (s, a) := Eµ

[ ∞∑
t=0

(rt − ηµ) | s0 = s, a0 = a

]
,

Aµ
η (s, a) := Qµ

η (s, a)− V µ
η (s).

Similarly, the value functions for semivariance are defined as

V µ
ζ−

(s) := Eµ

[ ∞∑
t=0

(
(rt − ηµ)2− − ζµ−

)
| s0 = s

]
,

Qµ
ζ−

(s, a) := Eµ

[ ∞∑
t=0

(
(rt − ηµ)2− − ζµ−

)
| s0 = s, a0 = a

]
,

Aµ
ζ−

(s, a) := Qµ
ζ−

(s, a)− V µ
ζ−

(s).

For notation simplicity, we will omit the superscript “µ”
when the context is clear, e.g., the average rewards ηµ, ηµ

′
are

written as η, η′ instead. When r is mentioned, we omit (s, a)
and use r in short.

3 Perturbation Analysis
In this section, we derive the MSV performance difference
formula (MSVPDF), where the core concept—performance
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difference formula—comes from the PA for Markov systems,
also called the sensitivity-based optimization theory. With the
aid of MSVPDF, we obtain the necessary optimality condition
for the MSV problem. It also lays the basis for developing
optimization algorithms (see Section 4), such as the policy
gradient method and the trust region method.

3.1 Performance Difference Formula
MSVPDF is formally stated below.
Theorem 1. For any two policies µ, µ′ ∈ Π, we have

ξ′− − ξ− =Es∼π′,a∼µ′ [Aµ
η (s, a)− βAµ

ζ−
(s, a)] (4)

− βEs∼π′,a∼µ′ [(r − η′)2− − (r − η)2−]

The MSVPDF in Equation 4 claims that the MSV improve-
ment can be divided into two parts. The first term in Equa-
tion 4 is a standard MDP with f as the reward function, and
the second term is caused by the perturbation of the mean. It
clearly quantifies the difficulty of solving the MSV problem,
i.e., the policy-dependent reward function breaks down the
time-consistent nature of MDPs. Meanwhile, it also shows us
the standard MDP algorithm such as policy iteration (PI) is
unavailable. A PI-like algorithm may be efficient in improving
the first term, but the sign of the remaining term (dependent
on η′) is unpredictable. It suggests that we need novel tools to
guarantee policy improvement.

3.2 Performance Derivative Formula
While Equation 4 describes the performance difference be-
tween any two policies, we still need the local structure of the
MSV problem to guide the direction of optimization. Follow-
ing the line of the last part, we present the MSV performance
derivative formula in this subsection, which describes the
performance derivative at µ towards another policy µ′.
Theorem 2. Given any two policies µ, µ′ ∈ Π, we consider a
mixed policy µν ,

µν(a | s) = (1− ν)µ(a | s) + νµ′(a | s),
where the action follows µ with probability 1− ν, and follows
µ′ with probability ν for ν ∈ [0, 1]. We have

dξ−
dν

= Es∼π,a∼µ′ [(1 + 2βη−)A
µ
η (s, a)− βAµ

ζ−
(s, a)].

The above equality indicates that the performance derivative
is related to a pseudo another reward function:

g(s, a) = (1 + 2βη−)r − β(r − η)2−, (5)
and the derivative formula can be written as

dξ−
dν

= Es∼π,a∼µ′ [Aµ
g (s, a)], (6)

where Aµ
g (s, a) is the advantage function w.r.t. g.

4 Optimization and Algorithms
In this section, we propose two approaches to optimize MSV
with the parameterized policy. We firstly extend the policy
gradient method to MSV with the pseudo reward function (cf.
Equation 5) in Section 3. Following the same idea, we propose
a trust region method to solve the MSV problem and prove
the lower bound for its performance improvement. The two
approaches together establish an iterative framework to solve
the MSV problem.

4.1 MSV Policy Gradient Method
Policy gradient theorem is an essential foundation of modern
deep RL algorithms, such as Actor-Critic methods. Here we
consider the policy µ parameterized by θ ∈ Θ, which can
be implemented with any differentiable function. We first
give the MSV Policy Gradient (MSVPG) theory formally as
follows.
Theorem 3. For a policy µ parameterized by θ, we have

∇θξ− = Es∼π,a∼µ[∇θ log µ(a | s)Aµ
g (s, a)]. (7)

The policy gradient for MSV can be easily proved by PA,
which follows the same lines as the derivative formula.

4.2 MSV Trust Region Method
While PG has a concise form, it often suffers from the difficulty
of selecting step-sizes and the sensitivity to initial points in
practice, especially when it works with neural networks. To
address these drawbacks, trust region method [Schulman et
al., 2015] is proposed to solve a surrogate problem in a local
trust region and perform an approximate policy iteration.

Monotonic Improvement Guarantee
We extend the idea of trust region in the standard MDP into
MSV and propose the MSV Trust Region Policy Optimization
(MSVTRPO) method. In MSVTRPO, we iteratively solve the
problem below

max
µθ

Lµ
g (µθ) (8)

s.t. Es∼πDTV(µθ(· | s) ∥ µ(· | s)) ≤ ϵµ,

where
Lµ
g (µθ) := Es∼π,a∼µθ

[
Aµ

g (s, a)
]
.

Remark 1. The trust region method updates the policy via the
direction of maximum derivative (cf. the performance deriva-
tive formula in Equation 6), constrained in the proximity policy
space with the TV -divergence. In contrast, the standard pol-
icy iteration scheme updates the policy in the same direction
without constraint, which breaks the monotonic improvement
for MSV.

Next, we will show that MSVTRPO enjoys an analogous
performance improvement bound. When the trust region is
tight enough, i.e., ϵµ → 0, the lower bound is dominated by
the first-order term.
Theorem 4. Let µ′ be the solution to the problem defined by
Equation 8. We have

ξ′ − ξ ≥ Lµ
g (µ

′)− 2(κ′ − 1)ϵgϵµ − 12β(κ′)2R2
maxϵ

2
µ,

where ϵg = maxs |Ea∼µ′ [Aµ
g (s, a)]| and κ′ is Kemeny’s con-

stant under µ′.

5 Experiments
In the previous sections, we analyze the properties of MSV
problem and find that it can be solved by iteratively optimiz-
ing a surrogate reward function g (cf. Equation 5). We also
propose two methods to solve the MSV problem in the param-
eterized policy space.

To validate the effectiveness of our proposed methods in
solving the MSV problem, we conduct a series of experiments
to answer the corresponding questions:
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Figure 2: The bandit problem. (a) Reward distributions in the bandit
problem. (b) Policies paths in the bandit problem. The paths are
shown in the logarithmic parameter space.

• Is the MSV really optimized by the surrogate reward
function g? Specifically, what is the difference between
optimizing g instead of f?

• What is the difference between the MV [Xia, 2020] and
MSV criteria?

• Does the proposed algorithms work well with the current
deep RL algorithms?

5.1 Bandit Problem
We start with a simple bandit problem. In this problem, there
are three actions with only a single state. Different actions
result in different rewards following the distributions shown
in Figure 2(a). We compare three different agents, which
optimize different reward functions. The first one optimizes
g = (1 + 2η−)r − (r − η)2−, which is the derived reward
function with β = 1 in this work. The second one optimizes
f = r−(r−η)2−, which is the Monte-Carlo return of MSV. We
further consider a third agent which optimizes r−(r−η)2 [Xia,
2020], an MV objective to illustrate the difference between
MSV and MV problems.

The result tells us optimizing the reward f = r−β(r−η)2−
cannot optimize the MSV objective even in such a simple prob-
lem. This reflects the most essential difference between the
optimization of policy-dependent reward and other problems.
As discussed in Section 3, to optimize a problem with a policy-
dependent reward function, we must consider the perturbation
of the mean, at least in MSV problems.

5.2 Portfolio Management
In this part, we compare the performances of MSV- and MV-
optimal policies in a portfolio management problem, where
we need to manage two independent assets and cash.

We change the risk preference parameter β and compare
the MSVTRPI and MVPI. We depict the result in Figure 3,
showing that with a fixed β, optimizing MSV always results in
a larger return than that of MV. Besides, MV is more sensitive
than MSV in terms of β, meaning that a small change of β
will lead to a quick drop in both the return and risk. To better
compare MSV and MV, we also show the “normalized” results
of MSV, where we double β to provide the same penalty
strength as MV. The result shows the normalized MSV also
outperforms MV in terms of the average reward, illustrating
that MSV is more plausible than MV.
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Figure 3: Comparison of MSVTRPI and MVPI in the portfolio
management problem. The normalized MSV means β is doubled in
comparison.

5.3 Robotic Control

To demonstrate the effectiveness of our proposed method in
more general problem setups, we implement a “deep” vari-
ant algorithm named mean-semivariance policy optimization
(MSVPO), which is based on the recently developed method
APO [Ma et al., 2021] for average-reward RL problems.

We evaluate MSVPO with different β’s in the noisy
Walker2d with different noise levels. When the agent falls,
we penalize it with an extra cost -10 and reset the system. In
the noiseless environment (noise level = 0), we interestingly
find that risk-averse policy (β = 0.1) achieves competitive
average reward with lower semivariance. It indicates that in
complex scenes, optimizing a risk-averse metric may generate
more robust policies with better performances compared with
a risk-neutral one.

To better understand the performance difference with differ-
ent risk preference policies, we visualize the reward distribu-
tions of typical agents in Figure 4, where each agent of noise
level 0.1 is evaluated for 1000 steps. We can see that risk-
averse policies successfully avoid unsafe states. Meanwhile,
the agent uses smaller steps forward with the risk parameter
β increasing. Instead, the risk-neutral agent tends to take the
risk of falling for larger gains.
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Figure 4: Reward distribution of Walker2d with noise.
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