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Abstract
Voting is used widely to aggregate preferences to
make a collective decision. In this paper, we fo-
cus on evaluating and designing voting rules that
support both the privacy of the voting agents and a
notion of fairness over such agents. We introduce a
novel notion of group fairness and adopt the exist-
ing notion of local differential privacy. We evaluate
the level of group fairness in several existing vot-
ing rules, showing that it is not possible to always
obtain maximal economic efficiency with high fair-
ness. Then, we present both a machine learning
and a constrained optimization approach to design
new voting rules that are fair while maintaining a
high level of economic efficiency. Finally, we em-
pirically examine the effect of adding noise to cre-
ate local differentially private voting rules and dis-
cuss the three-way trade-off between economic ef-
ficiency, fairness, and privacy.

1 Introduction
Voting is one of the most used and well-studied methods to
make a collective decision [Brandt et al., 2016]. Anonymity
is considered an important axiom for preserving the “one per-
son, one vote” principle. However, it may lead to the well-
known “tyranny of the majority” [Mill, 1859] in some sce-
narios. While there exist other notions of fairness in voting
(as discussed by [Bredereck et al., 2018; Celis et al., 2018;
Chamberlin and Courant, 1983; Monroe, 1995] and more),
we focus on the notion of group fairness [Chouldechova and
Roth, 2020]. This draws motivation from the relevant litera-
ture in fair algorithmic decision-making and machine learn-
ing (ML) (see [Corbett-Davies et al., 2017; Kleinberg, 2018;
Verma and Rubin, 2018; Chouldechova and Roth, 2020] for
an exposition). Due to bias in data or training methodolo-
gies, a system can be biased towards one group of people in
terms of accuracy, positive predictive value, etc. To avoid
this, fairness is defined over protected features (e.g., gender,
race, etc.) that indicate group membership. For example, we
may require that the prediction accuracy is equal for different
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groups, such as men and women. While voting does not have
metrics like prediction accuracy, we can consider an analo-
gous scenario where the average utility received by different
groups of agents is equal. We, therefore, define a novel way to
measure group fairness in voting (Definitions 1-2), focusing
on how voting outcomes affect different groups of agents. We
then investigate existing voting rules in terms of the trade-off
between fairness and economic efficiency and find worst-case
results for fairness (Table 2) that show that well-studied vot-
ing rules can be very unfair in the worst case.

However, this way of defining and achieving fairness over
groups of agents needs to expose features of agents, since
such features define the group that each agent belongs to.
This means that the voting process is not anonymous, which
leads to privacy concerns. To circumvent this, we employ the
notion of local differential privacy (local DP) [Evfimievski
et al., 2003], which is a generalization of differential privacy
(DP) [Dwork et al., 2006], to ensure that an adversary can-
not learn too much about the voting behaviors of the agents
from the voting outcome. While there exist work that con-
sider differentially private methods of voting, such as [Joseph
et al., 2018; Yan et al., 2020; Wang et al., 2019], we are not
aware of a study on the three way-trade-off between fairness,
economic efficiency, and privacy. We theoretically study this
trade-off (Theorem 3) and show that- a high privacy require-
ment results in high efficiency loss, but we can have moderate
privacy with only a small decrease in efficiency or fairness.

Finally, we present two automated frameworks to de-
sign voting rules with varying levels of fairness, privacy,
and economic efficiency. Use of automatic mechanism de-
sign [Conitzer and Sandholm, 2003] was previously consid-
ered for voting by [Xia, 2013; Armstrong and Larson, 2019;
Anil and Bao, 2021], albeit in different formats. For the first
framework, we define a family of voting rules that maximize
fairness under efficiency constraints and can be thought of as
a natural extension of positional scoring rules such as Plu-
rality, Borda, etc. The extension comes from looking at al-
ternative scores as indicators for group utilities. The second
framework employs a machine learning-based approach that
allows us to design fair and efficient voting rules that go be-
yond just positional scoring rules and work with more gen-
eral notions of economic efficiency and fairness. Experimen-
tally, we show that the learned family of voting rules succeeds
in achieving high fairness and efficiency satisfaction levels,
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based on simulations on synthetic data. In particular, our
newly designed voting rules are never dominated by a voting
rule that focuses on purely economic efficiency or group fair-
ness. Finally, we experimentally verify our theoretical results
for the fairness-efficiency-privacy trade-off, showing that for
moderate privacy requirements (when the noise level is not
very high), the loss in efficiency and fairness is small.

2 Preliminaries
Voting Rules. Let A = {a1, . . . , am} be the set of m al-
ternatives and L be the set of all rankings or linear orders
(linear orders are anti-symmetric, transitive, and total binary
relations) over A. There are n agents (voters), each provides
a full ranking, R ∈ L over A as her vote. In a ranking R,
if alternative a is preferred to another alternative b, we write
a ≻R b. A collection of n votes, P ∈ Ln is called a pref-
erence profile. A voting rule is a mapping r : Ln 7→ A that
chooses a winner from the preference profile. To indicate pro-
tected features, we assume each agent is a member of one of
two disjoint groups with group sizes n1, n2 (n1 + n2 = n).
Each group has preference profile Pk ∈ Lnk for k = 1, 2.
To consider group memberships, we redefine voting rule as
a mapping from a collection of preference profiles to a win-
ner, r : Ln1 × Ln2 7→ A. We refer to P as the preference
profile with all agents. For voting rules that do not use group
membership, r(P ) and r(P1, P2) are the same. Most of the
theoretical and experimental work in the paper is presented
for two groups, so we focus the preliminaries on two-group
scenarios as well.

A common family of voting rules is positional scoring
rules, which have score vector s⃗ = ⟨s1, . . . , sm⟩ such that
s1 ≥ · · · ≥ sm and s1 > sm. For each ranking R, the j-th
ranked alternative gets a score of sj . Given a preference pro-
file, the alternative with maximum total score will be the win-
ner. Some popular scoring rules are: Plurality, with scoring
vector ⟨1, 0, . . . , 0⟩; Borda, with ⟨m− 1,m− 2, . . . , 1, 0⟩;
Veto, with ⟨1, 1, . . . , 1, 0⟩. Condorcet rules is a family of
voting rules that are defined by a different measure of effi-
ciency called the Condorcet criterion. For a preference pro-
file, if an alternative beats all other alternatives in pairwise
comparison, it is called the Condorcet winner. A voting rule
satisfies the Condorcet criterion if it always selects the Con-
dorcet winner whenever it exists. For example, the Copeland
rule chooses the alternative that maximizes the number of al-
ternatives that it beats in pairwise comparisons.

Economic Efficiency in Voting. In this paper, we consider
two types of economic efficiency that are popular in the social
choice literature, and both are related to the two families of
voting rules that we mentioned before: Condorcet rules and
positional scoring rules.

For a preference profile, P , the Condorcet winner exists
only if there is an alternative that beats all other alternatives
in pairwise comparison. We measure Condorcet efficiency
(CE) as the fraction of preference profiles where a voting rule
winner is identical to the Condorcet winner. This is an effi-
ciency measure as efficient decisions (output of voting rules)
should be preferred to all other alternatives. Condorcet rules
like Copeland have a CE value of 1, whereas positional scor-

ing rules have CE values less than one.
Our other efficiency notion takes a utilitarian

view [Boutilier et al., 2015], where each agent can re-
ceive different cardinal utilities from the alternatives. For an
agent, a utility function u : A × L 7→ R defines alternative
a’s utility to agent i. For this paper, we limit ourselves
to every agents having the same utility function, which is
dependent only on the rank. Thus, we assume that a utility
function u is defined by a vector u⃗ = ⟨u1, . . . , um⟩ such that
u1 ≥ · · · ≥ um and u1 > um. If an alternative a is ranked
j-th in R, then u(a,R) = uj .

All u ∈ U use a vector similar in definition to score vectors
of positional scoring rules. To reduce confusion, we will use s⃗
for the score vectors and u⃗ for utility functions.1 The average
utility for alternative a is W (a, P ) = 1

n

∑
R∈P u(a,R) and

is a measure of economic efficiency.
Local Differential Privacy (DP). We adapt the formal def-

inition of local differential privacy [Evfimievski et al., 2003]
to the domain of voting and state its difference from standard
DP. A randomized voting rule r is said to be ε -local DP, if
for any agent j, any alternative a ∈ A, and any pair of rank-
ings R,R′ ∈ L, the following holds: Pr[r(R,P−j) = a] ≤
exp(ε) · Pr[r(R′, P−j) = a], where P−j is the preference
profile with all agents other than agent j. In particular, this
indicates that the vote of any single agent will be hard to infer
from the outcome. Hence, it gives a privacy guarantee to the
agents. Smaller ε means stronger privacy guarantee. We note
that voting rules with local DP (or standard DP) must be ran-
domized. So, our local differentially private voting rules can
only be used where some randomization would not be very
problematic.

3 Group Fairness in Voting
In presence of pre-defined groups among agents, traditional
voting rules that are anonymous and do not differentiate be-
tween different agents may be unfair to some groups. Con-
sider the scenario presented in Table 1 with two groups of
agents and three alternatives. Alternative A receives high util-
ity from the larger group, G1, and in turn has the highest av-
erage utility for the whole population. However, A has zero
utility for the smaller group , making this an unfair decision.
On the other hand, aternative B is not ranked lowest in terms
of average utility to either group and can be viewed as a more
fair decision than A.

We now present our formal definitions for group imbalance
and imbalance-based group fairness. First, imbalance indi-
cates the unfairness of a candidate given a preference profile.
Definition 1 (Group imbalance). Given a utility function u,
an alternative a ∈ A, and preference profiles P1, P2 for two
groups of agents, imbalance between the two groups in terms
of u for a is

Imb(u,a, P1, P2) =

{ |W (a,P1)−W (a,P2)|
W (a,P ) if W (a, P ) > 0,

0 otherwise.
1We want to emphasize that we use different vectors s⃗ and u⃗

for the score vectors and utilities intentionally. While the positional
scoring rules has the notion of maximizing some sort of utility mea-
sure, the scoring vector used may be different from a true utility
function.
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Utility
#agents Ranking A B C

Group G1 30 A ≻ B ≻ C 60 30 0
30 B ≻ A ≻ C 30 60 0
20 A ≻ C ≻ B 40 0 20

Group G2 10 B ≻ C ≻ A 0 20 10
10 C ≻ B ≻ A 0 10 20

G1 average 1.625 1.125 0.25
G2 average 0 1.5 1.5

Average 1.3 1.2 0.5

Table 1: Sample preference profile and group utilities

where P is the combined preference profile for all agents.

We define imbalance-based group fairness of a voting rule
for a utility function in terms of the worst-case imbalance
achieved by the voting rule winner for any preference profile.
Group size information are summarized in parameters, group
size ratio, z = max(n1,n2)

min(n1,n2)
and total agents, n = n1 + n2.

Definition 2 (Group imbalance-based fairness). Given a vot-
ing rule, r, utility function, u, n total agents, and group ratio,
z, the group imbalance-based fairness is

F (r, u, n, z) = 1− 1
1+z · max

P1∈Ln1

P2∈Ln2

Imb(u, r(P1, P2), P1, P2).

Definition 2 gives a notion of fairness that is not specific to
a preference profile, but rather looks at the worst-case. The
fairness value is between 0 and 1 and a value of 0 indicates
maximum possible unfairness.

Also, based on the definition of group imbalance, assum-
ing what the utility function is, we can define maximum fair
voting rules. For a utility function, u, the u-fair voting rule is
guaranteed to have the highest fairness value.

Definition 3 (u-fair voting rules). For utility function u, the
u-fair voting rule, ru

fair, is a voting rule that chooses the alter-
native with minimum imbalance with respect to utility func-
tion u for any preference profile.

4 Theoretical Results for Group Fairness
We proved a number of theoretical results for fairness val-
ues for well-known voting rules. Here, we present some
results about popular voting rules, Plurality, Borda and
Copeland. We consider the utility functions defined by
u⃗top = ⟨1, 0, . . . , 0⟩ (top-1) and u⃗rank = ⟨m − 1,m −
2, . . . , 0⟩ (rank). With the top-1 utility function, the agents
only receive utility if their top ranked alternative wins. A
fairness value of 0 for Borda means that, for some preference
profile, the Borda winner will have the worst-case imbalance
value, being highly unfair. But if we choose the Plurality
winner, at least in some cases we are guaranteed a positive
fairness value. On the other hand, with the rank utility func-
tion, where the utility linearly decreases along with rank, we
see that the Borda winner has the same fairness value as the
most fair voting rule, whereas Plurality’s fairness value is 0.

utop urank

Plurality 0 if z < m− 1
1− 1/z, otherwise 0

Borda 0 if m ≥ 3
1− 1/z otherwise 1− 1/z

Copeland 0 1− 1/z

Table 2: F (r, u, n, z) for Plurality, Borda and Copeland under utop

and urank.

In both cases, the voting rule that maximizes the utility func-
tion has better fairness results. Table 2 for a summary of these
results.

To see the more general results for any positional scoring
rule and any Condorcet voting rule under general utility func-
tion notions, please refer to the full version of the paper. How-
ever, we want to present a somewhat negative result in that all
traditional efficiency-maximizing voting rules may turn out
to be unfair under some circumstance.

Theorem 1. If r is any positional scoring rule or Condorcet
voting rule, there exist some utility function u ∈ U , and some
group size parameters, n and z, such that

min
u∈U

n∈N,z≥1

F (r, u, n, z) = 0.

We also proved fairness result for u-fair voting rules.

Theorem 2. Given n total agents, and group size ratio z,

F (rtop
fair, utop, n, z) = 1− 1

z
,

F (rrank
fair , urank, n, z) = 1− 1

z
.

5 Designing Fair and Efficient Voting Rules
We propose two frameworks for designing fair and efficient
voting rules.

Framework 1: Utility-constrained Fair Voting Rules.
Based on an assumed utility function, u, we can define con-
strained fair voting rules as a compromise between positional
scoring rules and u-fair rules. As an example, we present
fairness constrained version of Borda below in Definition 4.

Definition 4 (α-efficient fair Borda (α-FB)). Given prefer-
ence profiles P1, P2 for two groups of agents, α ∈ [0, 1], the
α-efficient Fair Borda winner, rα−FB(P1, P2) is given by

minimize
a∈A

Imb(urank, a, P1, P2)

subject to Wrank(a, P ) ≥ α ·max
a′∈A

Wrank(a
′, P ).

Framework 2: ML-based Framework for Fair-efficient
Voting Rules. We note that a voting rule r can be viewed as
a multi-class classifier: the input is a preference profile P and
the classes are the alternatives in A. From this viewpoint, we
propose a learning framework that generates synthetic data
with random preference profiles. As feature vectors, we can
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use summary features for preference profiles like weighted
majority graph or positional score matrix. We create a syn-
thetic dataset, where part of the labels come from fair win-
ners and the rest of the labels come from efficient winners.
This mixing causes a classifier trained on this model to be-
have like a voting rule that is fairer than purely efficient vot-
ing rules and more efficient than purely fair voting rules. We
use two methods for mixing two kinds of data in the synthetic
dataset–one, sampling data from both fair and efficient vot-
ing rules and two, using soft probabilistic labels. Finally, we
found best results while using the XGBoost model as a clas-
sifier [Chen and Guestrin, 2016]. We discuss experimental
results for this in Section 7.

6 Adding Privacy to Collective
Decision-making

We propose adding noise through the flipping-coin or ran-
domized response method to achieve local DP. The process
outputs the input vote without changing it with some proba-
bility p, and otherwise uniformly outputs any of the possible
values. Consider fp(P ) to be the noisy output for preference
profile P . We find that, adding the noise to individual votes
cause a trade-off with both fairness and utility.
Theorem 3 (Fairness-Privacy-utility Trade-off). For any ε-
local DP requirement on making collective decisions with two
groups, we have the following:

(1) Pr
[
Ŵ (a, P ) ≥ W (a, P )− t

]
≥ 1− exp

[
− 2t2p2n

(∆umax)2

]
,

(2) Pr

[
ˆImb(u, a, P1, P2) ≤ Imb(u, a, P1, P2)+

∆umax

p · (Imb(u,a,P1,P2)+1)(n−0.3
1 +n−0.3

2 )

W (a,P )−∆umax
p (n−0.3

1 +n−0.3
2 )

]
≥ 1− 2 exp

(
−2n0.4

1

)
− 2 exp

(
−2n0.4

2

)
,

where p = exp(ε)−1
|X |+exp(ε)−1 and ∆umax ≜= u1 − um.

With high probability, the utility estimator is close to the
actual utility. Additionally, if n1, n2 are high, alternatives
with low imbalance (fair alternatives) and high utility (effi-
cient alternatives) will have less noisy imbalance estimates.

7 Experimental Results
While our theoretical results for fairness deal with worst-
case analysis, average-case analysis is also important. So,
we do empirical analysis on synthetic data to get an idea
about the average fairness-efficiency trade-off. To get syn-
thetic data, we assume that all agent preferences for agents
in the same group come from the same distribution, de-
scribed using a statistical model. We use two types of mod-
els in our experiments. First, uniform or impartial culture,
where everyone’s vote is entirely random. This signifies
the scenario where both group votes randomly and simi-
larly. Second, using a Plackett-Luce model [Plackett, 1975;
Luce, 1959]. For this, we define two groups with two sets of
Plackett-Luce parameters and rankings sampled from there.
We do this to simulate similar behavior between in-group
votes and dissimilarity between across-group votes.
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Figure 1: Trade-off between economic efficiency and fairness for
various voting rules. Voting rules considered are Plurality, Borda,
Copeland, α-efficient FB rules and the learned rules. RankFair in-
dicates the urank-fair voting rule. The learned rules use the β-Mix
and β-Soft method, both using Condorcet efficiency as the efficiency
measure while training.
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Figure 2: Efficiency (Average top-1 utility) and average fairness for
various levels of privacy. High ε values indicate lower privacy re-
quirements with ε = ∞ indicating non-private voting rule.

Trade-off between Fairness and Efficiency. In Figure 1,
we see the trade-off between one notion of economic effi-
ciency (Condorcet efficiency) and group fairness. As ex-
pected Copeland is the most efficient, being a Condorcet vot-
ing rule. However, it is highly unfair. On the other end, we
see the rank-fair voting rule, which is most fair but highly in-
efficient. Both frameworks for designing new rules provide
voting rules at different levels of trade-off between the two
properties. Also, the learned voting rules from both learning
methods, β-Mix and β-Soft , mostly dominate α-FB meth-
ods, and provide a good improvement in terms of fairness
compared to Copeland (a Condorcet consistent rule) while
achieving almost similar levels of Condorcet efficiency. We
present experimental results for other efficiency measures in
the full paper.
Trade-off between Fairness, Efficiency and Privacy.
From the results in Figure 2, we see that for low privacy
requirement (ε = 5), the loss in terms of average fairness
and average utility is minimal. For higher privacy require-
ments, both fairness and efficiency suffer from the noise-
adding mechanism. However, for ε = 3, which is a mod-
erately standard setting, we see relatively low loss (5 ∼ 15%)
for both average utility and fairness.
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