
A Computational Model of Ostrom’s Institutional Analysis and Development
Framework (Extended Abstract)∗

Nieves Montes , Nardine Osman , Carles Sierra
Artificial Intelligence Research Institute (IIIA-CSIC)

Campus de la UAB, Barcelona, Spain
{nmontes, nardine, sierra}@iiia.csic.es

Abstract
Ostrom’s Institutional Analysis and Development
(IAD) framework represents a comprehensive the-
oretical effort to identify and outline the vari-
ables that determine the outcome in any social in-
teraction. Taking inspiration from it, we define
the Action Situation Language (ASL), a machine-
readable logical language to express the compo-
nents of a multiagent interaction, with a special fo-
cus on the rules adopted by the community. The
ASL is complemented by a game engine that takes
an interaction description as input and automati-
cally grounds its semantics as an Extensive-Form
Game (EFG), which can be readily analysed using
standard game-theoretical solution concepts. Over-
all, our model allows a community of agents to per-
form what-if analysis on a set of rules being consid-
ered for adoption, by automatically connecting rule
configurations to the outcomes they incentivize.

1 Introduction
The Institutional Analysis and Development (IAD) frame-
work (Figure 1) by Elinor Ostrom and colleagues is a theo-
retical framework that identifies the universal building blocks
making up any social interaction [Ostrom, 2005]. There, any
social encounter is referred to as an action arena, where a set
of participants enter an action situation, which is the social
space where they take actions and jointly achieve outcomes.

According to the IAD framework, there are three sets of
exogenous variables that jointly determine the structure of
an action situation. First, the biophysical conditions refer to
features of the environment, such as land topology and loca-
tion of resources. Second, the attributes of the community are
variables intrinsically linked to the interacting agents, such as
their age, gender, or ethnicity. Third, the rules encompass the
statements that describe who can enter an action situation,
which roles they can adopt, which actions they can execute
and what are the consequences of those actions, among other
elements. Rules are different from the other two variables in
the sense that they are susceptible to change in the short term,

∗Full paper in Artificial Intelligence, Volume 311, 2022 [Montes
et al., 2022].

if the agents decide that the current set of rules does not lead
to positive outcomes.

In our work, we present a computational model of the IAD
framework that allows a community of agents to automati-
cally perform what-if analysis on the potential rules that they
may be considering for adoption. Our contribution is twofold.
First, we present the novel Action Situation Language (ASL).
This is a machine-readable logical language (implemented in
Prolog) whose syntax is highly tailored to the exogenous vari-
ables identified by the IAD. Using the ASL, formal and sys-
tematic description of social interactions can be written.

Our second contribution is a game engine that takes as
input a valid ASL description and automatically builds its
semantics as an Extensive-Form Game (EFG). These EFGs
can then be analysed using standard game-theoretical solu-
tion concepts (such as the Nash equilibrium, although our
work is agnostic with respect to the particular agent decision-
making model). This analysis induces a distribution over the
possible outcomes of the game (i.e. the terminal nodes in
the game tree). Simultaneously, such outcomes can be evalu-
ated according to some criteria of choice, such as optimality,
efficiency, or some notion of social welfare. Thus, one can
evaluate the game generated by a particular ASL description
by computing the expected value of the evaluation criteria of
choice, and decide whether it is satisfactory or alternative reg-
ulations should be explored.

Previous work in AI on General Game Playing (GGP) has
proposed a number of languages for the specification of gen-
eral games, most notably the Game Description Language
(GDL) [Genesereth et al., 2005] and its extensions GDL-
II [Schiffel and Thielscher, 2014] and GDL-III [Thielscher,
2017]. Although GDL has been used for some socially-
oriented applications [de Jonge et al., 2017; de Jonge and
Zhang, 2021], there are several features that make ASL much
more suitable than GDL to represent socioeconomic interac-
tions. First, ASL separates “rules” from the other exogenous
variables, while GDL considers that the entire game descrip-
tion constitutes the “rules” of the game. Hence, ASL clearly
specifies which aspect of the interaction configuration is sus-
ceptible to revision, while GDL does not. This leads to the
second feature setting ASL apart from GDL, and that is that
ASL descriptions are meant to be extensible, into which new
rules can be appended. Potential conflicts that may arise be-
tween these new rules and existing ones are handled by the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6937

Figure 1: Outline of the computational model of the IAD framework.

game engine. In contrast, GDL descriptions are static and not
meant for extension.

2 Syntax
ASL descriptions are split into three files (agents.pl, states.pl
and rules.pl) corresponding to the three sets of exogenous
variables in the IAD framework (see Figure 1).

First, agents.pl contains all the information pertain-
ing to the attributes of the community that partici-
pates in the action situation. Here, agents are de-
clared using a reserved predicate symbol agent/1, e.g.
agent(alice). Additional domain-dependent attributes
can be encoded with facts feature name(Agent,
Value), e.g. age(alice,34).

Second, states.pl contains information pertaining to the
biophysical conditions. Environmental features of the system
can be declared using domain-dependent predicates. For ex-
ample, in the fishers’ examples presented later, the existence
of a fishing spot is stated as fishing spot(spot1).
Besides domain-dependent information, states.pl also in-
cludes facts with the reserved predicate initially/1
to express the initial conditions of the system. For
example, the clause initially(at(Ag,shore)) :-
role(Ag,fisher) states that at the beginning of the
interaction all fishers are on the shore. Finally, states.pl
contains the information on what literals describing a state
of the system are incompatible with one another, us-
ing the reserved predicate incompatible/2. Then,
incompatible(F,L) states that fact F cannot be simul-
taneously true with the literals in list L.

Third, rules.pl contains all the rule statements that config-

Rule ::= rule(Id, Type, Priority,
if Condition
then Consequence
where Constraints).

Type ::= boundary | position | choice | control
Priority ::= 0 | 1 | ... | ∞

Figure 2: General syntax of rule/4 statements.

Rule type Condition Consequence
Boundary agent(Ag) [∼]participates(Ag)
Position participates(Ag) [∼]role(Ag,R)
Choice role(Ag,R) [∼]can(Ag,Ac)

Control joint action
[consequence1 withProb p1,
consequence2 withProb p2, ...]

joint action ::= does(Ag,Ac) [and joint action]
consequence ::= α [and consequence]

Table 1: Syntactic restrictions for the Condition and
Consequence fields per rule type.

ure the social interaction. They are expressed through facts
with reserved predicate symbol rule/4 that follow the syn-
tax in Figure 2. The first argument of a rule is an identi-
fier (Id) that indicates the action situation to which the rule
pertains. The second argument is the type of the rule, and
has possible values “boundary”, “position”, “choice” or “con-
trol”. The type indicates which aspect of the action situation
the rule is regulating. Boundary rules determine which agents
are allowed to participate. Position rules determine which
participants are allowed to take on which roles. Choice rules
assign actions to roles. Last, control rules determine what is
the effect on the state of the system that the execution of ac-
tions produce. The function of these ‘types’ is to indicate to
the game engine at which stage of the game construction pro-
cess the rules in question should be queried (see Section 3).

The third argument of rule/4 statements is their
Priority. This is a non-negative integer indicating which
rule is to prevail in case several rules enter into conflict.
Higher-priority rules take precedence over lower priority
ones. We refer to the rules with priority equal to zero as the
set of default rules. The fourth and last argument of rule/4
statements is their content, expressed as an if-then-where
statement. The Condition and Consequence fields are
subject to further syntactical restrictions according to their
rule type (Table 1).

Boundary, position and choice rules all have an analogous
syntax: one agent/1, participates/1 or role/2 lit-
eral as their Conditions, and one participates/1,
role/2 or can/2 literal as their Consequence, respec-
tively. Also, their Consequence literal might be preceded
by the overwriting operator ∼, which is used to have higher-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6938

priority rules overwrite lower-priority ones. Thanks to their
analogous syntactic structure, boundary, position and choice
rules are all processed by the same function during the game
construction process.

In contrast, control rules have a much richer syntax.
Their Condition includes multiple does/2 literals com-
bined by operator and, to account for the possibility that
some effects are only brought about by joint actions. Their
Consequence is a list where each member consists of (pos-
sibly several) literals, also combined by the and operator.
These literals are domain-specific, chosen to describe the rel-
evant features of the interaction under examination.

The conjunction of literals that makes up for one potential
consequence of a control rule is assigned some probability
through the operator withProb. In this way, one can ex-
press non-deterministic consequences of actions in stochastic
environments, as long as the probability distribution over the
potential consequences is valid (i.e. it adds up to unity and
all probabilities are between 0 and 1). Of course, determinis-
tic environments can be simply described by having a single
element in the Consequences list with an assigned proba-
bility of 1.

All rules, regardless of their type, have a Constraints
field in their content. This consists of a list of literals
with the free variables that unify with the variables in the
Condition and Consequence of the rule.

Example. To illustrate the syntax of ASL, the reader is re-
ferred to the fishers example, available in the open-source
repository of our IAD framework model.1 This example first
appeared as a handcrafted policy analysis exercise to exem-
plify how community-crafted rules are capable of transform-
ing the opportunity structure in common-pool resource situ-
ations [Ostrom et al., 1994]. Here, a community of fishers
compete for fishing spots in an open-water fishery. Fishers
may fight over spots to determine who will fish there, or they
may come up with additional regulations that implement an
allocation scheme that avoids violence while being as fair as
possible to all fishers in the community.

In the agents.pl file, two agents: (alice and bob) are
declared, alongside with their strength and speed at-
tributes, which are graded on a scale from 0 to 10.

In the states.pl file, two fishing spots are declared as
spot1 and spot2. Next, it is stated that, initially, all agents
with role fisher are at the shore. Termination conditions
are met when different fishers are in different spots, or when
a fight has occurred. Finally, the incompatible/2 clauses
state that an agent can only be in one location at a time, and
that there is only one possible winner for fights or races.

In the default configuration (i.e. the rules with Priority
equal to 0), the only boundary rule allows all declared agents
to participate, while the only position rule assigns to all of
them the role fisher. The choice rules provide fishers with
the possibility to go to any fishing spot from the shore and,
once there, decide to either stay or leave. Control rules en-
sure that if fishers go to a spot from the shore, or they switch
one spot for another, their movement is always successful.
However, if both fishers take the same action (either stay or

1shorturl.at/GLO07

leave) when they are both at the same spot, hence meeting
again, they fight for that spot. The winner of the fight is cho-
sen randomly according to a probability proportional to each
agent’s strength rating.

Other than default rules, this ASL description also includes
higher-priority rules to implement alternative spot-allocation
schemes that do not involve fighting. These are first-in-time,
first-in-right rules (which assign a fishing spot to the fisher
who arrived there first) and first-to-announce, first-in-right
rules that randomly appoint a participant to be an announcer.
The announcer can declare a spot and, as long as it leaves the
shore directly for the announced spot, it can claim privileges
over it. A detailed explanation of these higher-priority rules
can be found in the full paper.

3 Rule Interpretation and Semantics
Once a valid ASL description has been written following the
semantics of Section 2, a game engine (see Figure 1) is capa-
ble of automatically interpreting it and grounding its seman-
tics as an EFG [González-Dı́az et al., 2010]. The game engine
has two functions: the first is to query, interpret and process
the consequences of rules in the input ASL description; the
second is to assemble an EFG based on the results from the
previous step.

The interpretation of rules is the most important task that
the game engine handles. To perform it, it must first query
the ASL description to find which rules currently apply and
which are their grounded (i.e. without any free variables) con-
sequences. For this step, the game engine relies on the fact
that a rule statement of the form:
rule(..., if Condition then Consequence
where [Constraint1, Constrains2, ...]).

is equivalent to a classical Prolog clause of the form:
Consequence :- Condition, Constraint1,

Constraint2,

The game engine does not query for all currently applicable
rules at once. Rather, it queries for rules of a particular type,
depending on the stage of the game construction process that
it is in (as illustrated in the EFG construction steps presented
shortly).

Once the currently active rules have been queried, the game
engine processes all of their consequences. In particular, it
handles conflicts between contradictory rules, based on their
priorities and the incompatible/2 statements. We refer
to the full paper for a detailed description of the conflict-
solving mechanism, where rules with higher priority deny the
consequences of rules with lower priority.

The result of processing the consequences of currently ac-
tive rules feeds into the game engine’s other main task: to
build the semantics of the ASL description as an EFG model.
An overview of this procedure goes as follows:

1. Get the participants from the boundary rules,
and add them to the ASL description as
participant(<Agent>).

2. Assign participants to their roles using position
rules, and add them to the ASL description as
role(<Agent>,<Role>).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6939

shorturl.at/GLO07

3. Get the initial conditions using the initially/2
statements. Start building the EFG by creating its root
node and assigning the initially true facts to it.

4. While terminal does not return true:
(a) Process the choice rules to find which actions are

available to agents. Build a subtree emanating from
the root node that reflects these possibilities (i.e. by
adding new nodes, edges labelled with the available
actions and information sets to reflect simultaneous
moves).

(b) For every new terminal node generated, query the
control rules to find which facts are now true, pro-
vided that the corresponding joint actions from the
root node have been executed. Assign these facts to
the terminal node in question.

(c) Select a new unexplored terminal node as the new
root node for the next iteration.

Once the game model has been built, it can be analysed us-
ing standard game-theoretical solution concepts, such as the
Nash equilibrium. This step is equivalent to the introduction
of a decision-making model for the agents (i.e. the “Partici-
pants” box in Figure 1). Nevertheless, our model of the IAD
framework is agnostic with respect to the specific decision-
making model implemented.

The introduction of such decision-making models for
agents induces a probability distribution over the possible ter-
minal nodes of the game, i.e. the outcomes that the commu-
nity of agents may achieve. Then, these outcomes can be
evaluated according to some metric (i.e. the “Evaluation cri-
teria” box in Figure 1), such as their efficiency, optimality, or
some notion of social welfare. The expectation of this metric
can be computed by weighting it by the probability distri-
bution over possible outcomes, thus leading to a quantitative
evaluation of the EFG and, by extension, of the ASL descrip-
tion that generated it. This evaluation can serve as a motiva-
tion for agents to introduce new higher-priority rules, if they
deem that the current rule configuration does not satisfy their
needs.
Example. The resulting game semantics built from the var-
ious rule configurations for the fishers example presented in
Section 2 are presented in Figure 3. Besides different game
tree topology, our analysis shows that, for the default rule
configuration, violent outcomes are predicted to happen about
50% of the times that the interaction takes place. The in-
troduction of first-in-time, first-in-right rules eliminates vio-
lent outcomes, yet fishers still engage in competition for the
most productive spot. Competitiveness and violence are com-
pletely eradicated when first-to-announce, first-in-right rules
are instituted. Furthermore, this rule configuration promotes
fairness in the announcements made by the appointed fisher
(i.e. it goes to the spot it said it would go to). This example
illustrates an automated analysis of how additional rules can
improve outcomes in formally modelled social interactions.

4 Conclusions
Using the ASL and its complementary game engine, formal
descriptions of social interactions can be written, and their

(a) Default rule configuration.

(b) First-in-time, first-in-right rule configuration.

(c) First-to-announce, first-in-right rule configuration.

Figure 3: EFG semantics for the fishers example.

outcomes automatically predicted and evaluated. Together,
the two constitute a computational model of the IAD frame-
work and allow practitioners to automatically perform what-
if analysis from a rule configuration to the outcomes most
incentivized by it.

This work opens the door to several extensions, like the
introduction of information rules and dynamic boundary and
position rules. Additionally, links between several action sit-
uations can be modelled, where the outcomes of an action
situation affects the variables that determine the structure of
another.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6940

Acknowledgments
This work has been supported by the EU WeNet project
(H2020 FET Proactive project #823783), the EU TAILOR
project (H2020 #952215), the RHYMAS project (funded
by the Spanish government, project #PID2020-113594RB-
100), the VALAWAI project (Horizon #101070930) and the
VAE project (Grant no. TED2021-131295B-C31 funded by
MCIN/AEI /10.13039/501100011033 and by the European
Union NextGenerationEU/PRTR).

References
[de Jonge and Zhang, 2021] Dave de Jonge and Dongmo

Zhang. GDL as a unifying domain description language
for declarative automated negotiation. Autonomous Agents
and Multi-Agent Systems, 35(1), 2021.

[de Jonge et al., 2017] Dave de Jonge, Tomas Trescak, Car-
les Sierra, Simeon Simoff, and Ramon López de Mántaras.
Using game description language for mediated dispute res-
olution. AI & SOCIETY, 34(4):767–784, 2017.

[Genesereth et al., 2005] Michael Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the aaai competition. AI Magazine, 26:62–72, 06 2005.

[González-Dı́az et al., 2010] Julio González-Dı́az, Ignacio
Garcı́a-Jurado, and M. Gloria Fiestras-Janeiro. An intro-
ductory course on mathematical game theory. Ameri-
can Mathematical Society and Real Sociedad Matemática
Española, Providence, Rhode Island, USA and Madrid,
2010.

[Montes et al., 2022] Nieves Montes, Nardine Osman, and
Carles Sierra. A computational model of Ostrom’s Insti-
tutional Analysis and Development framework. Artificial
Intelligence, 311:103756, 2022.

[Ostrom et al., 1994] Elinor Ostrom, Roy Gardner, and
Jimmy Walker. Rules, Games, and Common-Pool Re-
sources. University of Michigan Press, 1994.

[Ostrom, 2005] Elinor Ostrom. Understanding Institutional
Diversity. Princeton University Press, September 2005.

[Ostrom, 2011] Elinor Ostrom. Background on the institu-
tional analysis and development framework. Policy Stud-
ies Journal, 39(1):7–27, 2011.

[Schiffel and Thielscher, 2014] S. Schiffel and
M. Thielscher. Representing and reasoning about
the rules of general games with imperfect information.
Journal of Artificial Intelligence Research, 49:171–206,
2014.

[Thielscher, 2017] Michael Thielscher. GDL-III: A descrip-
tion language for epistemic general game playing. In Pro-
ceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, pages 1276–1282. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, aug 2017.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6941

	Introduction
	Syntax
	Rule Interpretation and Semantics
	Conclusions

