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Abstract
Model-based diagnosis is a principled and broadly
applicable AI-based approach to tackle debugging
problems in a wide range of areas including soft-
ware, knowledge bases, circuits, cars, and robots.
Whenever the sound and complete computation of
fault explanations in a given preference order (e.g.,
wrt. cardinality or probability) is required, all exist-
ing diagnosis algorithms suffer from an exponential
space complexity. This can prevent their applica-
tion on memory-restricted devices and for memory-
intensive problem cases. As a remedy, we propose
RBF-HS, a diagnostic search based on Korf’s sem-
inal RBFS algorithm which can enumerate an arbi-
trary fixed number of fault explanations in best-first
order within linear space bounds, without sacrific-
ing other desirable properties. Evaluations on real-
world diagnosis cases show that RBF-HS, when
used to compute minimum-cardinality fault expla-
nations, in most cases saves substantial space while
requiring only reasonably more or even less time
than Reiter’s HS-Tree, one of the most influential
diagnostic algorithms with the same properties.

1 Introduction and Preliminaries
1.1 Model-Based Diagnosis
Model-Based Diagnosis [Reiter, 1987] is a well-founded,
principled and broadly applicable approach to detecting, find-
ing and fixing faults in numerous types of systems, such as
software [Hunt, 1998], recommender systems [Felfernig et
al., 2007], spreadsheets [Jannach and Schmitz, 2016], ontolo-
gies [Shchekotykhin et al., 2012], knowledge bases [Rodler,
2015], hardware [Friedrich et al., 1999], circuits [de Kleer
and Williams, 1987], robots [Zaman et al., 2013], schedul-
ing problems [Rodler et al., 2021], cars [Sachenbacher et al.,
1998], and aircrafts [Gorinevsky et al., 2002].

Technically, model-based diagnosis assumes a system
(e.g., software, circuit, knowledge base, physical device) con-
sisting of a set of components COMPS = {c1, . . . , cn} (e.g.,
lines of code, gates, axioms, physical constituents) which is

∗See [Rodler, 2022c] for the full paper.

formally described in some monotonic logical language. Be-
side any relevant general knowledge about the system, this
system description SD includes a specification of the normal
behavior (logical sentence BEH(ci)) of all components ci ∈
COMPS of the form OK(ci)→ BEH(ci). As a result, when as-
suming all components to be fault-free, i.e., OK(COMPS) :=
{OK(c1), . . . , OK(cn)}, conclusions about the normal system
behavior can be drawn by means of theorem provers. When
the real system behavior, ascertained through system observa-
tions and/or system measurements (stated as logical sentences
OBS and MEAS), is inconsistent with the system behavior pre-
dicted by SD, the normality-assumption for some components
has to be retracted. We call 〈SD, COMPS, OBS, MEAS〉 a diag-
nosis problem instance (DPI).

1.2 Diagnoses
Given a DPI, one of the most central goals in model-based di-
agnosis is the localization of the actually faulty system com-
ponents, e.g., the code lines that have to be modified in order
for the software to produce the right output, or the parts of a
car that have to be repaired or replaced in order for the car
to start. One step to this end is the enumeration of sets of
potentially faulty components, called diagnoses. Formally, a
(minimal / minimum-cardinality) diagnosis is an (irreducible
/ minimal-cardinality) set of components D ⊆ COMPS such
that SD ∪ OBS ∪ MEAS ∪ OK(COMPS \ D) ∪ NOK(D) is con-
sistent where NOK(X) := {¬OK(ci) | ci ∈ X}. So, a diag-
nosis is a set of components whose abnormality would ex-
plain the observed incorrect system behavior. To deal with
the potentially numerous diagnoses for a given system (cf.,
e.g., [Shchekotykhin et al., 2012]), it can often be pivotal to
1. ascertain diagnoses in order from most to least plausi-

ble, e.g., minimal cardinality or maximal probability first
[de Kleer, 1991; Reiter, 1987] (best-first diagnosis com-
putation), and/or

2. acquire additional knowledge about the system, e.g., in
terms of measurements, to eliminate spurious diagnoses
[de Kleer and Williams, 1987] (sequential diagnosis).

Note, the novel technique suggested in this work is applicable
for both tasks 1 and 2 (see Sections 2 and 3).

1.3 Diagnosis Computation
Diagnoses are often computed with the aid of conflicts. A
(minimal) conflict is an (irreducible) set of components C ⊆
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COMPS such that assuming all of them fault-free, i.e., OK(C),
is inconsistent with the current knowledge about the system,
i.e., SD∪OBS∪MEAS∪OK(C) |= ⊥. Diagnoses and conflicts
are related in terms of a hitting set property: A (minimal)
diagnosis is a (minimal) hitting set of all minimal conflicts.
(X is a hitting set of a collection of sets S iff X ⊆

⋃
S∈S S

and X ∩ S 6= ∅ for all S ∈ S.) For complexity and efficiency
reasons, diagnosis computation is usually focused on minimal
diagnoses only.

Given a DPI 〈SD, COMPS, OBS, MEAS〉, a generic (hitting-
set-based) diagnosis search algorithm works as follows:

• Start with a queue including only the root node ∅.
• While the queue is non-empty and not enough minimal

diagnoses have been found, poll the first node n from the
queue and process it. That is, compute a label L for n,
and, based on L, assign n (or potentially its successors) to
an appropriate node class (e.g., solutions, non-solutions).

Different specific diagnosis computation algorithms are ob-
tained by (re)defining (i) the sorting of the queue and (ii) the
node processing procedure (node labeling and assignment).

1.4 A Prominent Example: HS-Tree
An instance of an influential and important diagnostic search
is HS-Tree [Reiter, 1987]. It uses a FIFO-queue (breadth-
first search) and an initially empty list D to store the found
minimal diagnoses, and defines node labeling and assignment
as follows:

1. If n is a non-minimal diagnosis (superset of some al-
ready found minimal diagnosis in D) or a duplicate (set-
equal to some other node in the queue), then it is labeled
with × (leaf node; irrelevant node; discard n).

2. Else, if there is a minimal conflict C such that n∩C = ∅,
then n is labeled by C (internal node). This results in |C|
successor nodes of n that are added to the queue, each
constructed as n ∪ {ci}, for all ci ∈ C. Note that the
computation of each conflict requires O(|COMPS|) the-
orem prover calls, and can be accomplished, e.g., by the
QuickXplain algorithm [Junker, 2004; Rodler, 2022a].

3. Else, n is labeled with X (leaf node; minimal diagnosis;
add n to the list of solutions D).

After the tree is completed (queue is empty), D includes ex-
actly all minimal diagnoses for the given DPI, sorted by car-
dinality. Other sortings of D (e.g., based on diagnosis prob-
ability) can be obtained by sorting the queue using suitable
cost functions (uniform-cost HS-Tree [Rodler, 2015]).

1.5 Existing Diagnostic Algorithms
Literature covers a wide variety of diagnosis computation
techniques, e.g., [Abreu and van Gemund, 2009; Darwiche,
2001; de Kleer, 2011; Feldman et al., 2008; Felfernig et al.,
2011; Lin and Jiang, 2003; Metodi et al., 2014; Rodler and
Herold, 2018; Rodler, 2020a; Shchekotykhin et al., 2014;
Torasso and Torta, 2006; Zhao and Ouyang, 2015]; see
[Rodler, 2023; Rodler, 2022b] for surveys, and, e.g., [Nica
et al., 2013; Rodler, 2022e] for empirical comparisons. Over-
all, these methods are highly heterogeneous in terms of their
properties [Rodler, 2022b], motivated by different problem
cases, domains and requirements for which they were de-
vised.

Desirable and often also necessary properties of diagnostic
algorithms are that only and all minimal diagnoses are found
(soundness and completeness), that diagnoses are enumerated
in order as per some preference criterion, e.g., maximal prob-
ability or minimal cardinality (best-first property), and that
the algorithm is applicable to any DPI regardless of the prob-
lem domain, used logic and chosen theorem prover (gener-
ality). Unfortunately, however, all existing diagnosis algo-
rithms featuring these four properties require a worst-case ex-
ponential amount of memory. This can prevent their success-
ful adoption for memory-intensive problem cases [Shcheko-
tykhin et al., 2014] or for memory-limited (e.g., IoT) devices.

2 Contribution
2.1 New Approach: RBF-HS
As a remedy to this issue, we propose a diagnostic search
called Recursive Best-First Hitting Set Search (RBF-HS)
based on Korf’s seminal RBFS algorithm [Korf, 1993].
RBFS is a path-finding search that implements a scheme that
can be synopsized as

• (complete and best-first): always expand current globally
best node while storing current globally second-best node,

• (undo and forget to keep space linear): backtrack and ex-
plore second-best node if none of the child nodes of best
node is better than second-best,

• (remember utility of forgotten subtrees to keep the search
progressing): before deleting a subtree in the course of
backtracking, store cost of subtree’s best node,

• (restore utility at regeneration to avoid redundancy):
when re-exploring a subtree, use this stored cost value to
update node costs in the subtree.

To devise RBF-HS, we first analyzed which general aspects
make diagnosis searches different from path-finding searches.
In this regard, we identified, e.g., the necessity of defining a
suitable node labeling and assignment strategy, that solutions
are sets and not paths, that multiple solutions are generally
sought, that different conditions on the cost functions have to
apply, and that certain provisions are necessary to guarantee
diagnostic soundness and completeness. We then modified
RBFS accordingly to account for all these differences.

So, roughly, RBF-HS integrates the search strategy of
RBFS with the general principles of hitting-set-based diag-
nosis searches discussed in Section 1. As a result, RBF-HS is
sound, complete, best-first, general, and linear-space; a com-
bination of features no existing diagnostic technique offers.
More specifically, RBF-HS allows to generate an arbitrary
fixed number of minimal diagnoses in best-first order within
linear space bounds, can be used out of the box for diagnosis
problems expressed in any monotonic knowledge representa-
tion language, and can operate with any theorem prover.

2.2 Application Scope
Notably, RBF-HS is applicable to optimal (minimal) hitting-
set computation (e.g., [Gainer-Dewar and Vera-Licona,
2017]) in general. Due to the relevance of hitting-set com-
putation to many other important fields, the application scope
of RBF-HS spans far beyond the domain of model-based di-
agnosis. In particular, it may find fruitful application for, e.g.,
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(Max)SAT [Davies and Bacchus, 2011], constraint satisfac-
tion [Bailey and Stuckey, 2005] and optimization problems
[Saikko, 2019], set-theoretic duality [Slaney, 2014], explain-
able AI [Ignatiev, 2020], social and life sciences [Amburg et
al., 2021], as well as for solving a wide range of other NP-
complete problems [Moreno-Centeno and Karp, 2013].

3 Evaluation
3.1 Domain
We conducted comprehensive experiments on 12 real-world
DPIs from a collection of widely used benchmark prob-
lems in the knowledge-based systems domain (cf., e.g., [del
Vescovo et al., 2010; Kalyanpur, 2006; Qi and Hunter, 2007;
Rodler, 2022d; Shchekotykhin et al., 2012; Stuckenschmidt,
2008]). In this field, soundness and completeness are required
to guarantee the localization of the actually faulty knowl-
edge in often critical (e.g., medical) applications; generality
is pivotal to deal with a myriad of different logics and the-
orem provers that are used to optimally trade off expressiv-
ity against reasoning complexity [Baader et al., 2007]; and
best-first computation is desired to monitor the most relevant
fault explanations in order to terminate the debugging early
if the actual fault is recognized, and, moreover, can boost the
overall diagnostic efficiency [Rodler, 2022e]. For these rea-
sons, HS-Tree, described in Section 1, which is a state-of-the-
art method featuring these properties, is the commonly used
method in this application area.

3.2 Experiments
In our experiments, we thus compared RBF-HS against HS-
Tree. We considered two algorithm application scenarios:
single-shot and sequential diagnosis. In the single-shot tests,
each algorithm had to compute the k best diagnoses for each
DPI. In the sequential diagnosis [de Kleer and Williams,
1987] tests, per DPI, each algorithm had to compute k best
diagnoses multiple times in an iterative diagnosis session,
each time for a different version (including one more mea-
surement) of the given DPI. Each session was executed until
all but one minimal diagnosis were ruled out by the measure-
ments; these were selected based on the well-known infor-
mation gain heuristic (cf., e.g., [de Kleer and Williams, 1987;
Rodler, 2017; Rodler and Schmid, 2018; Siddiqi and Huang,
2011]). We used k ∈ {2, 6, 10, 20}, defined the “best” di-
agnoses to be the ones of minimal cardinality, and adopted
Pellet [Sirin et al., 2007] as a theorem prover.

3.3 Results
Fig. 1 shows the results for the sequential diagnosis tests (we
got almost identical results for the single-shot tests). The
main insights are:

• Whenever a DPI was non-trivial to solve, RBF-HS traded
space favorably for time compared to HS-Tree (blue bars
higher than orange ones).

• Space savings (blue bars) of RBF-HS were significant,
amounting to an avg. / max. of 93 % / 98 % of the memory
consumed by HS-Tree. Time overheads (orange bars) of
RBF-HS, in contrast, remained reasonable in all cases.

0.1

1

10

100

2 6 10 20
factor space saved by RBF-HS vs. HS-Tree
factor more time needed by RBF-HS vs. HS-Tree

Figure 1: Experiment Results: (y-axis) memory reduction and time
overhead factors of RBF-HS vs. HS-Tree. (x-axis) 12 studied DPIs
(sorted from low to high space savings) for each number of com-
puted diagnoses k ∈ {2, 6, 10, 20}. Note: The full paper [Rodler,
2022c] provides much more comprehensive evaluation results.

• In 38 % of the cases, RBF-HS exhibited both a lower run-
time and a lower space consumption than HS-Tree (up-
ward blue bars and downward orange bars). We even ob-
served 85 % runtime along with 98 % memory savings in
one case.

Additional findings (not shown in Fig. 1) are:
• RBF-HS scales well to large numbers of computed diag-

noses and to problems involving high-cardinality minimal
diagnoses [Shchekotykhin et al., 2014].

• RBF-HS can deal with highly expressive knowledge rep-
resentation languages, which makes it well suited, e.g.,
for ontology quality assurance and debugging [Kalyanpur,
2006; Meilicke, 2011; Rodler, 2015; Shchekotykhin et al.,
2012], important research fields in the context of the Se-
mantic Web [Berners-Lee et al., 2001].

• In several cases, HS-Tree ran out of memory (32 GB)
while RBF-HS could successfully solve the diagnosis
problem under negligible memory requirements.

4 Conclusion
We have proposed a novel diagnostic search based on Korf’s
seminal RBFS algorithm which gives theoretical guarantees
(soundness, completeness, best-first property, generality, lin-
ear space complexity) no other diagnostic method does. In
experiments on real-world cases, our approach proved to be
significantly more efficient wrt. memory consumption and al-
most on par wrt. runtime, compared to a highly influential
and widely used diagnosis algorithm with the same prop-
erties. Importantly, RBF-HS is applicable to any hitting-
set problem, and thus has the potential to positively impact
a number of important domains beyond diagnosis, such as
(Max)SAT, (Max)CSP, explainable AI, life sciences, or NP-
complete problem solving.

5 Remarks and Additional Resources
Restricted Scope: For brevity, this extended abstract out-
lines the contributions of the associated full paper [Rodler,
2022c] only partially. For instance, the full paper presents a
second diagnostic algorithm, called HBF-HS (Hybrid Best-
First Hitting Set Search). In a nutshell, it constitutes a gen-
eralization of RBS-HS which combines the latter with HS-
Tree in order to optimize the diagnosis computation time (of
RBF-HS) while still preserving problem solvability by pre-
venting a memory overflow. Besides all complexity analyses
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and correctness proofs, the full paper moreover contains a
much more comprehensive evaluation, including results for
HBF-HS, experiments using a second measurement selection
heuristic as well as an alternative diagnosis preference crite-
rion (maximal probability), scalability tests, and a discussion
of the performance of the suggested algorithms on particu-
larly hard diagnostic problem cases.
Prior Versions: Earlier versions of the full paper [Rodler,
2022c] associated with this extended abstract were pub-
lished at the Int’l Workshop on Principles of Diagnosis 2020
[Rodler, 2020b] and at the Int’l Symposium on Combinatorial
Search 2021 [Rodler, 2021].
Presentations: A short video presentation on this work
can be found at https://slideslive.com/38964052, and ani-
mated slides can be accessed via http://isbi.aau.at/ontodebug/
presentation rbfhs dx2020 FINAL.pptx.
Debugging Tool: It is ongoing work to integrate the novel
RBF-HS and HBF-HS algorithms into the ontology debug-
ging tool OntoDebug [Schekotihin et al., 2018a; Schekoti-
hin et al., 2018b], an official and free plug-in for Protégé
[Musen, 2015], the currently most popular open-source inte-
grated development environment for ontologies. Please check
http://isbi.aau.at/ontodebug/ for further information.
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