
A Survey of Methods for Automated Algorithm Configuration (Extended
Abstract) ∗

Elias Schede1 , Jasmin Brandt2 , Alexander Tornede3 , Marcel Wever4 5 , Viktor Bengs 4 5 , Eyke
Hüllermeier4 5 and Kevin Tierney1

1Decision and Operation Technologies Group, Bielefeld University, Bielefeld, Germany
2Department of Computer Science, Paderborn University, Paderborn, Germany

3Institute of Artificial Intelligence, Leibniz University Hannover, Hannover, Germany
4Institute of Informatics, LMU Munich, Munich, Germany
5Munich Center for Machine Learning, Munich, Germany

{elias.schede, kevin.tierney}@uni-bielefeld.de, jasmin.brandt@upb.de, a.tornede@ai.uni-hannover.de,
{marcel.wever, viktor.bengs}@ifi.lmu.de, eyke@lmu.de

Abstract
Algorithm configuration (AC) is concerned with
the automated search of the most suitable parameter
configuration of a parametrized algorithm. There
are currently a wide variety of AC problem vari-
ants and methods proposed in the literature. Exist-
ing reviews do not take into account all derivatives
of the AC problem, nor do they offer a complete
classification scheme. To this end, we introduce
taxonomies to describe the AC problem and fea-
tures of configuration methods, respectively. Exist-
ing AC literature is classified and characterized by
the provided taxonomies.

1 Introduction
In many industries and academic fields, difficult computa-
tional problems need to be solved on a regular basis. Exam-
ples of these problems include constraint satisfaction prob-
lems, Boolean satisfiability problems (SAT), vehicle routing
problems, finding appropriate machine learning models for
given datasets, and computing highly complex simulations.
Algorithms developed to solve such problems have parame-
ters that significantly affect the algorithm’s required runtime
to solve problem instances or the quality of returned solu-
tions. To achieve optimal results with respect to run time or
solution quality, different sets of problem instances require
different parameter values, also referred to as configurations.
It is therefore crucial to adjust the algorithm’s configuration
to the specifics of the problem instances at hand. This adjust-
ment, however, is as complex task because the algorithm to
be configured must be actually executed for different configu-
rations to observe the target metrics (e.g., runtime or solution
quality).

The research field of algorithm configuration (AC) has
emerged to address the challenge of determining suitable pa-
rameter values for algorithms. Especially over the last two

∗Full paper in Journal of Artificial Intelligence Research (JAIR),
Volume 75, 2022.

decades, many approaches and problem variants have been
proposed in this field. Broadly speaking, AC approaches aim
to efficiently find a good configuration for an algorithm to
recommend that configuration for new, unseen problem in-
stances at a later stage. To find a good configuration, typically
a training set of problem instances is used in an offline phase.
The training set can be used as input to run the algorithm
with different configuration settings and observe the respec-
tive performance. It is hoped that these observations on the
train set can be generalized to make good recommendations
for production settings.

To illustrate the benefits of searching for algorithm param-
eters in an automated way, consider the circuit satisfiability
problem as an example. This is a classic SAT problem, where
the task is to find a value assignment such that the output of a
Boolean circuit evaluates to true [Marques-Silva, 2008]. In a
business application, many such circuits must often be eval-
uated for feasibility in limited time. To do this, an efficient
SAT solver such as Glucose [Audemard and Simon, 2009] is
needed to provide solutions in a timely manner. Glucose in
turn exposes several parameters that influence the search for
assignments and, when set correctly, can speed up the search
significantly.

Indeed, configurations for SAT solvers found by
ParamILS [Hutter et al., 2007b], one of the first proce-
dures to search for high-quality parameters in a structured
way, lead to considerable speedups compared to default
configurations of solvers. In particular, the configurations
found reduce the arithmetic mean runtime for software
verification instances for the SAT solver SPEAR from 787.1s
to 1.5 seconds in the best case [Hutter et al., 2007a]. More
recently, PyDGGA [Ansótegui et al., 2021] reduced the
solving time of the SAT solver SparrowToRiss [Balint and
Manthey, 2013] on instances from the N-Rooks [Lindauer
and Hutter, 2018] dataset from 116 to 6.3 seconds. AC thus
offers a simple way of squeezing extra performance out of
existing algorithms for specific datasets.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6964



2 Problem Description
2.1 AC
To define the AC problem more formally, we introduce the
following notation that is similar to [Hutter et al., 2009]. Let
I be a space of problem instances over which a probability
distribution P is defined. Optional feature vectors f i ∈ Rd

with features fi,1, ..., fi,d can be computed for problem in-
stances i ∈ I coming from this space. Furthermore, let
A denote a parametrized target algorithm, with parameters
p1, ..., pk which may be of categorical or numerical nature.
The (finite or infinite) domain of each parameter pi is de-
noted by Θi such that Θ ⊆ Θ1 × ... × Θk is the space of
all feasible parameter combinations, i.e., the so-called config-
uration or search space. A concrete instantiation of the target
algorithm A with a given configuration θ ∈ Θ is denoted by
Aθ . Furthermore, let c : I × Θ → R be a cost function
from the space of cost functions C, which quantifies the cost
of running a given problem instance with a given configura-
tion Depending on the target algorithm, c may be stochastic
and contain noise. Then, ideally, we would like to find the
optimal configuration θ∗ ∈ Θ defined as

θ∗ ∈ argmin
θ∈Θ

∫
I

c(i,θ) dP(i) . (1)

However, in practice, the distribution P over I is unknown,
and thus we must resort to solving a proxy problem. The ag-
gregation function is usually the arithmetic mean or a varia-
tion thereof that is computed over the given problem instances
by applying the given configuration to each of them and com-
puting their cost. Similar to empirical risk minimization in
machine learning, we then seek to find the configuration mini-
mizing the aggregated costs across the training instances, i.e.,

θ̂ ∈ argmin
θ∈Θ

m(c, Itrain ,θ). (2)

Informally, the problem can be expressed as: given a tar-
get algorithm with a set of parameters and a set of problem
instances, find a configuration that yields good performance
with respect to the cost measure across the set of problem in-
stances. We will refer to automated approaches capable of
finding such configurations as (algorithm) configurators.

2.2 Scope
We select and review stand-alone AC methods that are suited
to solve the problem described before. The identified meth-
ods and their features are examined and used to derive the
classification scheme. We omit articles related to algorithm
selection (AS) and hyperparameter optimization (HPO) since
we consider these to be sub problems of AC for which com-
prehensive literature is available. An overview of AC and the
relation between AS, HPO and CASH is given in Figure 1.

Algorithm Selection (AS) AS is a sub problem of AC,
however, which we exclude here, since it has been con-
sidered in several reviews already [Kerschke et al., 2019;
Kotthoff, 2016]. In fact, AS is special case of instance-
specific AC, with a search space consisting of only one cate-
gorical parameter that represents the target algorithm choice.

Figure 1: Illustration of the relationship between AC, AS, HPO and
CASH.

In other words, AS aims at learning an algorithm choice
that is tailored to the input instance, which limits its scope
compared to AC. In particular, the search space in AS is
typically small, discrete and consists of a (static) set of al-
gorithms (although new extensions exist that handle larger
spaces [Tornede et al., 2020]). On the other hand the search
space in AC, is generally based on the parameters of one
target algorithm, and thus, algorithm configurators need to
be able to handle much larger, if not even infinite, search
spaces [Kerschke et al., 2019].

Hyperparameter Optimization (HPO) We will not be
discussing Hyperparameter Optimization (HPO) techniques
in addition to Algorithm Selection (AS) because they have
already been reviewed extensively in several papers [Yu and
Zhu, 2020; Luo, 2016; Yang and Shami, 2020; Bischl et al.,
2021]. Before defining HPO more clearly, let us have a closer
look at the terminology around the words hyperparameter and
parameter. In HPO, parameters that should be set by a user
are called hyperparameters, while in the realm of AC these
are typically referred to as parameters. In HPO the term hy-
perparameters is used since machine learning models usually
also contain parameters that are induced from data and are
not subject to configuration. In fact, it is this difference in
terminology that leads us to one of the key differences be-
tween HPO and general AC, namely that AC methods fo-
cus on configuring target algorithms that solve instances of a
dataset independently, while HPO learns hyperparameters for
target algorithms that train parameters on multiple instances
of a single dataset in tandem.

As HPO is a subset of the AC setting, HPO techniques can,
in theory, be used to search for configurations in the general
AC setting. However, in practice, this is rarely done because
HPO methods lack two important functionalities necessary
for the general AC setting. First, HPO does not minimize al-
gorithm runtime, which is often the primary objective in gen-
eral AC. instead, HPO aims at optimizing a solution quality
metric, such as predictive accuracy. Of course, AC settings
exist where runtime is not a configuration objective, such as
when configuring metaheuristics to find the best possible so-
lution in a given time budget. Second, HPO techniques lack
a problem instance selection mechanism. Specifically, one
configuration in HPO is run on all the instances of one dataset
and the result is observed by the configurator. Note that this
set should be seen as a single AC problem instance, i.e., the
term “instance” is used differently between the HPO and gen-
eral AC communities. In AC, the configuration needs to be

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6965



Figure 2: Illustration of offline AC

tested on a (sub)set of problem instances before the configu-
rator can infer traits about its quality. Furthermore, HPO can
be paired with algorithm selection, which is referred to as the
combined algorithm selection and hyperparameter optimiza-
tion problem (CASH) [Thornton et al., 2013].

Automated Machine Learning (AutoML, CASH) An al-
gorithm selection component can be added to the HPO prob-
lem, resulting in the combined algorithm selection and hy-
perparameter optimization (CASH) problem as formalized by
[Thornton et al., 2013]. Similar to HPO, the CASH problem
can be classified as a sub-problem of algorithm configuration
that is restricted to the domain of machine learning. Note that
in the setting of AutoML, configurators typically face only a
single AC problem instance in the form of a machine learn-
ing dataset. Due to this, we do not cover AutoML/CASH but
instead refer the interested reader to comprehensive surveys
[Elshawi et al., 2019; Zöller and Huber, 2021; Hutter et al.,
2019].

3 Classification
To order and characterize AC settings and methods, we in-
troduce a classification scheme that separately covers (1) the
algorithm configuration setting and (2) the configurator it-

self. More precisely, the problem view describes the config-
uration setting a method is designed for. The problem view
consists of eight subcategories with an emphasis on the prop-
erties of the problem and the interaction between the configu-
rator and target algorithm. The configurator view consists of
seven components that portray important aspects of a config-
urator. Both of these views are interconnected and comple-
mentary. Moreover, the configurator view can be interpreted
as an answer to a problem setting, where specific features are
added to the configurator as a response to the configuration
setting. Existing classification schemes proposed in the liter-
ature until now [Huang et al., 2019; Eiben and Smit, 2011a;
Eiben and Smit, 2011b; Stützle and López-Ibáñez, 2019;
Eryoldaş and Durmuşoğlu, 2021] focus solely on the config-
urator and ignore the problem setting. The proposed taxon-
omy allows for a description and characterization of methods
by aggregating information in tuples. The scheme (especially
the problem view) can also be used to derive new problem
scenarios that have not been addressed before by combining
different aspects in previously unseen ways.

3.1 Problem View

The components of the problem view (Table 1) characterize
a problem setting a configurator is meant for and therefore
influence the configurator’s design. Figure 2 displays these
interconnections and the communication between target al-
gorithm and configurator, as well as the inputs a configura-
tor receives. Note that, except for the objective function and
external runtime setting, all other aspects are mutually exclu-
sive, meaning that an unambiguous setting for a configurator
exists. Furthermore, only the training setting and configura-
tion scope are independent of the target algorithm. For further
details on the different classes and their options, we refer to
[Schede et al., 2022].

Problem aspects Options
Training setting Offline Realtime
Configuration scope Set Instance
Search space Small discrete Large discrete Infinite
Target algorithm objective type Single-objective Multi-objective
Objective function∗ Solving time Accuracy Memory Usage
Target algorithm observation time During run Post termination
Configuration adjustment Static Dynamic
External runtime setting∗ Limited Infinite

∗ Options not mutually exclusive

Table 1: The problem view classification scheme.

Configurator aspect Setting
Solution quality guarantee Heuristic Proven
Surrogate models Model-free Model-based
Problem instance features Featureless Feature-based
Target algorithm execution Sequential Parallel
Candidate output Single configuration Set configuration Policy
Configurator objective Single-objective Multi-objective
Internal runtime setting Limited Infinite

Table 2: The configurator view classification scheme.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6966



3.2 Configurator View
The configurator view (Table 2) characterizes algorithm con-
figurators. The scheme does not cover concrete functionali-
ties utilized by configurators such as intensification criteria or
creation, selection and elimination of configurations. These
functionalities are very difficult to characterize and classify,
since for a single mechanism many options with only sub-
tle differences may exist. We again refer the reader for full
directions of the configurator view to [Schede et al., 2022].

4 Conclusion
Parameters are ubiquitous in modern optimization ap-
proaches and beyond, with all of the significant solvers for,
e.g., MILP, SAT, or TSP problems containing parameters that
influence their performance and need to be set by the user.
AC frees the user from this tedious and error-prone task by
automating the search for high-quality configurations. We
presented an overview of the current state of AC methods.
In particular, we provided two taxonomies for organizing AC
approaches and put sub problems of AC into perceptive.

Acknowledgments
This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research
Center “On-The-Fly Computing” (SFB 901/3 project no.
160364472) and by the research training group “Dataninja”
(Trustworthy AI for Seamless Problem Solving: Next Gener-
ation Intelligence Joins Robust Data Analysis) funded by the
German federal state of North Rhine-Westphalia.

References
[Ansótegui et al., 2021] Carlos Ansótegui, Josep Pon,

Meinolf Sellmann, and Kevin Tierney. PyDGGA: Dis-
tributed GGA for automatic configuration. In Theory and
Applications of Satisfiability Testing - SAT, volume 12831
of Lecture Notes in Computer Science, pages 11–20.
Springer, 2021.

[Audemard and Simon, 2009] Gilles Audemard and Laurent
Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI, pages 399–
404, 2009.

[Balint and Manthey, 2013] Adrian Balint and Norbert Man-
they. Sparrowtoriss.s. Proceedings of SAT Competition
2014, pages 87–88, 2013.

[Bischl et al., 2021] Bernd Bischl, Martin Binder, Michel
Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure
Boulesteix, Difan Deng, and Marius Lindauer. Hyperpa-
rameter optimization: Foundations, algorithms, best prac-
tices and open challenges. CoRR, abs/2107.05847, 2021.

[Eiben and Smit, 2011a] Agoston E. Eiben and Selmar K.
Smit. Evolutionary algorithm parameters and methods to
tune them. In Autonomous search, pages 15–36. Springer,
2011.

[Eiben and Smit, 2011b] Agoston E. Eiben and Selmar K.
Smit. Parameter tuning for configuring and analyzing evo-
lutionary algorithms. Swarm and Evolutionary Computa-
tion, 1(1):19–31, 2011.

[Elshawi et al., 2019] Radwa Elshawi, Mohamed Maher,
and Sherif Sakr. Automated machine learning:
State-of-the-art and open challenges. arXiv preprint
arXiv:1906.02287, 2019.

[Eryoldaş and Durmuşoğlu, 2021] Yasemin Eryoldaş and
Alptekin Durmuşoğlu. A literature survey on instance spe-
cific algorithm configuration methods. In Proceedings of
the 11th Annual International Conference on Industrial
Engineering and Operations Management, pages 2983–
2990. IEOM Society International, 2021.

[Huang et al., 2019] Changwu Huang, Yuanxiang Li, and
Xin Yao. A survey of automatic parameter tuning meth-
ods for metaheuristics. IEEE transactions on evolutionary
computation, 24(2):201–216, 2019.

[Hutter et al., 2007a] Frank Hutter, Domagoj Babic, Hol-
ger H. Hoos, and Alan J. Hu. Boosting verification by au-
tomatic tuning of decision procedures. In Formal Methods
in Computer Aided Design, FMCAD, pages 27–34. IEEE,
2007.

[Hutter et al., 2007b] Frank Hutter, Holger H. Hoos, and
Thomas Stützle. Automatic algorithm configuration based
on local search. In Proceedings of the Twenty-Second Con-
ference on Artificial Intelligence, AAAI, pages 1152–1157.
AAAI Press, 2007.

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Paramils: an auto-
matic algorithm configuration framework. Journal of Ar-
tificial Intelligence Research, 36:267–306, 2009.

[Hutter et al., 2019] Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren, editors. Automated Machine Learn-
ing - Methods, Systems, Challenges. The Springer Series
on Challenges in Machine Learning. Springer, 2019.

[Kerschke et al., 2019] Pascal Kerschke, Holger H. Hoos,
Frank Neumann, and Heike Trautmann. Automated al-
gorithm selection: Survey and perspectives. Evolutionary
computation, 27(1):3–45, 2019.

[Kotthoff, 2016] Lars Kotthoff. Algorithm selection for
combinatorial search problems: A survey. In Data Mining
and Constraint Programming, pages 149–190. Springer,
2016.

[Lindauer and Hutter, 2018] Marius Lindauer and Frank
Hutter. Warmstarting of model-based algorithm configura-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[Luo, 2016] Gang Luo. A review of automatic selec-
tion methods for machine learning algorithms and hyper-
parameter values. Network Modeling Analysis in Health
Informatics and Bioinformatics, 5(1):1–16, 2016.

[Marques-Silva, 2008] Joao Marques-Silva. Practical appli-
cations of boolean satisfiability. In 9th International Work-
shop on Discrete Event Systems, pages 74–80. IEEE, 2008.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6967



[Schede et al., 2022] Elias Schede, Jasmin Brandt, Alexan-
der Tornede, Marcel Wever, Viktor Bengs, Eyke
Hüllermeier, and Kevin Tierney. A survey of methods for
automated algorithm configuration. Journal of Artificial
Intelligence Research, 75:425–487, 2022.

[Stützle and López-Ibáñez, 2019] Thomas Stützle and
Manuel López-Ibáñez. Automated design of metaheuris-
tic algorithms. In Michel Gendreau and Jean-Yves
Potvin, editors, Handbook of Metaheuristics, volume
272 of International Series in Operations Research &
Management Science, pages 541–579. Springer, 2019.

[Thornton et al., 2013] Chris Thornton, Frank Hutter, Hol-
ger H. Hoos, and Kevin Leyton-Brown. Auto-weka: com-
bined selection and hyperparameter optimization of classi-
fication algorithms. In Inderjit S. Dhillon, Yehuda Koren,
Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, and Ramasamy Uthu-
rusamy, editors, The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages
847–855. ACM, 2013.

[Tornede et al., 2020] Alexander Tornede, Marcel Wever,
and Eyke Hüllermeier. Extreme algorithm selection with
dyadic feature representation. In Discovery Science - 23rd
International Conference, DS, pages 309–324, 2020.

[Yang and Shami, 2020] Li Yang and Abdallah Shami. On
hyperparameter optimization of machine learning algo-
rithms: Theory and practice. Neurocomputing, 415:295–
316, 2020.

[Yu and Zhu, 2020] Tong Yu and Hong Zhu. Hyper-
parameter optimization: A review of algorithms and ap-
plications. arXiv preprint arXiv:2003.05689, 2020.

[Zöller and Huber, 2021] Marc-André Zöller and Marco F.
Huber. Benchmark and survey of automated machine
learning frameworks. J. Artif. Intell. Res., 70:409–472,
2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

6968


	Introduction
	Problem Description
	AC
	Scope

	Classification
	Problem View
	Configurator View

	Conclusion

