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Abstract
As autonomous systems tackle more real-world
situations, mission success oftentimes cannot be
guaranteed and the planner must reason about the
probability of failure. Unfortunately, computing
a trajectory that satisfies mission goals while con-
straining the probability of failure is difficult be-
cause of the need to reason about complex, multidi-
mensional probability distributions. Recent meth-
ods have seen success using chance-constrained,
model-based planning. We argue there are two
main drawbacks to these approaches. First, cur-
rent methods suffer from an inability to deal with
expressive environment models such as 3D non-
convex obstacles. Second, most planners rely on
considerable simplifications when computing tra-
jectory risk including approximating the agent’s
dynamics, geometry, and uncertainty. We apply hy-
brid search to the risk-bound, goal-directed plan-
ning problem. The hybrid search consists of a re-
gion planner and a trajectory planner. The region
planner makes discrete choices by reasoning about
geometric regions that the agent should visit in or-
der to accomplish its mission. In formulating the
region planner, we propose landmark regions that
help produce obstacle-free paths. The region plan-
ner passes paths through the environment to a tra-
jectory planner; the task of the trajectory planner is
to optimize trajectories that respect the agent’s dy-
namics and the user’s desired risk of mission fail-
ure. We discuss three approaches to modeling tra-
jectory risk: a CDF-based approach, a sampling-
based collocation method, and an algorithm named
Shooting Method Monte Carlo. A variety of 2D
and 3D test cases are presented in the full paper
including a linear case, a Dubins car model, and
an underwater autonomous vehicle. The method
is shown to outperform other methods in terms of
speed and utility of the solution. Additionally, the
models of trajectory risk are shown to better ap-
proximate risk in simulation.

∗Full paper in the Journal of Artificial Intelligence Research, Vol-
ume 75 [Strawser and Williams, 2022].

1 Introduction
As they become more commonplace, autonomous systems
must deal with increasingly uncertain surroundings. Au-
tonomous cars quickly make decisions while navigating dy-
namic urban settings. Similarly, autonomous underwater ve-
hicles accomplish a range of scientific and exploratory tasks
while dealing with stochastic ocean currents.

Such widespread applicability has inspired a vast amount
of prior work into motion planning under uncertainty. A com-
mon method of approximating trajectory risk is to assume a
state distribution for which there is a quick-to-evaluate cu-
mulative distribution function (CDF), such as the Gaussian
distribution. In one such approach the authors combine a dis-
junctive program with a CDF-based evaluation of trajectory
risk [Blackmore et al., 2011]. Chance-constrained RRT pro-
poses an extension of the popular rapidly-exploring random
tree (RRT) algorithm [Luders et al., 2010]. Probabilistic con-
straints are added to the basic RRT formulation; the path must
avoid collisions with a predetermined probability. Another
approach does not directly assume Gaussian uncertainty but
models the state distribution of an agent that collides with an
obstacle as a truncated Gaussian [Patil et al., 2012].

Hybrid search has seen promise solving problems with
discrete and continuous decision variables. ScottyActivity
combines activity and trajectory planning over long horizons
[Fernandez-Gonzalez et al., 2018]. The Scotty planner de-
composes the workspace into convex subregions and per-
forms graph search over the subregions. Another example of
hybrid search is the pSulu planner [Ono et al., 2013]. pSulu
solves a Chance-Constrained Qualitative State Plan (CCQSP)
using branch and bound and convex optimization. Learning
has seen success in a hybrid approach to motion planning.
In one instance, a probabilistic roadmap (PRM) planner is
combined with reinforcement learning to generate long tra-
jectories for nonlinear systems [Faust et al., 2018]. Our work
builds on these and relies on hybrid search for more sophisti-
cated models of risk than previous approaches.

1.1 Problem Statement
We consider the problem of an agent navigating from an ini-
tial state I to a sequence of goal states G while avoiding ob-
stacles with probability 1 − ϵ. The purpose of the algorithm
is to output an open loop control trajectory u. The control
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Figure 1: The plane and coordinate system that represent a landmark
region Ln for a 3D workspace. The dotted lines do not represent a
constraint; they are shown to illustrate the landmark region’s plane.

Figure 2: The ray that represents a landmark region Ln for a 2D
workspace

outputs u represent inputs to the agent’s actuators. The navi-
gation problem can be framed as the optimal control problem:

minimize
x,u,h

E [J (x0:K ,u0:K−1,h0:K−1)] (1)

subject to ẋ = f (x,u) +w (2)

P

( ∧
k∈K

xk ∈ Wfree

)
≥ 1− ϵ (3)

x0 ∈ I (4)
xkg ∈ Gg ∀ 0 ≤ g ≤ G (5)

Constraint (3) is important to this work; it models the proba-
bility that the trajectory is in the free region of the workspace,
Wfree, and is termed the chance constraint.

We solve the risk-bound motion planning problem using
hybrid search. The search consists of a region planner and a
trajectory planner. The region planner passes candidate paths
to the trajectory planner; the trajectory planner then optimizes
a trajectory constrained to a specific path and determines if
the chance constraint can be satisfied. The components are
introduced in the following sections.

2 The Region Planner
The purpose of the region planner is to determine an appropri-
ate set of active geometric constraints that allow the agent to
accomplish its mission. To do this, the region planner reasons
about geometric regions of the agent workspace, termed re-
gions. The regions are used to model obstacle-avoidance con-
straints, goal constraints, and other geometric constraints on
the agent’s trajectory. The region planner connects sequences
of regions into paths. Each path can be compiled into a set of
constraints on the agent’s continuous state trajectory.

The region planner receives as inputs an agent and a se-
quence of goals that the agent must accomplish. The output
of the region planner is an ordered set of regions, a path, that
represents a sequence of geometric constraints on the agent’s
position. This path is then passed to the trajectory planner.

2.1 Landmark Regions
Our work proposes landmark regions to model obstacle-
avoidance constraints and facilitate modeling the collision
probability. Geometrically, landmark regions are bounded
hyperplanes. In three dimensions, this hyperplane is a
bounded plane and in two dimensions, the constraint is a ray.
The plane is bounded because it is bordered by a line ℓn in-
cident to an obstacle sub-facet. For each sub-facet S in an
environment, there is a corresponding implied landmark con-
straint L. The geometry is illustrated in Figs. 1 and 2. The
bounded hyperplane extends upwards and in all directions
from the blue line in Fig. 1. The hyperplane’s orientation di-
vides the angle between the two neighboring obstacle facets.
If the angle between the facets is 2α (measured on the side of
the obstacle surface with outward pointing normal vectors),
then the hyperplane is positioned α from each neighboring
facet.

An advantage of using a hyperplane is that it is straightfor-
ward to generate convex constraints that force the trajectory
to pass through each landmark region. Additionally, land-
mark regions are implicitly defined for any polytope surface
and do not require additional calculation such as other convex
decomposition methods [Deits and Tedrake, 2015].

2.2 First Feasible Hybrid Search
First Feasible Hybrid Search (FFHS) specifies how the region
planner determines which paths to pass to the trajectory plan-
ner. It has the objective of generating good, feasible paths
quickly in complex environments. Because trajectory opti-
mization calls are expensive, the search seeks to minimize
them. To do this, FFHS only passes mission complete paths to
the trajectory planner where mission complete paths are paths
that include all goals in G. This idea is illustrated in Fig. 3.
The green path includes I and G; its implied constraints are
passed to the trajectory planner for trajectory optimization.
The cyan and red path violated the chance constraint and is
separated into prefix and suffix paths.
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Figure 3: Example of First Feasible Hybrid Search. Mission com-
plete path P = [I,L2,L4,G] is passed to the trajectory planner,
which computes a trajectory constrained to lie in these regions.

3 The Trajectory Planner
The task of the trajectory planner is to optimize a trajec-
tory that respects the path’s implied geometric constraints as
well as other constraints such as the agent’s dynamics. Im-
portantly, the trajectory planner models trajectory risk, Con-
straint (3). It uses techniques from trajectory optimization
and off-the-shelf optimization libraries.

The trajectory planner receives as inputs a sequence of re-
gion constraints from the region planner. It requires a model
of the agent’s dynamics and a predetermined bound on mis-
sion failure, i.e. the chance constraint. The full article details
three models of trajectory risk, which we briefly summarize
here.

3.1 CDF-Based Chance Constraints
The chance constraint models the probability that the trajec-
tory fails in execution. The constraint is difficult to compute
because it involves the integration of a probability distribu-
tion over many dimensions as the state evolves in time. Our
first and simplest model of risk involves CDF-based chance
constraints. This simplification is appropriate to agents with
linear dynamics whose geometry is unimportant when com-
puting collision risk, i.e. point robots. First, an independence
assumption is used to simplify the joint chance constraint,
Constraint (3), into a product of probabilities:

P (SN ) =
N∏

n=1

P (Sn|Sn−1) ≥ 1− ϵ (6)

Each term on the right-hand side of Eq. (6) models the prob-
ability of success at a specific point in time. Mathematically,
it is given by the integral:

P (Sn) =

∫
ℓ

f (xn) dxn (7)

where f (xn) is a distribution of the agent’s state at region
n and ℓ represents the limits of integration. In general, Eq.
(7) must be computed using numerical methods; however, the

central assumption of this section is that we have access to a
subroutine that can quickly evaluate the integral. What must
be specified are the limits of integration ℓ.

An advantage of Section 2.1’s landmark regions is that they
form not only constraints on the trajectory but also enable a
geometric simplification when computing CDF-based chance
constraints. Instead of calculating the integral with respect to
the non-convex space, it is simplified by projecting the dis-
tribution onto the landmark region. For example, in Fig. 1,
state uncertainty is projected onto Ln and the resulting bi-
variate distribution integrated from coordinate ŝn = 0 to ∞.
For a complete description of the calculation, the reader is
referred to the full article [Strawser and Williams, 2022].

3.2 Approximating Trajectory Risk via
Intersecting Region

The downside of CDF-based chance constraints is they re-
quire modeling uncertainty with a distribution for which there
is an easily-evaluated CDF. Our second method approxi-
mates risk via samples drawn from the nominal trajectory. If
Wobs represents the workspace occupied by the obstacles, let
Wint,s be the intersecting region between the agent’s body,
Wk,s, and obstacles summed over the entire trajectory sce-
nario s. Specifically:

Wint,s =
∑
k

Wk,s ∩Wobs (8)

To model the collision probability, an indicator variable is
set to one if the intersecting region is greater than zero, and
zero otherwise:

P (Collision) ≈ 1

S

∑
s

1|Wint,s|>0 (9)

where |Wint,s| is the size of the intersecting region of sce-
nario s and S is the total number of scenarios. The Jacobian
of the indicator function is a Dirac delta function; Eq. (9) has
a non-zero gradient only at the point of collision between the
agent and the obstacle. This provides the trajectory optimizer
with little information about how to satisfy the constraint and
would likely prevent it from succeeding. Instead, the paper
approximates the indicator variable through a sigmoid func-
tion. The overall chance constraint is then written:

ϵ− 1

S

∑
s

Sigα (|Wint,s|) ≥ 0 (10)

where α controls the sigmoid’s steepness, i.e. how well it
approximates the indicator function. An advantage of the
sigmoid function is that it is straightforward to differentiate
when computing the Jacobian matrix. Specifically,

dSigα (s)

ds
= Sigα (s) (1− Sigα (s)) (11)

The chain rule is used to derive the gradients with respect to
the decision variables. The Jacobian of the chance constraint
Ccc with respect to a decision variable state xn is:

∂Ccc

∂xn
=

dSigα (Wint)

dWint

∂Wint

∂xn
(12)
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Lawnmower
Pattern

(Trajectory Cost)

Lawnmower
Pattern
(Time)

FFHS 924 556
CC-RRT 50,750 992

CC-RRT-Connect 5,306 754

Interleaved Timeout Timeout

Figure 4: Comparison of the trajectory cost and time to reach an
initial feasible solution for a linearized undersea glider test case. A
timeout was set at 5 minutes. CC-RRT and CC-RRT-Connect are
variants of chance-constrained RRT. “Interleaved” refers to a hybrid
search where a trajectory optimization is performed for every new
region added to a path. Figure 5: Comparison of the three chance constraint models’ ability

to approximate the chance constraint in simulation

Computing gradient ∂Wint

∂xn
is possible through the use of

vector calculus and considering the flux of incremental area
(or volume) entering or leaving Wint due to an incremental
change in one of the states. The journal paper details this
calculation more fully.

3.3 Shooting Method Monte Carlo
The previous section’s sampling-based chance constraint has
the drawback that it requires a nominal trajectory from which
to draw samples. Stochastic systems do not have a determin-
istic nominal trajectory. In this section, we propose a method
that computes the joint chance constraint by forward simu-
lating realizations of entire trajectories. We then determine
which scenarios fail and use this information to compute the
overall trajectory risk. To do this, we incorporate a shoot-
ing method trajectory optimization. In the deterministic case,
the shooting method works by forward simulating a trajec-
tory and updating the control inputs until the final simulated
state matches the goal state. The insight underlying this sec-
tion is that the shooting method of trajectory optimization
is similar to a single Monte Carlo simulation of a stochas-
tic process. We combine the two strategies into the Shooting
Method Monte Carlo (SMMC) algorithm.

The vanilla deterministic shooting method first simulates
the agent’s dynamics. Given the results of the simulations, a
defect di is calculated for each constraint Ci. The defect is
measured as:

Ci − Ci (u,h) = di (13)

where Ci is the desired value of constraint i, and Ci (u,h)
is the value of the constraint resulting from simulating the
dynamics using decision variables (u,h). The task of the
trajectory optimization routine is to reduce defects to some
small tolerance.

Shooting Method Monte Carlo differs from the tradi-
tional shooting method by first sampling from the underly-
ing stochastic process’s distribution. The trajectory is then
simulated S times and there is no single Ci (u,h). Instead,
SMMC approximates the expected value of each constraint

Ci that results from simulating the trajectory with respect to
decision variables (u,h) and samples Zs. SMMC’s defect is
expressed as:

Ci − Ef̂

[
Ci (u,h)

]
= di (14)

where f̂ is the trajectory’s simulated empirical distribution.
The expected value in Eq. (14) is:

Ef̂

[
Ci (u,h)

]
=

1

S

∑
s

Ci,s (u,h) (15)

Approximating the objective function follows a similar
scheme. Its value is computed for each scenario, Js, and the
expected cost is approximated as:

Ĵ = Ef̂ [J ] =
1

S

∑
s

Js (16)

Given the sampled trajectory, the chance constraint is
computed via (10). The chief difference between Shoot-
ing Method Monte Carlo and the second method described
in Section 3.2 is that SMMC relies on sampled trajectories
rather than a nominal trajectory. This allows it to better ap-
proximate the true underlying distribution.

4 Results
The paper includes a number of test cases. The first set of
tests benchmark FFHS against other approaches on agents
with linear dynamics and Gaussian uncertainty. One task
requires an undersea glider to perform seafloor exploration
via a lawnmower pattern. These results are depicted in Ta-
ble 4; FFHS is able to outperform the other approaches by
generating trajectories with lower cost in less time. We also
benchmark the various chance constraint models against one
another. CDF-based chance constraints are easiest to com-
pute; however, they exhibit error if the dynamics are nonlin-
ear and state distribution non-Gaussian. This is shown in Fig.
5 where SMMC more accurately approximates trajectory risk
in simulation for a Dubins car. The reader is referred to the
full paper for complete results and discussion.
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